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ABSTRACT

Current cognitive user models enable us to describe,
analyze, and predict aspects of user cognition. However,
none of the major cognitive models such as ICS, MHP, or
CCT tackle the human error aspect of cognition explicitly.
Operator performance is constrained to be error-free,
expert performance. This paper argues that the analysis of
human error in accidents will greatly benefit from
representing a cognition-based error model within a
cognitive architecture, such as ICS. A helicopter accident
near Middlewich in 1996 acts as a case study. The
resulting model is shown to aid reasoning about human
error and its potential causes. Thus a more complete
understanding of human error in accidents can be
achieved.
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INTRODUCTION

The nature and causes of failures due to ‘human error'
remain relatively poorly understood (O'Hare et al, 1994).
Reason et al (1990) maintain that ‘one of the applied
psychologist's more pressing task is to provide accident
investigators with a better classification of the possible
varieties of human failure' (op.cit.). O'Hare (1994) and his
colleagues analyzed a database of aircraft accidents and
incidents by applying two different error classification
schemes.  They stress that they only attempted to
investigate what failed in each of these events, and not the
‘mechanism of malfunction', meaning how it failed
(op.cit.). This, however, needs to be determined ‘to trace
the information processing failures associated with each
event'. This paper illustrates an approach which translates
a catalogue of theory-based error classifications into the
framework of a cognitive architecture. This can bridge the
gap between mere categorization of error and ‘probing
[the available information] more deeply by means of

theoretically based models of human information
processing'.

The Case Study

On October 22 1996, five people were killed in an
accident involving a helicopter AS 355F1 Twin Squirrel.

The accident occurred when the helicopter was returning
to London from a private landing site in Lancashire with
one pilot and four passengers on board. The aircraft was
being flown at night in visual contact with the ground
when the pilot decided to climb to a higher altitude.
During the climb he was deprived of external visual
references and the aircraft adopted a steep nose-up
attitude during which the air speed reduced below a
minimum recommended speed for instrumental flight.
This unintentional manoeuvre then developed into a fast,
spiral descent. The helicopter did not recover from the
dive and it crashed into a field on the outskirts of
Middlewich, broke up and caught fire (Air Accident
Investigation Branch, 1997).

Integrating Error Models and Cognitive Architectures

Conceptual models of human error such as GEMS
(Reason, 1990) present a taxonomy of error types that
aids the prediction and detection of error classes, and can
thus be exploited for their prevention and provision of
recovery mechanisms (Taylor, 1988). However, stand-
alone human error theories highlight at best possible
sources of erroneous performance, but without providing
a language in which to express these error tendencies
when applied to human cognitive task performance.

Cognitive architectures can contribute to our
understanding of the cognitive limitations of an operator
performing a task.  For example they can be used to
analyse the detrimental effects that cognitive load can
have on user performance (Barnard and May, 1993;
Ashcraft, 1994). Human error can be described in terms
of its underlying cognition. This analysis thus reaches
beyond the surface categorization of failures.

Current cognitive user modeling strives to represent the
cognitive processes underlying error-free performance,
implicitly assuming expert performance in some perfect
context (see for instance Simon, 1988; Grant and Mayes,
1991; Booth, 1991; Knowles, 1997). This idealizes real-
life conditions of task performance and thus presents
major deficiencies in applied user modeling.

Since user error presents a major source of accidents
(Reason, 1990) we argue that the explicit analysis of
human error within cognitive user modeling techniques
constitutes a crucial source of understanding and thus a
prerequisite of reducing erroneous task performance. This
paper will use a cognitive architecture as a vehicle for
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expressing not only expert task performance but also the
more realistic error-prone thought and action sequences
processed by the human operator.  By doing this, the error
modeling capability implicit in the comprehensive ICS
cognitive architecture is made the focus of inquiry into
the underlying cognition of operator performance. Such
explicit modeling of erroneous performance can thus help
to communicate findings about operator cognition. It can
also be used to ground design decisions in a cognitive
theoretical framework. As a running example, error
modeling will be applied to events leading up to the
Middlewich accident.

We will use Interacting Cognitive Subsystems (ICS)
(Barnard and May, 1993) to illustrate the modeling of
human error within a cognitive architecture. ICS provides
a comprehensive account of human cognition, which has
been applied to real-life systems and tasks, such as
cinematography (May and Barnard, 1995) and Air Traffic
Control (Buckingham-Shum et al., 1994). It attempts to
"satisfy the need for applicable theory" (Barnard, 1987).
ICS, therefore, bridges the gap between theory-oriented
cognitive architectures and task-oriented cognitive user
models (Grant and Mayes, 1991; Simon, 1988).
Alternative cognitive user models, such as Task Analysis
for Knowledge based Descriptions (TAKD) (Johnson, P.
et al., 1994), User Action Notation (UAN) (Hartson et al.,
1990), or Soar (Newell, 1990) might have been used.
However, they lack the level of detail in ICS’s
representation of cognitive processes, or, as in the case of
Soar, the inherent constraints that these have to satisfy
(Wilson et al., 1988; Kjaer-Hansen, 1995).

Reason’s taxonomy of human error (Reason, 1990)
represents a conceptual classification of error, as opposed
to a contextual or a behavioural one. The latter,
exemplified for instance by Hollnagel’s (1991)
classification of error phenotypes, does not lend itself to
the in-depth analysis of the underlying cognitive sources
of error. For instance, a behavioural error category might
include errors that exhibit the same surface characteristics
without sharing the same cognitive basis.

Content and Structure of this Paper
The following section will take a closer look at the ICS
architecture and Reason’s theory of human error.
Reason’s error classification scheme will then be
introduced. Readers familiar with ICS and GEMS can
move straight to the third section, where the benefits of
the suggested combined modeling approach are pointed
out. ICS is used as a framework within which Reason’s
classification of human error can be expressed.

A COGNITIVE ARCHITECTURE AND A HUMAN ERROR
MODEL

This section describes Barnard’s ICS model and Reason’s
human error taxonomy. This provides the framework in
which the representation of erroneous operator interaction
can be placed.

Interactive Cognitive Subsystems (ICS)

Cognition is represented in ICS as the flow of information
between nine subsystems (see Figure 1), and the
processing performed on this data. Each subsystem can
receive several input streams and either achieves a
blending of these, or else favours one input over the
other. Each subsystem also has at its disposal a local
image store. A copy of any input the subsystem receives
will automatically be copied to this buffer, before being
further processed.

Sensory subsystems:
VIS visual: hue, contour etc. from the eyes
AC acoustic: pitch, rhythm etc. from the ears
BS body-state: proprioceptive feedback

Effector subsystems:
ART articulatory: subvocal rehearsal & speech
LIM limb: motion of limbs, eyes etc.

Structural subsystems:
OBJ object: mental imagery, shapes etc.
MPL morphonolexical: words, lexical forms

Meaning subsystems:
PROP propositional: semantic relationships
IMPLIC implicational: holistic meaning

Figure 1 The ICS Subsystems

The nine subsystems can be grouped into four categories.
The visual, the acoustic, and the body-state subsystems
are responsible for sensory processing. Articulatory and
limb comprise the effector subsystems. The central
subsystems comprise of the Structural (object and
morphonological) and the Meaning (propositional and
implicational) subsystems. They recover the structure of
mental imagery and words, and give semantic and holistic
meaning to those structures respectively.

Reason’s Classification of Human Error

Reason’s taxonomy of human error (Reason, 1990)
represents a conceptual classification of error. It is
predicated on assumptions about the cognitive
mechanisms involved in error production. His
categorization scheme is widely referred to in research
into error modeling (Logan and Cowan, 1984; Green,
1985, Rasmussen, 1985, 1990; Rouse and Morris, 1987;
Woods, 1988, De Keyser, 1989, Rouse and Cody, 1989).
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Reason bases his error classification on the definitions of
skill-based slips and lapses on the one hand, and rule- and
knowledge- based mistakes on the other. He defines slips
and lapses to result in actions or states that deviate from
the current intention due to execution and/or storage
failures. Mistakes, on the other hand, result in actions that
may run according to plan, but where the plan is
inadequate to achieve its desired outcome (see also
Norman (1981) and Rasmussen (1983)).

The working definition for mistakes points out that these
result in actions that may run according to plan, but where
the plan is inadequate to achieve its desired outcome.
Rules have been formed through interaction with the
world, and are re-applied when appropriate. For any task,
rules must be selected by the cognitive system. There
might be several rules that compete for selection. The
selection occurs according to which rule matches the
given conditions best, supplies the highest degree of
specificity, and can boast the greatest degree of strength.
Rule strength is defined to be the number of times a rule
has performed successfully in the past. Occasionally, rule
strength might override the other factors, possibly
resulting in the misapplication of ‘good’ rules. Reason
calls this the application of 'strong-but-wrong' rules. For
instance, it is highly likely that on the first occasion an
individual encounters a significant exception to a general
rule, the 'strong-but-now-wrong' rule will be applied. An
example of such a 'First Exception' rule-based mistake
will be examined in the case study below.

Thus, error taxonomies such as Reason's typically confine
themselves to broad error categories such as slips and
mistakes. A more detailed, lower level description of such
classes might aid the further investigation of its instances.
The accident analysis process might thus be tuned more
finely to potential deficiencies pointed to by the operator
error.

Cognitive modeling techniques, such as ICS, can provide
a more precise vocabulary to augment the general descrip-
tions of error taxonomies. We will illustrate this by
modeling rule-based mistakes within ICS as the paper
progresses.

Reason furthermore asserts that instances of his three
basic error types are indirect results of what he calls the
‘underspecification’ of cognitive operations. In case of an
ambiguity of the situational requirements, the cognitive
system defaults to contextually appropriate, high frequ-
ency responses. This idea of default assignments features
in most other cognitive theories, such as Bartlett’s (1932)
theory of schemata, and is well backed up by empirical
evidence. ICS provides for this cognitive principle by
referring to the depository role of image records attached
to the individual subsystems. Thus ambiguous external
input is complemented by internal input. In this way, ICS

can be used to examine Reason's elementary concept of
cognitive underspecification.

USING ICS TO EXPRESS REASON’S ERROR TYPES

Human error has been recognized as a predominant factor
in aviation mishaps. O’Hare et al (1994) cites estimates of
the proportion of mishaps due to human error as ranging
between 60% and 80%.

Expressing human cognitive errors within the framework
of a cognitive model will allow us to investigate and
reason about their underlying psychological causes. A
conceptual, systematic technique for categorization of
errors is a prerequisite.

In the following section we show how errors leading up
to the Middlewich accident can be categorized according
to Reason’s classification scheme and subsequently
modeled in the ICS architecture. Thus, the relationship of
these errors to the underlying cognitive mechanisms as
propagated by Reason can be established.

Analysing the Underlying Cognition of Errors

At a crucial point in the run up to the Middlewich
accident, the pilot became disoriented after he lost
external visual attitude reference. In spite of several
observed coping manoeuvres, he never recovered.

The investigation identified six causal factors, one of
which concerned the commander’s workload in marginal
weather conditions. Another one suggested that the
commander may have been distracted at a critical time by
the opening of a cabin door. Underlying all of this is the
pilot’s disorientation, as recorded in the pilot’s
verbalisations, and his inability to recover from it.

Examining the pilot’s behaviour in the light of these
causal factors can give rise to several interpretations.
Two of the possible viewpoints are discussed in detail as
the section progresses. They refer to Reason’s taxonomy
of human error, and identify two rule-based failure modes
underlying the pilot’s inability to perform the appropriate
recovery manoeuvres. On the one hand, as shown below,
this could be put down to a rule-based mistake such as the
‘First Exception’ class of errors (described above).
Alternatively, Reason identifies ‘Information Overload’
as a possible failure mode at rule-based level of
performance. This could be seen as being a major
contributing factor in the given accident sequence.

As can be seen, these two categorisations of pilot error are
general in nature. We will show below how they can be
complemented by an anlysis of the underlying cognition
within the ICS framework. The more precise and detailed
vocabulary offered by the ICS architecture can
accommodate modeling to reach beyond surface
characterisation of human error. We will illustrate this in
the following section.
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Figure 2  Rule-based Mistake: First Exception to General Rule

Reasoning about Alternative Analyses of Error Causes

Attitude information was available through the main
attitude indicator, and should have been confirmed by the
standby attitude indicator. The latter, however, had most
probably not been switched on at the beginning of the
flight, and therefore showed erroneous indications.

Furthermore, the pitch rate was sufficiently slow and
steady for the commander not to be aware of the attitude
change. He was thus faced with a mismatch of his
expectations and two diverging indications on the standby
and main attitude indicators. If both instruments had been
giving similar attitude information, the pilot may safely
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have assumed that he was experiencing from a perceptual
illusion. Otherwise he had been hopelessly confused.

Referring to Reason’s taxonomy, the pilot’s cognition and
resulting behaviour in the above-described chain of events
might be classed as a misapplication of a good rule (see
above). As pointed out earlier, Reason stresses the role of
‘first exceptions’ to a general rule which are most likely
to be overridden by ‘strong-but wrong’ rules. The pilot's
instrument flying skills had not been formally examined
since April 1992, and he had not been required to rehearse
recoveries from unusual positions. His loss of orientation
caused by facing a mismatch of sensory perception and
instrument indication can be seen as the ‘first exception’
to the general rule when not experiencing a mismatch.

The underlying cognition can be modeled in ICS as
shown in Figure 2.

The visual data is received at the visual subsystem (1),
sent to the object subsystem for the recovery of a
structural description (2), and finally interpreted by the
propositional subsystem (3). The information is fed
forward into the implicational subsystem, which interprets
the data in the light of the current context. In the
meantime, the propositional subsystem receives
contradictory information from the body-sensory
subsystem (5), which claims to sense no change in
attitude. If, as is the case here, the propositional subsys-
tem receives ambiguous structural information, and it
proves unable to blend the incoming data streams, a
selection process will take place, based on the rules
available to it and their respective strengths. The feedback
information received from the implicational subsystem
also plays a guiding role in input and thus rule selection.

The choice of input stream taken by the propositional
subsystem might fit in with the implicational
interpretation of what is perceived, and thus stabilize in
the cognitive system. If the assumption underlying the
choice of what data is used to eliminate the ambiguity is
wrong, however, the representation of what is thought to
be perceived will also be incorrect. The wrong data will
be favoured. If this occurs then the pilot's recovery
manoeuvres will be inappropriate to the helicopters
attitude change and an accident might occur.

Modeling this scenario in ICS showed how an instance of
Reason's class of rule-based mistakes could be
investigated at a more detailed level. This complements
the more general categorisation of human error by
Reason's taxonomy alone.

The above interpretation of causal factors represents one

possible underlying cause of the described error.
However, the same manifestation of user behaviour might
also point towards a second, different underlying
cognitive mechanism. Employing Reason’s taxonomy, the
commander not being aware of the attitude change can be
classed as a rule-based mistake as modeled above. On the
other hand, it could also be classed as a rule-based
mistake as mediated by information overload.

Reason cites the abundance of information confronting
the problem-solver in most real-life situations as one basis
for rule-based mistakes. He states that this almost
invariably exceeds the cognitive system’s ability to
apprehend all the signs present in a situation. Applied to
our case study, the interplay of contradictory attitude
information on the one hand, and the opening of the cabin
door on the other can be seen as leading to cognitive
information overload.

This scenario particularly lends itself to being expressed
in the ‘cognitive language’ provided by ICS. The
limitations of human cognition in the face of information
overload, or cognitive strain, is built into ICS as the
architectural constraint of subsystems not being able to
process simultaneous inputs which belong to distinct
configurations. Using ICS can help to express the details
of Reason's 'information overload' more precisely.

The problem-solving configuration described above
remains, but now is supplemented by a second
configuration, which describes the cognitive resources
required when processing the opening of the cabin door
(see Figure 3).

The second configuration (2) originates from the input at
the acoustic subsystem by the noise of the opening cabin
door. This information demands access to the meaning
subsystems, currently utilized by the first configuration
(1). Since Principle 1 in ICS does not allow access to
subsystems by more than one configuration at a time, the
two configurations compete for the available cognitive
processing resources. Cognitive overload is established.

Using ICS to model the underlying cognition of the error
provides a means of further investigating the behaviour
trace leading to an accident. Expressing the rationale for
different interpretations within a cognitive framework
facilitates their more precise communication and more
detailed analysis. In that way, not only what failed in
accidents, but also how it failed is examined and thus
included in the investigation of human error.
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Figure 3 Information Overload - Competing Configurations

CONCLUSION

Cognitive user modeling enables usability engineers to
gain a deeper understanding of the complexities of human
task performance. Current techniques typically constrain
this performance to be idealized, error-free and often at
expert level. However, human error represents a major
source of insights into the workings and limitations of
operator cognition, and therefore into usability problems.
By using cognitive models, the possibility of representing
erroneous performance is inherent in these techniques.

Few modeling techniques to date explicitly represent
human error as we have done. This paper showed the
adoption of Reason’s error taxonomy and Barnard’s ICS
for the systematic representation of operator error within a
theoretical cognitive framework. Operator error can be
described more precisely by linking it to underlying
cognition. Analysis can reach beyond surface
categorizations, and it is possible to reason about the
actual causes of error. As a consequence, this approach
paves the way for accident analysis that takes full
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advantage of the insights expressed in cognitive theory.
Recommendations for future error avoidance can be based
on theoretical grounds. This might impact on future
system design as well as for instance operator training
procedures.

Embedding human error modeling into a cognitive
theoretical framework helps to express accident
investigators’ understanding of the error sources.
Communication of their reasoning, based on expertise and
experience, is illustrated in this paper by using Reason’s
taxonomy and ICS. Further work might also take issues
such as ‘learnability' and level of complexity into account
in the choice of the cognitive architecture employed.
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