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ABSTRACT can be applied to digital systems. The debate has
As the use of digital computers for centered around the issue of whether software

instrumentation and control of safety-critical failures can be modeled probabilistically.

systems has increased, there has beearoaving Software reliability is often modeled by
debate over the issue of whether probabilistic riskanalogy to hardware reliability. The problenith
assessment techniques can be applied to digitathis practice is that the mechanistimsough which
systems. This debate has centered around thsoftware and hardware fail are quite differéram
issue of whether software failures canrnedeled each other. Hardware failures occur generally due
probabilistically. This paper describescantext- to aging or the occurrence of random external
based approach to software safety assessmefishocks.” Hardware can also fail as the result of
which explicitly recognizes the fact that software is errors in design or manufacture, or duentisuse,
deterministic, and the source of the perceivedbut, when this occurs, it is generally during the so-
uncertainty inits behavior results from both the called “infant-mortality period,” which is
input to the software as well as the application andcharacterized by high failure rates which show up
environment in which the software @perating. early in use. Failure modes of this type are
The approach is similar to one recenfiyoposed generally not covered in the failure rates used in
for human reliability analysis which is based on PRA studies. Software, on the other haddes
the concept of an“error-forcing context.” not wear out, and it can be argued that ¢mdy
Failures occur as the result ehcountering some failure modes it does exhibit are, in fact, due to
context for which the software/as not properly  design errors. Thus, the basis for analogy
designed, as opposed to the software simply failingbetween software failure rates and the hardware
“randomly.” The paper describes and illustrates failure rates used in PRA studies is problematic, at
a methodologywhich utilizes event treesfault best.

trees,and the Dynamic FlowgrapiMethodology
(DFM) to identify error-forcing contexts for
software,and evaluate their probabilities based on
the probabilities of the DFM fault tregrime
implicants.

As a result, the very concept of software
reliability has become a very controversiahe.
There are many who hold theiew that it is
impossible, and in fact meaningless, to try to
guantify software reliability. Thisview is not
simply a statement about the difficulty of
1. INTRODUCTION modeling software probabilistically, but is also a

Due to their usefulness in eva|uating reflection of the fact that the very definition of
safety, identifying design deficiencies, and what we mean by “software failure” is
improving interactionswith regulatory agencies, problematic. Given a particular set of inputs and
probabilistic risk assessment (PRA) techniques ardnhternal state, the behavior of the software is always
playing an increasing role in the design, operationthe same. lIts behavior is deterministic, and
and management of safety-critical systems in thetherefore its reliability is either one or zerodives
nuclear power, chemical process, aadrospace not fail, it is S|mply either correct or it is incorrect.

industries. However, asthe use of digital As a practical matter, howeverxperience
computers for instrumentation and controlsafch o115 us that people do have varying degrees of
systems has increased, there has be@rowing  confidence in the dependability ofifferent

debate over the issue of whether PR&hniques  gofiware applications. Software has become such a

“To whom correspondence should be addressed.
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pervasive tool in society that most people use, anctontribute to accidents that software safetyues
often depend on, different types of software everymust be addressed. By the very same logic, one
day. Once a person has become familiath should also reach the conclusion that software
using a particular piece afoftware, it isunlikely cannot be unreliable. Reliability should be
that he/she would claim thatdatwaysworks orthat regarded as a system property, veadl. Software

it neverworks, but he/shevil have some sort of alone cannot“fail,” not simply because it is
intuitive feeling about how much confidence can incapable of ceasing to perform a function which
be placed int, at least relative to other tools and it used to provide, but, mordundamentally,
applicationswith which that person is familiar. because there is no appropriate criteria for judging
People routinely, if perhaps unconscioustyake its “correctness” apart from consideration of the
estimates of software failure probabilities all the specific actions that it produces within the system.
time, at least in some informalay. Furthermore, It is not sufficient to simply compare the output of
even if there were nophilosophical basis for the software against the software specifications. It
making such an estimate, that nevertheless woulds well known that a large number of software
not remove the responsibility of assessing the riskerrors can be traced back to errors in the
associatedvith the software’s use, if it is in an requirements specificatioil. Thus, the ultimate
application wherelives and/or large financial arbiter of whether a specific softwaraction
investments are at stake. The fact remains that, i€onstitutes a‘failure” of the software can be
software is to be used in a safety-critical nothing other than the observation of an undesired
application, there need to be quantitatmethods event in the system that occurs as a result.

available for assessing itmpact on the safety of For example, consider an incident which

the system. occurred when, to savelevelopmentcosts, Great

Britain decided to adopt air traffic control software

2. RELIABILITY IS NOT A SOFTWARE which had been in use in the USA.Because the
ATTRIBUTE software had been designed for use in thsted

Software reliability has been defined as States, it had no provision to take into account the

“the probability of failure-free softwareperation ~ 0° longitude line. As a result, wheniiasinstalled

for a specified period of time in a specified into British air traffic control systems, folded its

environment® This is, in fact, the standard map of Great Britain in half about the Greenwich

definition for the reliability of any system Meridian.

component, but cast specifically in terms of the Wasthis a software failure? The software
software. However, it is misleading to think of the 44 \what it had been designed to do, sotlat
software as simply &component” ofthe system,  gonse it shouldnt be considered a failure.

particularly in the sense in which pumps and foyever, in the context of the system within which

valvesare considered to be components, i.e., @S¢ was operating, it clearly performed the wrong
physical devices which perform a specifinction 5ction.  Certainly, a failure did occur, but not on

and whose performance may vary over time. INye nart of the software alone. las the
fact, software is quite the opposite. In general, theyppjication of the (nominally correct) software in
software may performmany functions, and iwil that particular context that resulted in a failure of
perform each of them without variation. Given a e system. This example illustrates the point that
particular set of inputs, will alwaysproduce the gogware actions can contribute systemfailures,
same output. ~ When we speak of softwarep ; the concept of asoftware failure has no
failures,” = we are actually talking about  \eaning. It is only the application of the software

unintended functionality that slways present in i 3 particular context which determines whether it
the system. In a very real sense, the software iss correct or incorrect.

more a reflection of thelesignof the systenthan

it is a component of the system. As such, it is Additionally, software can havemany
more appropriate, when discussing reliability, to functions, each contributing to the overall system
talk about failures of the system than it is to talk availability to varying degrees. The failures of
about failures of the software. different functions may not have equivalent effects
on the system. For instance, some failures may
result in a catastrophic failure of thsystem,
Myhereas others may only result idegraded
performance. The conventional definition of
software reliability does not discriminate between
different types of failures. InPRA, however,

It has long been recognized within the
software safety community that safety is a syste
property rather than simply a softwgyeoperty®
A computer program is not unsafe when
considered in isolation, it is only when it is
integrated into a system in which it cardirectly
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because we are concern&dth the consequences to the traditional human error analysechniques
of failure with respect to the system, we must be which consider primarily thehuman-centered
able to account for the differences. The fitsing causes, withonly a cursory acknowledgment of
that is needed, then, in developing an approach foplant influences through such simplisticeasures
performing PRA for systems involvingpftware, is as the time available for action. THeuman-
to eschew attempts to evaluate the reliability of thecentered factors and the influence gflant
software,and instead focus on the context of the conditions are not independent of om@other.

system in which the software is applied. Rather, in many major accidents a set of
particularly unusual or abnormal plaotnditions
3. CONTEXT-BASED APPROACH TO create the need for operator actions, amder
SOFTWARE SAFETY ASSESSMENT those unusual plant conditions, shortcomings in

. the human decision-making process leadttmrs

Failures that result from software are due gn" the part of the operators. Simplstated,

to design errors, i.e., incorrect dncomplete — gherator failure is more likely to resultrom
requirements, inappropriate algorithms, and/or nusual contexts than from “aandom” human
coding errors. In someasesthey may also be gror  Analyses of power plant accidents arehr

due to inappropriate use of the software in anmisses support this perspective, indicating that the
application for which iwasnot designed. In any jnyence  of abnormal contexts appears to
case,they are not due térandom” changes in  4ominate over random human errors.

the software. The software behavior is

deterministic. However, it is misleading to stmat This state of affairs is entirely analogous to
the software is eithecorrector it isincorrect In software. Software does not falrandomly.”
fact, the“correctness” ofthe software isontext- Instead, it fails as a result @ncountering some

dependent. It is correct for some situations, and itcontext (i.e., a particular set of inputs, in
is incorrect for other situations. The key to combination with a particular operating
assessing the risk associated with a particolace  environment and application) for whichvias not
of software is to identify which situations are properly designed. The error mechanism involved
“incorrect” for the software, and then evaluate theis not one in which the software dossmething
probability of being in one of those situations. inexplicably “wrong.” Onthe contrary, itdoes
L exactly what itwas designed to do. It executes
___This is similar to the concept of derror-  grecisely the algorithm whichvas programmed
forcing context” recently proposed fohuman  tq ihat sjtuation, unceasingly andnerringly.

reliability analysis in nuclear power plafRAs® 1o problem is the contesxtself, one which was
The idea of error-forcing context is based on theunexpected or untested by the system developer,
theory that human errors occur (for the mpatt) and as a result, is one for which thégorithm

as a fedSU'thog clombinat(ijqr_ls of dinfluen(_:esi plemented in the software (which psesumably
associated with the plant conditions and associate@correct” in other situations) turns out to be

human factors issues that trigger error meChanism%appropriate. Thesoftware is “defeated” or

in the plant personnel. In addition tplant  «q5leq” by the unexpected context. fact, the
conditions, such as sensor information, deatext erm “error-forcing  context” is even more
can include such things as working conditions, 5 rapriate for software than it is fdnumans.
adequacy of man-machine interface, availability of gecayse software is deterministacountering an
procedures and time available for actiBnMany error-forcing context iguaranteedto result in a
error mechanisms occur when operata@pply  failure. Human behavior, on the other hand, is not

normally useful cognitive processes that, in theyyite so limited, in which case it would perhaps be
particular context, arédefeated” or*“fooled” more precise to speak in terms of amror-

by a particular combination of plardonditions prompting context
and result in human error. o ' I o of

. . : Another very simple example of arror-
hat i This understandmgh?s Ie% t?] tt?lebe“ef forcing context forsoftware, inaddition to the air
that it Is necessary to analyze both theman-  yatfic control example cited above, is arcident
centered factors (e.g., things such @8man- iy \which an aircraft was damaged when, in
machine interface design, procedure content an esponse to a test pilot's command, twmputer
format, training, etc.) and the conditions of the qiceq the landing gear while the plane was
plant that precipitated the inappropriate actiongianding on the runwdf). In the right context
(such ~as misleading indicationsequipment o ‘\when the plane is in the air), this would have
unavailabilities, and other unusuabnfigurations  poen the correct action for the software to

or operational circumstances). This is in contrastperform_ However, it isiot the appropriate action
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when the plane is on the ground. The developergrovide failure probabilities which are consistent
failed to disable the function when the plane is onwith operational experience, the task of reliability
the ground, and the result is the existence of arguantification must be based upon tlhieelihood

error-forcing context. of such error-forcing contexts, rather than upon a

. . diction of “random” software failure.
The above example is, of course, so sim Iepre e : i
that it appears obvious.lrilowe’ver ingenéral anp Quantification of failure probabilities basagbon

. . error-forcing contexts for software represents a
error-forcing context can be much more exotic 9 P

requiring the combination of a humber vhusual mgggwnental shift from  software reliability
or unexpected conditions. An incideatcurred 9-

at the Canadian Bruce-4 nuclear reactor in January In quantifying the failure probability, we
1990 in which a small loss of coolamiccident —must concern ourselveswith evaluating the
resulted from a programming error in the softwarelikelihood of a well-defined event. The question is,
used to control the reactor refuelingnachine. what is a well-defined event involving software
Because of this error, the control computer, whenfailure? Clearly, it is a statememégarding the
suspending execution of the mainefueling  occurrence of a hazardous condition in the system
machine positioning control subroutine in order to in which the software is embedded. Also,oirder
execute a fault-handling subroutine triggered by ato be consistent, we must find that thbability
minor fault condition detected elsewhere in the of a given failure event is equal to tpeobability
plant, marked the wrong return address in itsof the corresponding error-forcing contefthe
memory. As aresult, execution resumed at the software action itself is deterministic)Therefore,
wrong segment of the main subroutine. Thethe reliability is simply the complement of the
refueling machine, which at the timeaslocked probability of encountering anerror-forcing
onto one of the reactor's pressure tubeel context in the system in a specified period of time.
channels, released its brake and dropped itdf we are able to identify the system'srror-
refueling assembly by about three fedmaging forcing contexts and express them as well-defined
both the refueling assembly and the fuel channel. events (both of which are discussed in thext

This failure did not occur simply by virtue section), then we can quantify the system

of the fact that the wrong return address wasre“ab'“ty'
placed on the stack. The failure also required the Note that, in this formulation, the
additional condition of the refuelingnachine reliability estimation problem has been
being locked onto a channel at the time. If, transformed to a more complicated, buotore
instead, the refueling machine had been idle wherrational, form. We are no longer looking for the
the fault-handling interruptwas received (and  value of a single parameter (the probability of
assuming that the same return address wasoftware failure). Instead, we are looking for the
specified erroneously), no failure would haveen  probabilities of finding certain system parameters
observed. This is a case where the execution of gboth in the input to the software and in the
segment of code which violates itpecification  operating environment) istates thawill lead to
may or may not result in a failure, depending onsystem failure through inappropriatsoftware
the state of the system at the time (&mor always  action. For example, in the case of tBeuce
exists, but the failure requires the occurrence of arreactor incident, we would be concernegith
error-forcing condition in the system). evaluating the probability of finding theefueling
o hine locked onto a channeWwhile the
To correctlyassesshe potential impact of mac : : :
such failures on the system, it is necessary tog(ljam?uter is responding to a fault elsewhere in the
identify both the wunusual or unexpected '
conditions in which failure is more likely (i.e., In general, this state information may also
those conditions outside the rangmnsidered involve time. For instance, one of the space shuttle
during design and testing of the software)wad simulations ran into trouble during a simulated
as the deficiencies in the software’s design andabort proceduré? The crew initiated arabort
implementation that affect their applicability to sequence, and themvas advised by “ground
these“off-nominal” conditions. In other wrds, control” that the abort was no longer necessary, so
we need to identify théerror-forcing context,” they “aborted” the abort.  After completing
or the confluence of unexpected systemanother simulated orbit, they decided to go
conditions and latent software faults which result through with the abort procedure afta, and the
in failure. This result by itself would be useful to flight computer, which did not anticipate the
designers. If onewishes to gofurther and possibility of two abort commands in the same
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flight, got caught in a two-instruction loop. In this tree. The probabilities of failure states in the event
case, the error-forcing context is actually a tree are typically evaluated using fault trees which
particularsequencef events occurring in time, or “hang” from the event tree branches. Event trees
a trajectory. are commonly used in the nuclear reactor safety
community for accident progressiomodeling.

between this approach and the traditional software[-l;]r;e:c;l:ﬁlfréz g’nﬁrg\é'ge boundary conditions  for
reliability modeling approach. In the latter, all of yses.

the errors in the software are lumped together (in For systems which involve software, the
the single urn model) and treated ‘ashocks”  fault trees can be developed and evaluateohg
that occur at the same (constant) rate. Tdoes DFM, which is a digraph-based method for
not reflect what actually happens during operation,modeling and analyzing the behavior and
however. In reality, some of the errors am®re interaction of software and hardware within an
likely to be revealed than others (and it is preciselyembedded system. A DFM model represents both
this fact that makes the assumed usage profile sucthe logical and temporal characteristics of a system
a crucial factor in traditional software reliability (the software, the hardware, and their interactions
evaluations). In the context-based approasdch  with each other and the environment) andised
error is considered separately, and tifaimequal) to build fault trees that identify critical events and
contributions to the overall system unreliability are sequences. DFM provides an analytical
combined appropriately. This makes it possible toframework for systematically identifying the
coherentlyassesshe impact of individualfailure principal failure modes of an embeddeystem,
modes with respect to a given accident scenario irwhether they be due to unanticipated inputs,

It is worth noting the followingdifference

the PRA. hardware failures, adverse environmental
conditions, or implementation errors. Software is
4. METHODOLOGY FOR IMPLEMENTING represented in the DFM model by transition boxes,
THE CONTEXT-BASED APPROACH which represent functional relationships between

. . . system parameters (both software and hardware),
To identify the error-forcingcontexts, &  gnq which are associatedvith a time lag.
methodology is neededhich must be able t0 dO  «gjring” of the transition boxes provides the
the following: means for modeling the dynamic behavior of the
1) Represent all of those states of theSystem as it advances from one state to the next as
system which are deemed to be a result of software action.
hazardous (the states that result from a A DFM analysis is almost identical to a
system failure event); HAZOP analysis except for twoimportant
2) Model the functional anddynamic differences. DFM is an automated technique,
behavior of the software in terms of rather than a manual process, ait&l deductive
transitions between states of the analysis procedure generates fault trees @iche
system: implicant$'® which identify the basic events which
. . . . can lead to a specified top event (hazard state). (A
3) Given a system failure evendentify  prime implicant is the multiple-valuedlogic
the system states that precede(the  gquivalent of a minimal cut set, which isvanimal
error forcing contexts). set of fault tree basic events which are sufficient to

There are a number of methods which might because the top event. A prime implicant is any
used to perform these tasks, most notably fault tre€onjunction of primary events that is sufficient to
analysis, event tree analysis, and hazard an&ause the topevent,but does not contain any
operability analysis (HAZOP). We note thedme shorter conjunction of the same events that is
of these techniques have been applied tosufficient to cause the top event. ThEime
software”® The approach weill use here is a implicants of any fault tree are unique and finite.)
combination of fault tree and event tree analysisAlSO, because of the dynamic nature of the DFM
with the Dynamic FlowgraphMethodology***” model, the prime implicants of the resultifigult
(DFM), which is essentially a more sophisticated trees are time-dependent, specifying both state
version of HAZOP, andallows the integrated Of the system required to produce the ®ment, as
analysis of both hardware and software. well as thetime at which it must occur.

To identify the error-forcing contexts The prime implicants of the DFMault
associated with a system, the relevéwazardous trees specify the conditions which are capable of
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in the example in the following section, thbeime  and the software input) in which the system is
implicants consist only oBystemstates (i.e., the vulnerable to software errors.

values of software inputs, hardwacenfigurations,

and process variable values), there are no events, EXAMPLE - MAIN FEEDWATER

referring to the“success” or “failure” of the SYSTEM

software. Taken as whole, the fault treeprime Consider the event tree shown Higure
implicants and the event tree branches from which1."® This is the event treeorresponding to the
they “hang” specify the error-forcing context initiating event “very small loss of coolant
(encompassing both the operating environmentaccident
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Figure 2 Schematic of the Steam Generator Level Control Sy$tém

(LOCA)” for the Surry Nuclear Station, Unit 1. found in the ranges specified by the fault tree
This is from one of the plant analysesenducted prime implicants.
as part of the NUREG-1150 effort by the Nuclear To illustrate, consider the portion of a

Regulatory Commission.  The everdMFW’ : .
: Main Feedwater SysterfMFWS) analyzed using
corresponds to the loss of main feedwat&rom DFEM in Guarro, ef af and Yau, et a® The

the location of the ‘MFW' branch on the tree, we MFWS is designed to deliver water to the steam

can see that, at the time of this event in this ) )
particular accident scenario, theauxiliary  denerators (SG) during power operations afigr

; tor trip. The main feedalve iscontrolled by
feedwater (AFW) system has failed, but R@RYV reac :
has reclosed (RCI), the high pressure injectionthe SG level control system. The function of the

charging pump has started (HPI), and teactor e‘;G level control system is to maintain thater

protection system has activated (RPS). All of thes exgll ﬁ%ﬁe‘?reﬁgfﬂg?dosiﬁgﬁém (gc?r:/giit?g‘rrlrs?mg%e
events serve to characterize the plant conditions a . P 9 :
ystem consists of sensors that measure steam

the time of loss of main feedwater, andmprise iy

the contextin which a fault tree analysis of the generelltorleveclj, stealm rowd_ar_]dIfeetﬂow, d|g|t%|.- il
MFW event would be conducted for thparticular ~ 0-analog and analog-to-digital converters, digita
accident scenario. If the main feedwater system irconirol software that executes on a clock cycle of
question involves software, wean then evaluate .1s, and actuators that regulate the position of the

: : : in feedvalve. The system is implemented as a
the impact that any software failure modedl main
have on this particular accident scenario bythree-element control system, whereasurements

. ) : of the steam generatdevel, the steam flow and
?heéeﬁkmém%%éh?hlgietlhh; %?,g[l;mlsp;?;rg;ﬁvwgné% andthe feed flow are taken every tenth of a second as
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sensor inputs to the software. The softwtren The prime implicant reveals that the steam
uses these inputs to generate a target position fogenerator level sensor stuck at the losading,
the main feed valve. Thisommand is theutput = combined with the level being very high, will cause
to the valve actuators. A schematic of the I8GI the steam generator to overflow. The loeading
control system is shown in Figure 2. provided by the level senswiill cause thecontrol
Three sets of control logic are software to act as if there is nehough water in

. the steam generator and command the niaed
implemented by the steam generalevel control o6 1o opgn, causing the SG to overflow. The
system; they ~are Proportional Integral and ,oqence of the other non-failure conditions in the
Derivative (PID) logic, High Level Override (HLO)

. ; : rime implicants is a result of the mutiple-valued
and Reactor Trip Override (RTO). Reacibrip prin :
Override logic is used when the digitalontrol logic representation of the system model. For

software receives a reactor trip signal, in Whichmstance, the main feed pump being normapast

, S of the necessary condition in the prime implicant
case the target main fee@lve position is then set : :
t0 5%. High Level Override logic ismployed since a failed pump cannot sustain the féed

when the steam generator reading is gresien into the SG that is necessary to cause overflow.

89%, in which case the target main feedlve If a prime implicant does not contain basic
position is set to fully closed. The HLE€ontrol component failure modes that can cause the top
action is irreversible; this means that once an HLOevent directly, this usually means that a software
signal is triggered, the system will not return to theerror is identified. The event sequentzEading
normal PID control action unless the system isfrom the prime implicant to the top event needs to
reinitialized. Proportional Integral ariderivative  be analyzed to locate the software error. The
logic is implemented in all cases not covered byprime implicant below, unlike that above, does not
the other two sets of control logic. contain any basic component failure modes, but

The systemwas analyzedtwice, with two consists of non-failure hardwarecomponent

. . . . . . conditions and software input conditions. This
different faults intentionally being injectethto : " : T
the system. For the firsytase ganejrror Was Prime implicant points to the possibility of a

; ) ; o software fault, but it is not directly obvious where
introduced into the design specification of the yno s, 1t 'is and how the overflow condition is
control - software. Instead of subtracting the p o, ht anout. After reconstructing teequence
derivative-lag signal of the steam flow-feed flow f from th : imoli h
mismatch from the steam generattevel, the gve?n\t/eniisca{r?mbé edg{gprﬁinlgjp '?ﬁgg 'E[ﬂi trirenetop
faulted specification called for the addition of ; lic d indeed d P h
these two terms. The DFM modebsconstructed 1P icant does indee correspon to the
without assuming any prior knowledge of the ggplpmﬁmate addition of the derivative-lag to the
software specification error, and the top event evel.

specified for analysisvas defined as the steam

generator “overflowing.” ~ The analysis Was |- anz Implicant 1.2 =
carried out for one step backward in tfederence | (5" 57 VA VE 990 -
time frame, and 10 prime implicantsvere *Mai n feed punp good @t = 0
identified. A typical prime implicant is the one | AnD
shown below: Hi gh Level Override inactive @t = -1
AND

Prime Implicant 1.1 Reactor Trip Override inactive @t = -1
*Main feed val d t =0 AND
ANDl n teed valve goo @ Main feed val ve between 60% - 80% @t = -1
*Main feed d t =0 AND
ANDl n teed pump goo @ Feed flow between 60% - 80% @t = -1
Hi gh Level Override inacti t = -1 AND
AlNgD eve errrde inactive @ St eam fl ow between 30% - 60% @t = -1
Reactor Trip Override inacti t = -1 AND
AeNaDc or rte erride tnactive @ SG level at level 8 @t = -1
Main feed val ve bet 60% - 80% @t = -1 AND
ANan eed valve betueen 0 6 @ *Feed fl ow sensor good @t = -1
Steam fl ow between 30% - 60% @t = -1 AND
AND *Steam fl ow sensor good @t = -1
SG level at level 8 t = -1 AND
AND evel a eve @ *Level sensor good @t = -1
*Steam fl ow sensor good @t = -1
/L*ND | ook | ot - -1 Note that none of the basic eventspirime
Sve sSereor stk oF — implicant 1.2 refer explicity to a software
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“failure.” Instead, the basic events refer only to implicants, there is stillsome uncertaintyabout
the values of software inputs and the states ofwhere the actuakrror-forcing conditionlies, if it
hardware components. These basic evepeify  in fact exists. This uncertainty can be reduced by
an error-forcing context the conditions which either performing anothemnalysis, with afiner
must occur (and the times at which theyust  discretization structure employed within tistates
occur) in order for the pre-existing software fault specified by the prime implicants, or by testing the
to be “activated.” software in theneighborhood ofthe conditions

For the second faulted-case analysis, it WaSSpECIfIEd by the prime implicant

assumed that an error had been introduo®d
the control software code. The assumption wasG' CONCLUDING REMARKS
that, instead of triggering the High Level Override We have described an approach to software
(HLO) signal at 89% level, this programming error safety assessment which explicitly recognizes that
causes the HLO signal to be activated at 69% levelsoftware behavior is deterministic. The source of
As the level set point is at 68%, a slight increase inthe apparent “randomness” of software “failure”
SG level from the set pointill cause the software behavioris, instead, a result of both the input to
to command the closing of the main feealve to  the software aswell as the application and
5%. environment in which it is operatindi.e., the

A fault tree was developed for the top contexj. In some contexts, the software is correct,

event Asteam generatolevel dropped to 0% in others (i.e., théerror-forcing contexts”), it is

narrow range, usina the DEM model of the not. One_ way o_ﬁde_:ntifying th_eseer_ror-forcing
faulted sygter%@. O?le prime implicant was contexts is by finding the prime implicants of
identified, which is given below: system DFM models, subject to theoundary

conditions specified by the associated event tree.

Prime Implicant 2.1 Having found prime implicants, one is
Hi gh Level Override inactive @t = -5 faced with the question of what tto aboutthem.
AND Generally, when a fault is discovered in a piece of
roam flow between 80%and 100% @t = -5 software, the usual remedy is to repair it. However,
SG I evel between 65% and 71% @t = -5 the cost of repairing software can be vearge
AND due to the fact that fixes may also introduce new
SG pressure between 960 - 1185 psi @t = -5 errors, and the verification and validation process

must be started over again. If it should turn out

The prime implicant does not contain any that the prime implicant is sufficiently unlikely,
basic component failure events, but it encompassethen one might come to the conclusion that the
input conditions that can trigger the error in the software fault can be tolerated, or that the cost of
software. It is important to point out that, in fixing it is not justified by the decrease in risk that
general, the identification of a prime implicant would result.
does not imply that the occurrence of theme
implicant will necessarilyiead to the top event. It
simply points out the nexus of systeronditions
which must be present in order for the top event to
occur. In otherwords, it is a necessary, but not
sufficient, condition for the top event. This is a
result of the fact that conditions in thgrime
implicant are expressed as ranges cointinuous
variables. The actuarror-forcing condition may
exist only within a subset of the range given by the

prime implicant, whereas all other points within the top event occurs. This information can then be

range may not lead to the top event. - For exampleuSed to generate probability distributions for the

in prime implicant 2.1, the error is reallgnly " . .
triggered if the steam generator level is above 6gyconditions specified by the fault treprime

(below 69%, the HLO override signal is not Implicants. Note that the prime implica}pts do not
activated). However,because of the discretization SONtain events that sadgoftware failure,” rather,
scheme chosen during construction of the modeltN€Y identify states of physical systeparameters

all steam generatoevels between 65% and 71% and sequences of events for which the software has

[ tly designed. By estimating their
are represented as the same state. Thus, evelfch Ncorrec jned. 1C
within the conditions specified by therime ‘ﬁfellhood, we are estimating the probability of

In order to support this kind of cost-
benefit analysis for software, it is necessary to
know both the probabilities of theprime
implicants and the consequences of each fault tree
top event. Performing the fault tree analysis as
part of an accident sequence analysis, where the
fault tree Ahangs@ from the event treeanch
which represents the failure of tlwmrresponding
system, the event tree specifies the scenario and
balance of plant (BOP) conditions under which the
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failure due to the occurrence of aterror-
forcing” context. Also, note that theprime

operational profile, and that the targéailure
probability is not infeasiblysmall, may lead to a

implicants refer to more than just the states of themanageable set of test cases).

input to the software, they also refer to the states of
parameters in thehysicalsystem. The fault tree
prime implicants specify all of the conditiorfthe
error-forcing context) undewhich the system is
vulnerable to a software error (a®ll ashardware
failures).

The event tree alsallows one to establish
an upper bound onhe allowable probability of
failure for each branch in the tree. The further to
the right on the tree that the event question
appears (meaning that it must occur inl
combination with a number of other failures in
order to lead to system failure), the higher, in
general, that upper bound will be, meaning that for,
some applications, theultra-high” reliability '
requirements commonly believed to be necessary
for safety-critical software may not be necessary
after all. For example, consider the event H2 at3.
the right of the event tree in Fig. 1, which
corresponds to failure of the chargingump
system in high pressure recirculation mode (and,4
further, assume that there may be some software"
that is responsible for operating thsystem).
Failure of this system during a very smalDCA,
combined with failure of the operator to
depressurize the reactor coolant syst@uocident 5.
sequence 5) leads to a core melt, while success of
the system is “OK.” Clearly, this is aafety-
critical system. However,failure of this system in
isolation will not lead to damage of the core. A
number of other systems must fail addition to
the charging pump system. If theoincident
failure of those other systems is sufficiently 6
unlikely, then a reasonably large probability of
failure of the charging pump system carobably
be tolerated. Sequence 5 contains the smallest
number of failures involving H2 thawill lead to 7.
core damage, so let us take a closer look at it.
According to Ref. 13, thefrequency of the
initiating event S3 is 1.2 x ZTHr, and the
probability of failure of the operator to 8.
depressurize itessthan 7.6 x 16. Thus, if the
maximum acceptable frequency of occurrence for
this sequence is even as low ag/¢f that means
that the maximum acceptable probability of H2 is g,
only as low as 18 and furthermore, only a
fraction thereof would be attributable to the
controlling software,meaning that a decision to
leave the error instead dffixing” it may be
justified. Also, for errors in this region, it may be
practical to demonstrate an acceptaptebability
of occurrence by means of testing (the fact that
there are well-defined boundary conditions on the
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