
HESSD ’98 46

CONTEXT AND SOFTWARE SAFETY ASSESSMENT

Chris Garrett and George Apostolakis∗

Department of Nuclear Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139-4307
apostola@mit.edu

∗ To whom correspondence should be addressed.

ABSTRACT

As the use of digital computers for
instrumentation and control of safety-critical
systems has increased, there has been a growing
debate over the issue of whether probabilistic risk
assessment techniques can be applied to digital
systems. This debate has centered around the
issue of whether software failures can be modeled
probabilistically. This paper describes a context-
based approach to software safety assessment
which explicitly recognizes the fact that software is
deterministic, and the source of the perceived
uncertainty in its behavior results from both the
input to the software as well as the application and
environment in which the software is operating.
The approach is similar to one recently proposed
for human reliability analysis which is based on
the concept of an “error-forcing context.”
Failures occur as the result of encountering some
context for which the software was not properly
designed, as opposed to the software simply failing
“randomly.” The paper describes and illustrates
a methodology which utilizes event trees, fault
trees, and the Dynamic Flowgraph Methodology
(DFM) to identify error-forcing contexts for
software, and evaluate their probabilities based on
the probabilities of the DFM fault tree prime
implicants.

1. INTRODUCTION

Due to their usefulness in evaluating
safety, identifying design deficiencies, and
improving interactions with regulatory agencies,
probabilistic risk assessment (PRA) techniques are
playing an increasing role in the design, operation,
and management of safety-critical systems in the
nuclear power, chemical process, and aerospace
industries. However, as the use of digital
computers for instrumentation and control of such
systems has increased, there has been a growing
debate over the issue of whether PRA techniques

can be applied to digital systems. The debate has
centered around the issue of whether software
failures can be modeled probabilistically.

Software reliability is often modeled by
analogy to hardware reliability. The problem with
this practice is that the mechanisms through which
software and hardware fail are quite different from
each other. Hardware failures occur generally due
to aging or the occurrence of random external
“shocks.” Hardware can also fail as the result of
errors in design or manufacture, or due to misuse,
but, when this occurs, it is generally during the so-
called “infant-mortality period,” which is
characterized by high failure rates which show up
early in use. Failure modes of this type are
generally not covered in the failure rates used in
PRA studies. Software, on the other hand, does
not wear out, and it can be argued that the only
failure modes it does exhibit are, in fact, due to
design errors. Thus, the basis for an analogy
between software failure rates and the hardware
failure rates used in PRA studies is problematic, at
best.

As a result, the very concept of software
reliability has become a very controversial one.
There are many who hold the view that it is
impossible, and in fact meaningless, to try to
quantify software reliability. This view is not
simply a statement about the difficulty of
modeling software probabilistically, but is also a
reflection of the fact that the very definition of
what we mean by “software failure” is
problematic. Given a particular set of inputs and
internal state, the behavior of the software is always
the same. Its behavior is deterministic, and
therefore its reliability is either one or zero; it does
not fail, it is simply either correct or it is incorrect.

 As a practical matter, however, experience
tells us that people do have varying degrees of
confidence in the dependability of different
software applications. Software has become such a

HESSD ’98 47

pervasive tool in society that most people use, and
often depend on, different types of software every
day. Once a person has become familiar with
using a particular piece of software, it is unlikely
that he/she would claim that it always works or that
it never works, but he/she will have some sort of
intuitive feeling about how much confidence can
be placed in it, at least relative to other tools and
applications with which that person is familiar.
People routinely, if perhaps unconsciously, make
estimates of software failure probabilities all the
time, at least in some informal way. Furthermore,
even if there were no philosophical basis for
making such an estimate, that nevertheless would
not remove the responsibility of assessing the risk
associated with the software’s use, if it is in an
application where lives and/or large financial
investments are at stake. The fact remains that, if
software is to be used in a safety-critical
application, there need to be quantitative methods
available for assessing its impact on the safety of
the system.

2. RELIABILITY IS NOT A SOFTWARE
ATTRIBUTE

Software reliability has been defined as
“ the probability of failure-free software operation
for a specified period of time in a specified
environment”. (1) This is, in fact, the standard
definition for the reliability of any system
component, but cast specifically in terms of the
software. However, it is misleading to think of the
software as simply a “component” of the system,
particularly in the sense in which pumps and
valves are considered to be components, i.e., as
physical devices which perform a specific function
and whose performance may vary over time. In
fact, software is quite the opposite. In general, the
software may perform many functions, and it will
perform each of them without variation. Given a
particular set of inputs, it will always produce the
same output. When we speak of software
“failures,” we are actually talking about
unintended functionality that is always present in
the system. In a very real sense, the software is
more a reflection of the design of the system than
it is a component of the system. As such, it is
more appropriate, when discussing reliability, to
talk about failures of the system than it is to talk
about failures of the software.

It has long been recognized within the
software safety community that safety is a system
property rather than simply a software property.(2)

A computer program is not unsafe when
considered in isolation, it is only when it is
integrated into a system in which it can indirectly

contribute to accidents that software safety issues
must be addressed. By the very same logic, one
should also reach the conclusion that software
cannot be unreliable. Reliability should be
regarded as a system property, as well. Software
alone cannot “fail,” not simply because it is
incapable of ceasing to perform a function which
it used to provide, but, more fundamentally,
because there is no appropriate criteria for judging
its “correctness” apart from consideration of the
specific actions that it produces within the system.
It is not sufficient to simply compare the output of
the software against the software specifications. It
is well known that a large number of software
errors can be traced back to errors in the
requirements specification.(3) Thus, the ultimate
arbiter of whether a specific software action
constitutes a “failure” of the software can be
nothing other than the observation of an undesired
event in the system that occurs as a result.

For example, consider an incident which
occurred when, to save development costs, Great
Britain decided to adopt air traffic control software
which had been in use in the USA.(4) Because the
software had been designed for use in the United
States, it had no provision to take into account the
0° longitude line. As a result, when it was installed
into British air traffic control systems, it folded its
map of Great Britain in half about the Greenwich
Meridian.

Was this a software failure? The software
did what it had been designed to do, so in that
sense, it shouldn’t be considered a failure.
However, in the context of the system within which
it was operating, it clearly performed the wrong
action. Certainly, a failure did occur, but not on
the part of the software alone. It was the
application of the (nominally correct) software in
that particular context that resulted in a failure of
the system. This example illustrates the point that
software actions can contribute to system failures,
but the concept of a software failure has no
meaning. It is only the application of the software
in a particular context which determines whether it
is correct or incorrect.

Additionally, software can have many
functions, each contributing to the overall system
availability to varying degrees. The failures of
different functions may not have equivalent effects
on the system. For instance, some failures may
result in a catastrophic failure of the system,
whereas others may only result in degraded
performance. The conventional definition of
software reliability does not discriminate between
different types of failures. In PRA, however,

HESSD ’98 48

because we are concerned with the consequences
of failure with respect to the system, we must be
able to account for the differences. The first thing
that is needed, then, in developing an approach for
performing PRA for systems involving software, is
to eschew attempts to evaluate the reliability of the
software, and instead focus on the context of the
system in which the software is applied.

3. CONTEXT-BASED APPROACH TO
SOFTWARE SAFETY ASSESSMENT

Failures that result from software are due
to design errors, i.e., incorrect or incomplete
requirements, inappropriate algorithms, and/or
coding errors. In some cases, they may also be
due to inappropriate use of the software in an
application for which it was not designed. In any
case, they are not due to “random” changes in
the software. The software behavior is
deterministic. However, it is misleading to say that
the software is either correct or it is incorrect. In
fact, the “correctness” of the software is context-
dependent. It is correct for some situations, and it
is incorrect for other situations. The key to
assessing the risk associated with a particular piece
of software is to identify which situations are
“incorrect” for the software, and then evaluate the
probability of being in one of those situations.

This is similar to the concept of an “error-
forcing context” recently proposed for human
reliability analysis in nuclear power plant PRAs.(5)

The idea of error-forcing context is based on the
theory that human errors occur (for the most part)
as a result of combinations of influences
associated with the plant conditions and associated
human factors issues that trigger error mechanisms
in the plant personnel. In addition to plant
conditions, such as sensor information, the context
can include such things as working conditions,
adequacy of man-machine interface, availability of
procedures and time available for action.(6) Many
error mechanisms occur when operators apply
normally useful cognitive processes that, in the
particular context, are “defeated” or “ fooled”
by a particular combination of plant conditions
and result in human error.

This understanding has led to the belief
that it is necessary to analyze both the human-
centered factors (e.g., things such as human-
machine interface design, procedure content and
format, training, etc.) and the conditions of the
plant that precipitated the inappropriate action
(such as misleading indications, equipment
unavailabilities, and other unusual configurations
or operational circumstances). This is in contrast

to the traditional human error analysis techniques
which consider primarily the human-centered
causes, with only a cursory acknowledgment of
plant influences through such simplistic measures
as the time available for action. The human-
centered factors and the influence of plant
conditions are not independent of one another.
Rather, in many major accidents a set of
particularly unusual or abnormal plant conditions
create the need for operator actions, and under
those unusual plant conditions, shortcomings in
the human decision-making process lead to errors
on the part of the operators. Simply stated,
operator failure is more likely to result from
unusual contexts than from a “random” human
error. Analyses of power plant accidents and near
misses support this perspective, indicating that the
influence of abnormal contexts appears to
dominate over random human errors.

This state of affairs is entirely analogous to
software. Software does not fail “randomly.”
Instead, it fails as a result of encountering some
context (i.e., a particular set of inputs, in
combination with a particular operating
environment and application) for which it was not
properly designed. The error mechanism involved
is not one in which the software does something
inexplicably “wrong.” On the contrary, it does
exactly what it was designed to do. It executes
precisely the algorithm which was programmed
for that situation, unceasingly and unerringly.
The problem is the context itself, one which was
unexpected or untested by the system developer,
and as a result, is one for which the algorithm
implemented in the software (which is presumably
“correct” in other situations) turns out to be
inappropriate. The software is “defeated” or
“fooled” by the unexpected context. In fact, the
term “error-forcing context” is even more
appropriate for software than it is for humans.
Because software is deterministic, encountering an
error-forcing context is guaranteed to result in a
failure. Human behavior, on the other hand, is not
quite so limited, in which case it would perhaps be
more precise to speak in terms of an error-
prompting context.

Another very simple example of an error-
forcing context for software, in addition to the air
traffic control example cited above, is an incident
in which an aircraft was damaged when, in
response to a test pilot’s command, the computer
raised the landing gear while the plane was
standing on the runway.(2) In the right context
(i.e., when the plane is in the air), this would have
been the correct action for the software to
perform. However, it is not the appropriate action

HESSD ’98 49

when the plane is on the ground. The developers
failed to disable the function when the plane is on
the ground, and the result is the existence of an
error-forcing context.

The above example is, of course, so simple
that it appears obvious. However, in general, an
error-forcing context can be much more exotic,
requiring the combination of a number of unusual
or unexpected conditions. An incident occurred
at the Canadian Bruce-4 nuclear reactor in January
1990 in which a small loss of coolant accident
resulted from a programming error in the software
used to control the reactor refueling machine.
Because of this error, the control computer, when
suspending execution of the main refueling
machine positioning control subroutine in order to
execute a fault-handling subroutine triggered by a
minor fault condition detected elsewhere in the
plant, marked the wrong return address in its
memory. As a result, execution resumed at the
wrong segment of the main subroutine. The
refueling machine, which at the time was locked
onto one of the reactor’s pressure tube fuel
channels, released its brake and dropped its
refueling assembly by about three feet, damaging
both the refueling assembly and the fuel channel.

This failure did not occur simply by virtue
of the fact that the wrong return address was
placed on the stack. The failure also required the
additional condition of the refueling machine
being locked onto a channel at the time. If,
instead, the refueling machine had been idle when
the fault-handling interrupt was received (and
assuming that the same return address was
specified erroneously), no failure would have been
observed. This is a case where the execution of a
segment of code which violates its specification
may or may not result in a failure, depending on
the state of the system at the time (the error always
exists, but the failure requires the occurrence of an
error-forcing condition in the system).

To correctly assess the potential impact of
such failures on the system, it is necessary to
identify both the unusual or unexpected
conditions in which failure is more likely (i.e.,
those conditions outside the range considered
during design and testing of the software), as well
as the deficiencies in the software’s design and
implementation that affect their applicability to
these “off-nominal” conditions. In other words,
we need to identify the “error-forcing context,”
or the confluence of unexpected system
conditions and latent software faults which result
in failure. This result by itself would be useful to
designers. If one wishes to go further and

provide failure probabilities which are consistent
with operational experience, the task of reliability
quantification must be based upon the likelihood
of such error-forcing contexts, rather than upon a
prediction of “random” software failure.
Quantification of failure probabilities based upon
error-forcing contexts for software represents a
fundamental shift from software reliability
modeling.

In quantifying the failure probability, we
must concern ourselves with evaluating the
likelihood of a well-defined event. The question is,
what is a well-defined event involving software
failure? Clearly, it is a statement regarding the
occurrence of a hazardous condition in the system
in which the software is embedded. Also, in order
to be consistent, we must find that the probability
of a given failure event is equal to the probability
of the corresponding error-forcing context (the
software action itself is deterministic). Therefore,
the reliability is simply the complement of the
probability of encountering an error-forcing
context in the system in a specified period of time.
If we are able to identify the system’s error-
forcing contexts and express them as well-defined
events (both of which are discussed in the next
section), then we can quantify the system
reliability.

Note that, in this formulation, the
reliability estimation problem has been
transformed to a more complicated, but more
rational, form. We are no longer looking for the
value of a single parameter (the probability of
software failure). Instead, we are looking for the
probabilities of finding certain system parameters
(both in the input to the software and in the
operating environment) in states that will lead to
system failure through inappropriate software
action. For example, in the case of the Bruce
reactor incident, we would be concerned with
evaluating the probability of finding the refueling
machine locked onto a channel while the
computer is responding to a fault elsewhere in the
plant.

In general, this state information may also
involve time. For instance, one of the space shuttle
simulations ran into trouble during a simulated
abort procedure.(4) The crew initiated an abort
sequence, and then was advised by “ground
control” that the abort was no longer necessary, so
they “aborted” the abort. After completing
another simulated orbit, they decided to go
through with the abort procedure after all, and the
flight computer, which did not anticipate the
possibility of two abort commands in the same

HESSD ’98 50

flight, got caught in a two-instruction loop. In this
case, the error-forcing context is actually a
particular sequence of events occurring in time, or
a trajectory.

It is worth noting the following difference
between this approach and the traditional software
reliability modeling approach. In the latter, all of
the errors in the software are lumped together (in
the single urn model) and treated as “shocks”
that occur at the same (constant) rate. This does
not reflect what actually happens during operation,
however. In reality, some of the errors are more
likely to be revealed than others (and it is precisely
this fact that makes the assumed usage profile such
a crucial factor in traditional software reliability
evaluations). In the context-based approach, each
error is considered separately, and their (unequal)
contributions to the overall system unreliability are
combined appropriately. This makes it possible to
coherently assess the impact of individual failure
modes with respect to a given accident scenario in
the PRA.

4. METHODOLOGY FOR IMPLEMENTING
THE CONTEXT-BASED APPROACH

To identify the error-forcing contexts, a
methodology is needed which must be able to do
the following:

1) Represent all of those states of the
system which are deemed to be
hazardous (the states that result from a
system failure event);

2) Model the functional and dynamic
behavior of the software in terms of
transitions between states of the
system;

3) Given a system failure event, identify
the system states that precede it (the
error forcing contexts).

There are a number of methods which might be
used to perform these tasks, most notably fault tree
analysis, event tree analysis, and hazard and
operability analysis (HAZOP). We note that some
of these techniques have been applied to
software.(7-9) The approach we will use here is a
combination of fault tree and event tree analysis
with the Dynamic Flowgraph Methodology(10-11)

(DFM), which is essentially a more sophisticated
version of HAZOP, and allows the integrated
analysis of both hardware and software.

To identify the error-forcing contexts
associated with a system, the relevant hazardous
system states (failures) are specified by an event

tree. The probabilities of failure states in the event
tree are typically evaluated using fault trees which
“hang” from the event tree branches. Event trees
are commonly used in the nuclear reactor safety
community for accident progression modeling.
Their role is to provide boundary conditions for
the fault tree analyses.

For systems which involve software, the
fault trees can be developed and evaluated using
DFM, which is a digraph-based method for
modeling and analyzing the behavior and
interaction of software and hardware within an
embedded system. A DFM model represents both
the logical and temporal characteristics of a system
(the software, the hardware, and their interactions
with each other and the environment) and is used
to build fault trees that identify critical events and
sequences. DFM provides an analytical
framework for systematically identifying the
principal failure modes of an embedded system,
whether they be due to unanticipated inputs,
hardware failures, adverse environmental
conditions, or implementation errors. Software is
represented in the DFM model by transition boxes,
which represent functional relationships between
system parameters (both software and hardware),
and which are associated with a time lag.
“Firing” of the transition boxes provides the
means for modeling the dynamic behavior of the
system as it advances from one state to the next as
a result of software action.

A DFM analysis is almost identical to a
HAZOP analysis except for two important
differences. DFM is an automated technique,
rather than a manual process, and its deductive
analysis procedure generates fault trees and prime
implicants(12) which identify the basic events which
can lead to a specified top event (hazard state). (A
prime implicant is the multiple-valued logic
equivalent of a minimal cut set, which is a minimal
set of fault tree basic events which are sufficient to
cause the top event. A prime implicant is any
conjunction of primary events that is sufficient to
cause the top event, but does not contain any
shorter conjunction of the same events that is
sufficient to cause the top event. The prime
implicants of any fault tree are unique and finite.)
Also, because of the dynamic nature of the DFM
model, the prime implicants of the resulting fault
trees are time-dependent, specifying both the state
of the system required to produce the top event, as
well as the time at which it must occur.

The prime implicants of the DFM fault
trees specify the conditions which are capable of
producing the failure event. As will be illustrated

HESSD ’98 51

in the example in the following section, the prime
implicants consist only of system states (i.e., the
values of software inputs, hardware configurations,
and process variable values), there are no events
referring to the “success” or “failure” of the
software. Taken as a whole, the fault tree prime
implicants and the event tree branches from which
they “hang” specify the error-forcing context
(encompassing both the operating environment

and the software input) in which the system is
vulnerable to software errors.

5. EXAMPLE - MAIN FEEDWATER
SYSTEM

Consider the event tree shown in Figure
1.(13) This is the event tree corresponding to the
initiating event “very small loss of coolant
accident

HESSD ’98 52

Figure 1 Event Tree for Very Small LOCA(13)

HESSD ’98 53

 (LOCA)” for the Surry Nuclear Station, Unit 1.
This is from one of the plant analyses conducted
as part of the NUREG-1150 effort by the Nuclear
Regulatory Commission. The event ‘MFW’
corresponds to the loss of main feedwater. From
the location of the ‘MFW’ branch on the tree, we
can see that, at the time of this event in this
particular accident scenario, the auxiliary
feedwater (AFW) system has failed, but the PORV
has reclosed (RCI), the high pressure injection
charging pump has started (HPI), and the reactor
protection system has activated (RPS). All of these
events serve to characterize the plant conditions at
the time of loss of main feedwater, and comprise
the context in which a fault tree analysis of the
MFW event would be conducted for this particular
accident scenario. If the main feedwater system in
question involves software, we can then evaluate
the impact that any software failure modes will
have on this particular accident scenario by
determining the likelihood of this set of events and
the likelihood that the system parameters will be

found in the ranges specified by the fault tree
prime implicants.

To illustrate, consider the portion of a
Main Feedwater System (MFWS) analyzed using
DFM in Guarro, et al.(14) and Yau, et al.(12) The
MFWS is designed to deliver water to the steam
generators (SG) during power operations and after
reactor trip. The main feed valve is controlled by
the SG level control system. The function of the
SG level control system is to maintain the water
level at a pre-defined set point (68% narrow range
level under normal operating conditions). The
system consists of sensors that measure steam
generator level, steam flow and feed flow, digital-
to-analog and analog-to-digital converters, digital
control software that executes on a clock cycle of
0.1s, and actuators that regulate the position of the
main feed valve. The system is implemented as a
three-element control system, where measurements
of the steam generator level, the steam flow and
the feed flow are taken every tenth of a second as

Pump

SG
Steam

Generator

Digital
Controller

Level
Sensor

Steam Flow
Sensor

Feed Flow
Sensor

Main
Feed
Valve

D/A

A/D

A/D

A/D

 Figure 2 Schematic of the Steam Generator Level Control System(12,14)

HESSD ’98 54

sensor inputs to the software. The software then
uses these inputs to generate a target position for
the main feed valve. This command is the output
to the valve actuators. A schematic of the SG level
control system is shown in Figure 2.

Three sets of control logic are
implemented by the steam generator level control
system; they are Proportional Integral and
Derivative (PID) logic, High Level Override (HLO)
and Reactor Trip Override (RTO). Reactor Trip
Override logic is used when the digital control
software receives a reactor trip signal, in which
case the target main feed valve position is then set
to 5%. High Level Override logic is employed
when the steam generator reading is greater than
89%, in which case the target main feed valve
position is set to fully closed. The HLO control
action is irreversible; this means that once an HLO
signal is triggered, the system will not return to the
normal PID control action unless the system is
reinitialized. Proportional Integral and Derivative
logic is implemented in all cases not covered by
the other two sets of control logic.

The system was analyzed twice, with two
different faults intentionally being injected into
the system. For the first case, an error was
introduced into the design specification of the
control software. Instead of subtracting the
derivative-lag signal of the steam flow-feed flow
mismatch from the steam generator level, the
faulted specification called for the addition of
these two terms. The DFM model was constructed
without assuming any prior knowledge of the
software specification error, and the top event
specified for analysis was defined as the steam
generator “overflowing.” The analysis was
carried out for one step backward in the reference
time frame, and 10 prime implicants were
identified. A typical prime implicant is the one
shown below:

Prime Implicant 1.1
*Main feed valve good @ t = 0
AND
*Main feed pump good @ t = 0
AND
High Level Override inactive @ t = -1
AND
Reactor Trip Override inactive @ t = -1
AND
Main feed valve between 60% - 80% @ t = -1
AND
Steam flow between 30% - 60% @ t = -1
AND
SG level at level 8 @ t = -1
AND
*Steam flow sensor good @ t = -1
AND
Level sensor stuck low @ t = -1

The prime implicant reveals that the steam
generator level sensor stuck at the low reading,
combined with the level being very high, will cause
the steam generator to overflow. The low reading
provided by the level sensor will cause the control
software to act as if there is not enough water in
the steam generator and command the main feed
valve to open, causing the SG to overflow. The
presence of the other non-failure conditions in the
prime implicants is a result of the mutiple-valued
logic representation of the system model. For
instance, the main feed pump being normal is part
of the necessary condition in the prime implicant
since a failed pump cannot sustain the feed flow
into the SG that is necessary to cause overflow.

If a prime implicant does not contain basic
component failure modes that can cause the top
event directly, this usually means that a software
error is identified. The event sequence leading
from the prime implicant to the top event needs to
be analyzed to locate the software error. The
prime implicant below, unlike that above, does not
contain any basic component failure modes, but
consists of non-failure hardware component
conditions and software input conditions. This
prime implicant points to the possibility of a
software fault, but it is not directly obvious where
the fault is and how the overflow condition is
brought about. After reconstructing the sequence
of events from the prime implicant to the top
event, it can be determined that this prime
implicant does indeed correspond to the
inappropriate addition of the derivative-lag to the
SG level.

Prime Implicant 1.2
*Main feed valve good @ t = 0
AND
*Main feed pump good @ t = 0
AND
High Level Override inactive @ t = -1
AND
Reactor Trip Override inactive @ t = -1
AND
Main feed valve between 60% - 80% @ t = -1
AND
Feed flow between 60% - 80% @ t = -1
AND
Steam flow between 30% - 60% @ t = -1
AND
SG level at level 8 @ t = -1
AND
*Feed flow sensor good @ t = -1
AND
*Steam flow sensor good @ t = -1
AND
*Level sensor good @ t = -1

Note that none of the basic events in prime
implicant 1.2 refer explicitly to a software

HESSD ’98 55

“failure.” Instead, the basic events refer only to
the values of software inputs and the states of
hardware components. These basic events specify
an error-forcing context, the conditions which
must occur (and the times at which they must
occur) in order for the pre-existing software fault
to be “activated.”

For the second faulted-case analysis, it was
assumed that an error had been introduced into
the control software code. The assumption was
that, instead of triggering the High Level Override
(HLO) signal at 89% level, this programming error
causes the HLO signal to be activated at 69% level.
As the level set point is at 68%, a slight increase in
SG level from the set point will cause the software
to command the closing of the main feed valve to
5%.

A fault tree was developed for the top
event Asteam generator level dropped to 0%
narrow range,@ using the DFM model of the
faulted system. One prime implicant was
identified, which is given below:

Prime Implicant 2.1
High Level Override inactive @ t = -5
AND
Steam flow between 80% and 100% @ t = -5
AND
SG level between 65% and 71% @ t = -5
AND
SG pressure between 960 - 1185 psi @ t = -5

The prime implicant does not contain any
basic component failure events, but it encompasses
input conditions that can trigger the error in the
software. It is important to point out that, in
general, the identification of a prime implicant
does not imply that the occurrence of the prime
implicant will necessarily lead to the top event. It
simply points out the nexus of system conditions
which must be present in order for the top event to
occur. In other words, it is a necessary, but not
sufficient, condition for the top event. This is a
result of the fact that conditions in the prime
implicant are expressed as ranges of continuous
variables. The actual error-forcing condition may
exist only within a subset of the range given by the
prime implicant, whereas all other points within the
range may not lead to the top event. For example,
in prime implicant 2.1, the error is really only
triggered if the steam generator level is above 69%
(below 69%, the HLO override signal is not
activated). However, because of the discretization
scheme chosen during construction of the model,
all steam generator levels between 65% and 71%
are represented as the same state. Thus, even
within the conditions specified by the prime

implicants, there is still some uncertainty about
where the actual error-forcing condition lies, if it
in fact exists. This uncertainty can be reduced by
either performing another analysis, with a finer
discretization structure employed within the states
specified by the prime implicants, or by testing the
software in the neighborhood of the conditions
specified by the prime implicant.

6. CONCLUDING REMARKS

We have described an approach to software
safety assessment which explicitly recognizes that
software behavior is deterministic. The source of
the apparent “randomness” of software “failure”
behavior is, instead, a result of both the input to
the software as well as the application and
environment in which it is operating (i.e., the
context). In some contexts, the software is correct,
in others (i.e., the “error-forcing contexts”), it is
not. One way of identifying these error-forcing
contexts is by finding the prime implicants of
system DFM models, subject to the boundary
conditions specified by the associated event tree.

Having found prime implicants, one is
faced with the question of what to do about them.
Generally, when a fault is discovered in a piece of
software, the usual remedy is to repair it. However,
the cost of repairing software can be very large
due to the fact that fixes may also introduce new
errors, and the verification and validation process
must be started over again. If it should turn out
that the prime implicant is sufficiently unlikely,
then one might come to the conclusion that the
software fault can be tolerated, or that the cost of
fixing it is not justified by the decrease in risk that
would result.

 In order to support this kind of cost-
benefit analysis for software, it is necessary to
know both the probabilities of the prime
implicants and the consequences of each fault tree
top event. Performing the fault tree analysis as
part of an accident sequence analysis, where the
fault tree Ahangs@ from the event tree branch
which represents the failure of the corresponding
system, the event tree specifies the scenario and
balance of plant (BOP) conditions under which the
top event occurs. This information can then be
used to generate probability distributions for the
conditions specified by the fault tree prime
implicants. Note that the prime implicants do not
contain events that say “software failure,” rather,
they identify states of physical system parameters
and sequences of events for which the software has
been incorrectly designed. By estimating their
likelihood, we are estimating the probability of

HESSD ’98 56

failure due to the occurrence of an “error-
forcing” context. Also, note that the prime
implicants refer to more than just the states of the
input to the software, they also refer to the states of
parameters in the physical system. The fault tree
prime implicants specify all of the conditions (the
error-forcing context) under which the system is
vulnerable to a software error (as well as hardware
failures).

 The event tree also allows one to establish
an upper bound on the allowable probability of
failure for each branch in the tree. The further to
the right on the tree that the event in question
appears (meaning that it must occur in
combination with a number of other failures in
order to lead to system failure), the higher, in
general, that upper bound will be, meaning that for
some applications, the “ultra-high” reliability
requirements commonly believed to be necessary
for safety-critical software may not be necessary
after all. For example, consider the event H2 at
the right of the event tree in Fig. 1, which
corresponds to failure of the charging pump
system in high pressure recirculation mode (and,
further, assume that there may be some software
that is responsible for operating this system).
Failure of this system during a very small LOCA,
combined with failure of the operator to
depressurize the reactor coolant system (accident
sequence 5) leads to a core melt, while success of
the system is “OK.” Clearly, this is a safety-
critical system. However, failure of this system in
isolation will not lead to damage of the core. A
number of other systems must fail in addition to
the charging pump system. If the coincident
failure of those other systems is sufficiently
unlikely, then a reasonably large probability of
failure of the charging pump system can probably
be tolerated. Sequence 5 contains the smallest
number of failures involving H2 that will lead to
core damage, so let us take a closer look at it.
According to Ref. 13, the frequency of the
initiating event S3 is 1.2 x 10-2/yr, and the
probability of failure of the operator to
depressurize is less than 7.6 x 10-2. Thus, if the
maximum acceptable frequency of occurrence for
this sequence is even as low as 10-6/yr, that means
that the maximum acceptable probability of H2 is
only as low as 10-3, and furthermore, only a
fraction thereof would be attributable to the
controlling software, meaning that a decision to
leave the error instead of “fixing” it may be
justified. Also, for errors in this region, it may be
practical to demonstrate an acceptable probability
of occurrence by means of testing (the fact that
there are well-defined boundary conditions on the

operational profile, and that the target failure
probability is not infeasibly small, may lead to a
manageable set of test cases).

ACKNOWLEDGMENT

This work was sponsored by the University
Research Consortium of the Idaho National
Engineering and Environmental Laboratory. We
thank Steve Novack and Nathan Siu for their
support and feedback.

REFERENCES

1. ANSI/IEEE, “Standard Glossary of Software
Engineering Terminology” (STD-729-1991,
ANSI/IEEE, 1991).

2. N. Leveson, “Software Safety in Embedded
Computer Systems,” Communications of the
ACM, 34, 34-46 (February 1991).

3. N. Leveson, Safeware: System Safety and
Computers (Addison-Wesley, Reading, MA,
1995).

4. P. G. Nuemann, “Some Computer-related
Disasters and Other Egregious Horrors,” ACM
Software Engineering Notes, 10, 6-7 (January
1985).

5. S. E. Cooper, A. M. Ramey-Smith, J.
Wreathall, G. W. Parry, D. C. Bley, W. J.
Luckas, J. H. Taylor and M. T. Barriere, A
Technique for Human Error Analysis
(ATHEANA) (NUREG/CR-6350, U.S. Nuclear
Regulatory Commission, Washington, DC,
1996).

6. E. Hollnagel, Cognitive Reliability and Error
Analysis Method: CREAM (Elsevier, Oxford,
UK, 1998).

7. N.G. Leveson and P.R. Harvey, “Analyzing
Software Safety,” IEEE Transactions on
Software Engineering, 9 (1983).

8. J.D. Lawrence and J.M. Gallagher, “ A
Proposal for Performing Software Safety
Hazard Analysis,” Reliability Engineering and
System Safety, 55, 267-282 (1997).

9. F. Redmill, M. F. Chudleigh and J. R. Catmur,
“Principles Underlying a Guideline for
Applying HAZOP to Programmable
Electronic Systems,” Reliability Engineering
and System Safety, 55, 283-293 (1997).

10. C. Garrett, S. Guarro and G. Apostolakis,
“The Dynamic Flowgraph Methodology for
Assessing the Dependability of Embedded
Systems,” IEEE Transactions on Systems,

HESSD ’98 57

Man and Cybernetics, 25, 824-840 (May
1995).

11. M. Yau, S. Guarro and G. Apostolakis,
“Demonstration of the Dynamic Flowgraph
Methodology using the Titan II Space Launch
Vehicle Digital Flight Control System,”
Reliability Engineering and System Safety, 49,
335-353 (1995).

12. M. Yau, G. Apostolakis, and S. Guarro, “The
Use of Prime Implicants in Dependability
Analysis of Software Controlled Systems,” to
appear in Reliability Engineering and System
Safety (1998).

13. R. C. Bertucio and J. A. Julius, Analysis of
Core Damage Frequency: Surry, Unit 1
Internal Events (NUREG/CR-4550, U.S.
Nuclear Regulatory Commission, Washington,
DC, 1990).

14. S. B. Guarro, M. K. Yau, and M. E. Motamed,
Development of Tools for Safety Analysis of
Control Software in Advanced Reactors
(NUREG/CR-6465, U.S. Nuclear Regulatory
Commission, Washington, DC, 1996).

