CS1Q Workbook

Student Questions:

Labs and Tutorials

January 20009.

Summary

This workbook collects the lab and tutorial material that will be used during the systems component of
CS1Q. Itis based on exercises that were originally developed by Dr Simon Gay (Dept. Of Computing
Science, University of Glasgow). However, all questions about these exercises should be addressed
to the tutors in charge of your group.

Prof. Chris Johnson,

Department of Computing Science, University of Glasgow.
Johnson@dcs.gla.ac.uk. http://www.dcs.gla.ac.uk/~johnson

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Worksheet 1 (Semester 2, Week 2 Tutorial)

This worksheet contains exercises on some of thteriah covered in lecture 2. You should attempt the
exercises before your tutorial. During the tutqnadur tutor will work through any exercises whicave caused
problems. These exercises are not assessed.

Conversion from Binary to Decimal
Convert the following unsigned binary numbers idézimal.

(a) 110100
(b) 01011011
(c) 10010110
(d) 111111
(e) 1111110

Conversion from Decimal to Binary
Convert the following decimal numbers into binadaw many bits are needed in each case?

(@ 14
(b) 127
(c) 249
(d) 73
(e) 257

Addition in Binary
Work out the following sums in unsigned binary.dach case, check your answer by converting the etsnb
and the result into decimal.

() 11011 + 1101

(b) 11010101 + 00111110
(c)1111+1
(d)111111+1

(e) 10101010 + 01010101

2s Complement
Work out the 2s complement binary representatioth@following decimal numbers, using 8 bits.

(@ 97
(b) -127
(c) -29
(d) -76
(e) -2

Convert the following 2s complement binary numierdecimal.

(a) 10000000
(b) 11111100
(c) 10101010
(d) 00001101
(e) 11010111

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Subtraction

Work out the following subtractions in 2s complemnieimary (do this by negating the second numberthed
adding). Use an 8 bit representation. In each admxk your answer by converting the numbers aadebult
into decimal.

() 00011011 - 00001101
(b) 11010101 - 00111110
(c) 00001111 - 00000001
(d) 00111111 - 00000001
(e) 10101010 - 01010101

Hexadecimal
Convert the following hexadecimal numbers into byrend decimal.

(a) 3A
(b) FF
(c) A5
(d) 32
(e) BD

Convert the following decimal numbers into hexadedi(an easy way to do this is to convert into bjrfast).

(a) 254
(b) 256
(c) 64
(d) 181
(e) 99

Text Representation

The ASCII character set represents each charagtar7bbit binary number, which can also be conkitéo a

2 digit hexadecimal number. The ASCII codes for ¢heital letters A—Z are 65-90 (in decimal). A cdetp
table of the ASCII codes (in decimal) can be fommdpage 64 of Computer Science Illluminated or imyna
other books. Work out the ASCII representationyofir name, in hexadecimal. For example: SIMON is
83,73,77,79,78 in decimal and 53,49,4D,4F 4E in hex

Supplementary
Fractional numbers can be represented in binagysimilar way to decimal: there is a “binary pojrdthd the

columns to the right of the point have val,}le};, g and so on. For example, 11.012 is%,*which is 3.2510.

Exercise: convert the following binary fractions to decimal.
(a) 0.1 (b) 0.11 (c) 0.101 (d) 0.1001 (e) 0.1111

Exercise: work out a systematic way of converting decimatfions to binary.
Some fractions lead to recurring decimal represiemts: for example% = 0.3333... sometimes written as 0.3e.

The same is true in binary. For example, hereriscarring binary fraction: 0.101010... which collel written
as 0.(10)e. To work out the value of this recurrfragtion, x say, notice that 4x = 10.(10)+ (be@oultiplying
by 4 in binary means shifting the binary point tplaces to the right), and so

A4X =X+ 2
3x=2

and therefore x % As it happensj,: also has a recurring decimal representation,Hisii$ not always the case.

Exercise: Can you find a non-recurring decimal which is meicig in binary?

Exercise: Can you see why every non-recurring binary fractalso non-recurring in decimal?

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Worksheet 2 (Semester 2, Week 3 Lab)

This lab is based on the material on assembly kaggdrom lectures 3 and 4. You will use a softwearaeilator
for the IT Machine to experiment with some sma#ieambly language programs. The work is not assebsid,
you should hand in your program from the sectionitWg a Program at the end of the lab. Your tutor's
comments will help you to understand this sectibthe course. Appendix 1 of this document contairggiide

to the IT Machine.

Loading and Executing a Program

1. Go into AMS and set up the CS1Q exercise S2Week3.

2. The IT Machine can be found under the start meelecs Programs and IT_MachineGUI. You should
see a display which looks similar to the illusivag of the IT Machine in lectures: there are boxes
showing the registers, the memory, the currentuctibn, etc. All of these boxes will be blank.

3. Use the Programmers' File Editor (look under ®aograms again) to open the file Programl (it's in
the folder S2Week3/programs). Try to arrange yasktbp so that you can see the assembly language
program and part of the IT Machine display.

4. Select Open from the File menu in the IT Maching] apen the file Programl. The display will not
change as a result of opening the file.

5. Select Assemble from the Run menu. This convergs itistructions from assembly language to
machine language. Select Assembler Listing from\Mtieev menu. You will see a window containing
the assembly language program and its machine damgaquivalent, in hexadecimal. In general, any
errors in the assembly language program will bevshim the assembler listing. In this case, we know
that the program is correct so there are no errors.

6. Select Load from the Run menu. This loads the asksinprogram into the memory of the IT
Machine. The Memory display has two scrollable \#exf the memory. Each view lists addresses on
the left, and contents on the right.

7. Under the menu View select Emulate then One InStnucSelect it to execute the first instruction in
the program. The instruction being executed is Ilgbked in white in the memory display. The
instruction is also shown in the Current Instructidisplay in two forms: machine language and
assembly language. The Assembly Statement displays the corresponding line from the original
assembly language program.

The first instruction in this program loads a vaio®® register R6. The new value of R6 is highlaght
in red in the register display area.

8. Execute the next instruction. Again you will see thstruction highlighted in the memory displayisTh
instruction stores a value into the memory locatatrelled x. In the right hand side of the memory
display, scroll down so that you can see the nemtertis of location x (which is actually location
0014) highlighted in red.

9. Step through the rest of the program. Notice thatADD and MUL instructions show which registers
are being used, and cause the ALU display to inelittee operation being carried out.

[Continued on next page]

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Modifying a Program

1.

Open the file Program2 in your editor. This is finiegram from Lecture 4 which calculates the sum of
the integers up to some value n.

The program is incomplete because the value obmbabeen specified. When designing the program
we decided to use register R1for n. Add an insioacat the beginning of the program which setsdR1 t
a particular value (try something fairly small) v8ahe file.

Load the file into the IT Machine and assembleTtis time it is important to check for errors by
viewing the assembler listing. After correcting/arors (and saving the file), you must open the f
again in the IT Machine, and assemble it again.

When the program assembles without errors, loaddtrun it. You can either step through the program
one instruction at a time, or click on the doubi®wa button to run it all the way to the end.

When the program terminates, register R2 shouldag@othe sum of the integers up to n. Is the result
what you expected? (Remember that the IT Machire bhexadecimal.)

Open the file Program3 in your editor. This is deotcopy of the same program. Modify the program
so that it corresponds to the following pseudo code

s:=1;

while n > 0 loop
s:=s*n;
n:=n-1,

end loop;

Again, you will also need to add an instructiorséb n to a particular value.

7.

Open, assemble and load this file into the IT Maetds before, remembering to check for errors after
assembling. Run the program. What does it calctlate

Writing a Program

Using the example programs from lectures as a g@sieecially the program for finding the largestmeént of
an array, from Lecture 4), write a program whichcakates the sum of the elements of an array. Tlee f
Program4 is provided for you to put this programAssume that the end of the array is indicatedhieyvalue
-1. You should go through the following steps, apégr, before entering your program into a file tesding it.

1. Write the algorithm in pseudocode.

2. Decide whether to use registers or memory locationthe variables.
(The array will be in memory, of course.)

3. Translate the algorithm from Ada into assembly leage. The overall structure of the program
should be similar to the largest element program.

4. Remember to declare memory space for the arrapaydariables which you are storing in
memory. Remember to put some specific values matray, and end the array with a value of
-1.

5. Include comments in your program, so that you aapkrack of what each instruction means in
relation to the Ada code.

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

6. Remember to end your program with the instruction:

CALL exit[RO].

Hand in, on paper, your design work and program for thispart of the exercise, at the end of the lab.

Supplementary

1. Try out some of the optimizations mentioned in ueet4.

2. Try writing some other programs.

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Worksheet 3 (Semester 2, Week 4 Tutorial)

This worksheet is divided into two parts. The fpart contains exercises on the material coveréecinres 5
and 6. You should attempt the exercises before gdarial. During the tutorial, your tutor will whrthrough
any exercises which have caused problems.

The second part is preparation for next week'slarcise. You will have time to work on this pauridg the
tutorial.

Before the Tutorial
Logic Circuits
In each of the following cases, draw a circuit vihdalculates the result r from inputs x, y and z.

* r =XAND(yOR2)
* r=(XAND (NOT y)) AND (NOT 2)
* r=(XANDY)OR (x AND 2)

Truth Tables

Work out a truth table for each of the functiongtia previous section.

Definitions in terms of NOR
Use truth tables to check the following equations.

*« NOT x=xNOR x
* XORYy=NOT(xXNORY)
e XANDYy=(NOT x) NOR (NOT y)

Algebraic Notation

Rewrite the logical expressions in thegic Circuits section, using algebraic notation.

Multi-input Gates

How many 2-input AND gates are needed to synthesi#énput AND gate? A 6-input AND-gate? An 8-input
AND gate? Can you say anything in general abouhthmber of 2-input gates needed to synthesizeiaput-
gate?

Algebraic Laws

Use truth tables to verify some of the algebraiesliélecture 6, Slides 7, 8 and 9).

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

During the Tutorial

Digital watches and other electronic devices otis@ a 7 segment display': there are 7 segments) (shich
can be either on or off. The display has 7 inpaitg, which are used to control the segments. ifipnt is 1, the
corresponding segment is on (black). If an inp@, ithe corresponding segment is off (white).

Figure 3-1. Seven Segment Display

Figure 2 presents the combinations of segmentshadrie usually used to display the digits from @.to

Figure 3-2. Numbers from 0 to 7 (for 3 binary inputs)

Designing a 7 segment display driver

The aim of the exercise, and next week's lab, isldsign a circuit which converts a 3 bit binary upp
representing a number between 0 and 7, into theecovalues for the inputs a..g of the display. Wl the
three inputs x, y, z (so, for example, if we wamtltsplay the number 6, which is 110 in binary, itguts will
be x=1, y=1, z=0).

* Work out a truth table showing a..g as functiong,of and z.

» After Lecture 7 this week, you will be able to uke truth table to work out formulae for a..g. ¢y
tutorial is after the Tuesday lecture then you darhis now.

» After Lecture 8 this week, you will be able to u&'rnaugh maps to simplify these formulae. If your
tutorial is after the Thursday lecture then you darthis now.

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Worksheet 4 (Semester 2, Week 5 Lab)

In the next few labs, we will be using a softwaeekage called LogicWorks to simulate digital citsuiThis
worksheet contains three exercises. The first twaraises are for you to become familiar with Logimiks.
The third exercise is more substantial. The exesc&e unassessed, but you should hand in yougndesirk
for Exercise 3 at the end of the lab. Your tutor's comments héllp you to understand circuit design, which is
an important part of the course.

Exercise 1: Getting Started with LogicWorks

In AMS, set up the CS1Q exercise called S2Weeakyour CS1Q folder there should now be a foldeledal
S2Week5. Within this folder is a file called Exesel double click on it to start LogicWorks, if thdses not
work then launch the application from the startgPaons/LogicWorks menu item.

The LogicWorks window is divided into four main ase at the top, the menus and toolbar; at the toottioe
timing area, which we will not be using; on thehtigthe component library, and in the center, tesigh area.
The following steps will take you through the canstion of a simple circuit which allows an AND gab be
tested.

1. In the component library, scroll down until you seeomponent called AND-2. Select it by double-
clicking. Click somewhere in the design area tacplthe component. You will see that the AND gate
is still attached to the pointer, so that anothre can be placed. You only need one for the morsent,
click on the Pointer button in the toolbar to rettw a normal pointer.

2. Select a Binary Switch from the component libranyd click in the design area to place it somewhere
to the left of the AND gate. Click again to placeezond switch below the first one.

3. Click on the Draw signal button in the toolbar, efhihas a light-weight + symbol on it. The pointer
will change to a + symbol. Click on the output ofecof the switches (the horizontal line on the tigh
then on one of the inputs of the AND gate. You $th@ee a red line, representing a wire, joining the
switch to the input. If this does not work, tryatling again, closer to the output or input.

4. You can correct any mistakes by changing the potetan eraser (click on the lightning bolt symbol
to the right of the pointer button, in the toolband clicking on any part of the circuit that yoamwto
delete.

5. Connect the output of the second switch to thersbaaput of the AND gate.

6. Select a Binary Probe from the component librarg place it to the right of the AND gate. Connect
the output of the AND gate to the input of the Ibynarobe.

7. Click on the Run simulator button, at the righttteé second row of the toolbar. Notice that the fyina
probe changes from Z to 0. By clicking on the shéte (make sure that you have a normal pointer) you
can change the values of the inputs of the AND,gatel see the corresponding output on the binary
probe.

8. As with other applications, there is a Save optiothe File menu, which you should use to save your
work.

[Continued overleaf]

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Exercise 2: The Majority Voting Circuit

1. Close Exercisel and open Exercise2.

2. Build the majority voting circuit from the lecturetes (Lecture 5 Slide 7). Connect binary switdbes
the inputs and connect a binary probe to the output

3. Run the simulator and test the circuit, by setthmginput switches and observing the output. Canstr
a truth table by systematically testing all 8 comaltions of input values.

4. Check that this truth table is the same as thdrmtige lecture notes.

Exercise 3: Driving a 7 Segment Display
Close Exercise2 and open Exercise3.

In LogicWorks, select the component 7-Seg DispacBlfrom the component library and place it in design

area. This is the single digit display from lasteWs tutorial. It represents a single digit disptdiyhe type used
in, for example, digital watches. The 7 segmentsgjocan each be either lit or unlit. For each sagrthere is a
binary input (labelled a...g) which should be gel tin order to light that segment. There is alsangut for the

decimal point (labellediot), which we won't use; connect it to a GND symboltkat it is fixed at 0. The
segments are labelled as follows.

Figure 4-1. Seven Segment Display

The aim of this exercise is to build a circuit whizonverts a 3 bit binary input, representing a lnenfrom 0 to
7, into the correct values for the inputs a..ghefdisplay. The usual way of representing thetsligias follows.

Figure 4-2. Numbers from 0 to 7 (for 3 binary inputs)

[Continued overleaf]

10

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

1. Last week you should have worked out a truth tahtawing a..g as functions of x, y and z where xyz
is the binary representation of the digit to bgldiged. If you did not do this last week, do it now

2. For each of a..g, use a Karnaugh map to work aninanised formula.

3. Draw a circuit which calculates a...g from xyz. Tdenight be opportunities to reuse subformulae; it
might also be possible to achieve further simglffiecns by factorising parts of the formulae. Dithe
circuit on paper before you start building it indioWorks. This will help you to see how to lay itto
neatly and help you not to make mistakes.

4. Build the circuit, connect binary switches to thputs, and test it. It is best to organise theudtirc
neatly, so you can keep track of which componergsiaing what. It is also a good idea to build and
test the parts for a... g one at a time.

Hand in your design work from this exercise (Questions 1, 2, 3) at the end of thelab.

Supplementary

Repeat this exercise with a 4 bit input, so thatahpropriate hexadecimal digit is displayed.

In a real electronic device, the 7 segment disglayer might be better implemented by using theutnalue to
address a small area of ROM (read only memory)atoimg a 7 bit word for each digit; this word woudd fed
into the display.

11

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Worksheet 5 (Semester 2, Week 6 Tutorial)

Introduction

This worksheet consists of more exercises in tleeaikarnaugh maps to design digital circuits. Sarhéhe
exercises involve functions of 4 inputs. This measig a Karnaugh map with a 4x4 grid, as discusset
illustrated in lectures, but the idea is exactly $#ame as in the 3 input case. In exams, you nijl lbe expected
to work with Karnaugh maps for functions of 3 input

This worksheet is not assessed, but you should imayamur work at the end of the tutorial so thatiytutor can
comment on what you have done. A solution will betlte web site next week.

Background: Binary Coded Decimal

In the past, a system called binary coded deciB@D)) has sometimes been used to represent decimadars
in binary. The idea is to consider a decimal nundsea sequence of digits, and represent eachlgigit4 bit
binary number.

For example, the decimal number 23 (recall thatwsite 23, to emphasise that we have a base 10 (decimal)
number) would be represented by 00100011 becaiss@®.0 in binary and 3 is 0011 in binary.

In BCD, each group of 4 bits is in the range 000001. The values 1010...1111 are not used.

» What is the BCD representation of;#2
e Which decimal number is represented in BCD by 10000

Although BCD makes it unnecessary to convert betwdecimal and binary, a serious drawback is that
arithmetic becomes more complicated.

* What are the BCD representations of,gl@nd 1,? What happens if you add the representations
together, using ordinary binary addition? What ¢ase wrong?

The rest of the exercises on this worksheet aigret by the problems of working with BCD, but irder to
keep the exercises managable in size, we are ¢winge binary coded ternary instead.

Ternary: Base 3 Numbers

Just as binary is base 2, decimal is base 10 axablbeimal is base 16, ternary is the base 3 nusysem.
Each digit is either 0, 1 or 2, and the column galare the powers of 3: 1, 3, 9, 27 and so on.

Examples:

e 213=Tbecause2x3+1=7.
e 10;=3pbecause 1 x3 +0=3.
e 223 =8pbecause 2 x 3 + 2 = 8 (this is the biggest 2-dégitary number).

The counting sequence for 2-digit ternary numbe0i, 01, 02, 10, 11, 12, 20, 21, 22.

» Check that this sequence of 2-digit ternary numbersesponds to the numbers 0... 8 in decimal.

12

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

BCT: Binary Coded Ternary

Imagine that life has been discovered on Mars, thatl Martians use ternary numbers (perhaps bedhege
have three legs, three tentacles, and three fingemsach tentacle). Martian computers use birafrgpurse,
but they represent numbers by means of a binargceernary (BCT) scheme. In BCT, each ternary dgit
represented by a 2-bit binary number. For exanpketernary number 3% represented by 0110 because 1 is
01 in binary and 2 is 10 in binary. The 2-bit binaalue 11 is not used in BCT.

* Whatis the BCT representation 0f;20
* Which ternary number is represented in BCT by 108/Hat is its decimal equivalent?

Converting Binary to BCT

A certain Martian electronic device calculates kit®hinary value, and this value is going to beptliged on a
2-digit BCT display device. This display device Hasputs, called a, b, ¢, d. The 2-bit value glresents the
first BCT digit and the 2-bit value cd represemis second BCT digit. For example, if the inputthie display
are 0101 (a=0, b=1, c=0, d=1) then it will displdly(and the Martian user interprets this as theatgrnumber
11;, which is equivalent to.4).

We therefore need a circuit which can be givenkit 8inary number xyz and calculates the valueslabde
input to the BCT display.

» Design this circuit. You should go through thedaling sequence of step:

(a) For each 3-bit binary value, work out the corresgfion 2-digit ternary value. Then work out the BCT
representation of each of these ternary values. néw have, for each 3-bit binary value xyz, a 4-bit
binary value abcd.

(b) Make a truth table showing X, y, z as inputs anlg, & d as outputs.

(c) Considering a, b, ¢, d as separate functions ¢f %, work out a Karnaugh map for each one.

(d) Use the Karnaugh maps to work out a formula foheda, b, c, d.

(e) Draw a circuit diagram which calculates a, b, &odn x, y, z.

13

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Worksheet 6 (Semester 2, Week 7 Lab)

The exercises on this worksheet use LogicWorksielfessary, refer to Worksheet 4 (from the previabs
session) for basic instructions on the use of L\gidks. This worksheet is unassessed, but you shHwauid in
your design work, on paper, faxercise 1 (see below) at the end of the lab.

LogicWorks Tips

Sometimes it is useful to label the inputs and oistpText labels can be added to the diagram loinky on the
button labelled A in the toolbar. Then click on tiegram at the point where you want to add tend, tgpe.

If you want to rotate components (for example, s the output of an AND gate points downwardseiadtof
to the right), select Orientation from the Schematenu to change the orientation of the next corapbwhich
you place; or, press the arrow keys before plattiegcomponent. This is very helpful if you wantpi@duce a
tidy layout (recommended). If you want to movenpmnents, just click and drag them with the mofiss,

making sure that you have an arrow pointer.

Bargraph Driver

Some electronic devices present numerical infolonati the form of a bargraph. Typically there iscdumn of
lights, and at any time the number of consecutigktd which are on, starting from the bottom, représ a
numerical value. Music systems often use this sehenshow the overall volume setting, or the stiierd the
signal in a particular frequency range. For examiplthe bargraph can represent a value betweemd07a(in
this diagram, black represents a light being od,\ahite represents a light being off):

1 1 || 1
1 1 || 1
1 1 || 1
[| | [
| | | [
| | | [
| | | [
Value 3 Value 4 Value 7 Value 0

Figure 6-1. Example Values for Bargraph Displays

A bargraph driver is a circuit which inputs a bipaumber (for this exercise it will be a 3 or 4 bitmber) and
outputs a,b,c... which are the values of the ligfitem bottom to top. These values are 1 for omadblin the
diagram) and O for off (white in the diagram).

1. Work out the truth table for a bargraph driver whioputs a 3 bit number xyz (i.e. X, y, z are tigitd
of a 3 bit binary number, from left to right) andtputs a,b,c,d,e,f,g (so a is the bottom light grid
the top light).

2. Work out a Karnaugh map for each output a,..., g.

3. From the Karnaugh maps, work out formulae forga.Try to work out the simplest formulae (i.e. use

the largest possible rectangles).

[Continued Overleaf]

14

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

4. Draw a diagram of a circuit which will calculate.g from x, y, z. When you build this circuit in
LogicWorks, the outputs a,..,g will be connected imomponent which looks like this:

g_
f_
e —
d_
cC—
b_
a—

JUHoood

Figure 7-2: Output component for Bargraph Display

5. Go into AMS and set up the CS1Q exercise S2Wee<art LogicWorks on the file Exercise 9. The
file already contains a bargraph component, withuia a..,g. Build the circuit from Question 4,
connecting the a,...,g outputs to the bargraph.n€cinthe x,y,z inputs to binary switches. Test your
circuit by setting each 3 bit value in turn on #g,z switches and checking that the bargraph alspl
the value correctly.

Inverse of Bargraph Driver

Now consider the inverse problem: designing a dirathich inputs a...,g and outputs x,y,z. For exmnp
imagine that a...,g are the outputs of a serieen$ors at different heights in a fuel tank, angehalue 1 if the
sensor is submerged, 0 otherwise.

Or—¢g
O f
O1—e
O+— 4 - - 011
------ OF— ¢ convert to XYy Zz
fuel O— b
O1—a

Figure 7-2. Overview of Inverse Bargraph (Demultiplexer)

When the fuel is at a certain depth, a number e$@es will be submerged, from the bottom upwards.Wsnt
to convert the sensor values into a 3 bit binatyerayz which gives a measure of the fuel level.

6. One way of designing the circuit would be to thinkerms of a 7 input truth table, and express, %, y
in sum of products form using minterms built from.@@ This would lead to quite complicated
formulae, which would be difficult to simplify begse the Karnaugh maps would be unmanagable.
There is a simpler way which uses adders. Workhout to do this and draw a circuit diagram.

Now suppose that we have a bargraph component wigeh 10 lights (inputs a...,j) to represent aevalu
between 0 and 10. This might be a more realisti@gon, given that we use decimal in everyday Iifee

15

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

driver now inputs a 4 bit binary number wxyz (tHedry representations of numbers larger than téh wi
not be used) and outputs a,...,j.

7. Work out the truth table for the new bargraph drivéou don't need to include the rows for inputs
1011...,1111.

8. Use your answer to Question 6 to work out defingiof a,...,j without using Karnaugh maps. Explain
why each definition is correct, similarly to Questi6.

16

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Worksheet 7 (Semester 2, Week 8 Tutorial)

Introduction to the Assessed Exercise
The work that is to be included in this year's Asss Exercise is covered in Worksheets 7 and 8.
The exercise involves the design and implementdtiohogicWorks) of digital circuits. There are twtages:

1. Design work, to be done during this tutorial.
2. Building and testing the circuits, to be done daniext week's lab.

Submission requirements from this tutorial

You should submit the answers to questions 1 t@® this tutorial on paper, at the beginning of iytutorial
in Week 10

Introduction

The assessed exercise will take place during teeskig tutorial and next week’s lab. The exercis@mives the
design and implementation (in LogicWorks) of digitacuits. There are four stages:

1. Design work, to be done during this week’s tutorial
2. Building and testing the circuits, to be done dgnirext week’s lab.
3. Submitting the LogicWorks circuits; the deadlingvi® days after your lab session next week.
4. Submitting a written report; the deadline is th&triatorial.
Braille

The Braille system represents letters by meanaiéms of raised bumps, enabling blind and paytsghted
people to read (by touch) and write (by using alleravriting machine). Each letter consists of By23 grid of
positions, each of which may contain a raised bumprint we will indicate a raised bump leyand the
absence of a bump by ‘" The basic system reptesba alphabet as follows.

o (o (00 (00 |0 (00|00 | 0o | 06| 0 0 |0 |00 |00 o
o | ..| o | 0o| o |00 |00 0 |00 | . |0 | .. | .0 .
o] e, | o o, o, o,
A|B|C|DJ|E| F| G| H| I J| K|l L| M| N| O

e0 (00 | 0. | 0| 0| 0o | o | .0 00 o0 0

o |00 |00 |0 |00 | .. |0 |00 .. | .0 .0

o | o | o |0 | o |00 |00 | o | 0o | oo | oo

P| Q| R| S| T| U] V| Wl X| Y| Z

Figure 7-1: Braille encoding of Alphabet

If you look carefully you might spot a pattern, #gpby the inclusion of W (Louis Braille, the invtar of the
braille system, was French, and W does not occtirar-rench language). A numeric digit is représgiby
the following special prefix:

followed by a letter in the range A (representindgal] (representing 0):

17

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

12| 3] 4|/ 5] 6] 7] 8 9 o0
Figure 7-2: Braille encoding of Digits

Other bump patterns are used for other prefixegs (per case) and a system of abbreviations ofream
words and parts of words. For more informatioryoifl are interested, visit www.hotbraille.com.

A braille character can be viewed as a 6 bit binaoyd, one bit for each position in the grid, iniefh 1
represents a bump and 0 represents no bump. Foeghef this exercise we will think of a braillbaracter as a
6 bit word abcdef where the bits a..f correspontheogrid like this:

For example, the letter M, as we have seen, istddriy the following Braille symbol:

This corresponds to the binary code 110010 (a=1, b=0, d=0, e=1, f=0). We will be using a brailisplay
device, similar to the 7 segment display from Whodet 4, which has 6 inputs (a..f) and producessplaly
similar to our printed form of braille: a grid inhich each position is black for a bump or whiteriorbump.

Design work for the tutorial: single digit braille display

Design a circuit which calculates the appropria@ki@s a, b, ¢, d (to be used as inputs to thdddidplay
device) for each digit in the range 0 . . . 7. Yamly need to calculate a . . . d because e ang dlarays 0. Your
circuit should have 3 inputs x, y, z, so that xyai3 bit binary number representing a numbererrainge O . . .
7, and 4 outputs a, b, c, d. The outputs shouldifgpine appropriate braille letter in the range I5 (ignore the
number prefix symbol.

For example, if the input is 101 (i.e., x=1, y=6]17%, representing the number 5, then the outputilshoe 1001
(a=1, b=0, c=0, d=1), which when combined with e&=0, yields 100100, representing the braille leEaxhich
stands for 5:

You should go through the following steps, as usﬁél

Work out a truth table with inputs x, y, z and autpa, b, c, d.

Work out a Karnaugh map for each output a, b, c, d.

From the Karnaugh maps work out the simplest pteséilomulae for a, b, ¢, d.

Draw a diagram of a circuit which will calculatels,c, d from X, y, z. When you build this circint
LogicWorks, the outputs a, b, ¢, d will be connddi®a component which looks like the following:

pPbdPE

18

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

(I I
[

Q
[

(I -

f‘

Figure 7-3: LogicWorks Output Component for Braille

Instructions for finding this component are mengidribelow in Exercise 2 but you should lay out vioitral
circuit sketch with this in mind.

Thisdesign work will be used in the lab next week, and will form part of your written submission.
Design work for the tutorial: single letter braille display

Suppose that we want to design a circuit whichldigpbraille letters. To represent the 26 letters AZ we
need to use 5 bit words. A natural way to do thisich is compatible with the standard ASCII chagackt, is
to use the words 00001 . . . 11010 (decimal 126). (In the ASCII character set, which uses oitds, these
representations are prefixed by 10 so that therket. . . Z have ASCII codes 65 . .. 90.)

If we followed our normal design process, we wowlitk out a truth table with 5 input columns (v,w.yx z
say) and 6 output columns (a . . . f as beforejs Would lead to complex definitions of a . . .iflwno prospect
of simplification because we can't easily use Kagtamaps for more than 4 inputs.

Instead we will use a different approach, whichkupported by LogicWorks and is more likely to bedis
practice for complicated conversions between remtasions. We will program a look-up table inteead-only
memory (ROM). The idea is to build a memory devidech stores the entire truth table. This memory wi
store 32 words, each of 6 bits.

It is read-only memory, so its contents can’t barged once it has been built: all we can do is lqpkhe
contents of each location. The memory has 5 inpotsesponding to the 5 input columns of the ttatiie, and
6 outputs, corresponding to the 6 output columnioks like this:

v a

ROM
z

f

A particular row of the truth table is specified grticular values of v . . . z. When used as ispothe ROM,
these values specify a particular location withie@ imemory. The ROM will be programmed so that thaents
of this location are the output columns a . .arfthat row of the truth table.

In order to program this ROM in LogicWorks, we neéedonvert the output columns of the truth tahle i2-
digit hex numbers.

5. Work out a truth table with the following columrishere will be 32 rows, so use a big enough piece of
paper.

e Input columns v,w, X, y, z which run from 000001tb111.

e A column showing which letter corresponds to eaqtui combination. Remember that A is
00001. The inputs 00000, and 11011 onwards, dagroéspond to letters; in these cases
leave this column blank.

* Output columns a, b, c, d, e, f which represenptitéern of bumps in the Braille grid for each
letter. In the cases which do not correspond tergtput O in all of the output columns.

* A column which shows the 6 bit binary number abaieé 2 digit hex number. Hint: convert
ab to the first hex digit and convert cdef to theamd hex digit.

This design work will be used in the lab next weakg will form part of your written submission.

19

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Worksheet 8 (Semester 2, Week 9 Lab)

Submission requirements from this lab

The design work from the previous tutorial andithplementation work from this week'’s lab togethemfi the
core of the open assessed exercise for the CSli@nSiysomponent.

You should submit the LogicWorks files “Exercise a@hd “Exercise 3”, and the file “BraillePROMdata”,
through AMS. The deadline is 10pm on the secondkingrday after your CS1Q lab session in Week 9. For
example, if your lab is on Tuesday, the deadlingOgm on Thursday; if your lab is on Friday, thadlae is
10pm on the following Tuesday.

Marking

This assessed exercise is worth 30% of the totafriboition of assessed coursework to CS1Q. As aedes
coursework contributes 20% of the module mark, #xesrcise is worth 6% of the final module mark. eTh
following marking scheme will be used to produaaark out of 60 for this exercise.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8] Towl

Marks 4 4 4 3 4 2 2 7 30

Assessed Work in the Lab

These questions are intended to be answered dimerigb session in week 9, but you can start eaflj@u
want to. First of all, go into AMS and set up th8XQ) exercise “S2Week9”

6. Start LogicWorks on the file “Exercise 2”. The fédready contains a braille display component, with
inputs a . . . f. Build the circuit from Questionebnnecting the a, b, c, d outputs to the brdilplay.
Connect the e and f inputs to 0 (use GND or swidd® to 0). Connect the X, y, z inputs to binary
switches. Test your circuit by setting each 3 kit in turn on the X, y, z switches and checkinag t
the correct braille character is displayed.

7. Start LogicWorks on the file “Exercise 3". Thisdfialso contains a braille display component. The
following steps will enable you to program a ROMMwihe data from Question 5.

a) Inthe “S2Week9” folder, open the file “BraillePR@Bstta” by double-clicking. Enter the
32 2-digit hex numbers from Question 5 (in lasotiat), separated by spaces or newlines
(whichever you prefer). Save the file and close it.

b) Back in LogicWorks (on the file “Exercise 3”), sel¢éPROM/RAM/PLA Wizard” from
the “Simulation” menu. Select “Programmable Ready®femory” in the resulting
dialogue box, and click on “Next".

c) Inthe next dialogue box specify 5 address lindstEper word, select “Read data from a
raw hex file”, and click on “Next”.

d) Inthe next dialogue box, click on “Select Raw Hrbe”, then browse to find the file
“BraillePROMdata”. You will have to select “All Fék” in the “Files of type” box. When
you find the file, click on “Open”. Then click ofNext”.

e) Inthe next dialogue box, enter the name “Braifta”your ROM, then click on “New
Lib” to create a new component library in whichpiat your ROM.

f) Inthe next dialogue box, enter “S2Week9” as tlenfime for your library, and click
“Save”. The previous dialogue box will return; &litFinish”.

You should now see a component called “Brailletha component library. Select this component and
place it in the design area. Connect the outpbtsy/(are called Out5 . . . OutO but they correspgoral.

.. f) to the inputs of the braille display. Conh#f inputs (called In4 . . . InO and correspogdmyv . .

. Z) to binary switches. Test the circuit by chegkifor each combination of the switches, that the
correct Braille pattern is displayed.

(Continued on next page).

20

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Additional question to be answered in the report

8.

Go back to the 7 segment display exercise (WorksBed utorial Week 4) and Worksheet 4 (Lab
Week 5)) and find the truth table for the 7 segnibsplay driver. Write an explanation of how to ase
ROM to implement the display driver. You shouldlie an explanation of the number of inputs and
outputs which the ROM must have, and specify theerts of each memory location.

21

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Worksheet 9 (Semester 2, Week 10 Tutorial)

Sample Exam Questions : Introduction

The exam will contain one question on HCI, one taeson mathematics and information management, one
guestion on the systems material, and one quesianlinks systems issues to those in HCI and mé&iion
management.

On this worksheet, Question 1 is an example ofiteesystems question, and Question 2 is an exawpthe
second systems question. Each question is intettdbd answered in 30 minutes. During this weekrial
you can attempt Question 1, and your tutor wilheitgo through or hand out a model solution. Yau atéempt
Question 2 in your own time, and a model solutidlhlve available later.

Question 1
(@)

0] Explain the difference between a high-level lamgguand a low-level language, and name one
language of each type. [2]

(ii) Explain the function of a D flipflop [1]

(iii) Give an example of the use of flipflops in the dasif a CPU. [1]

(iv) Explain what is meant by a sequential circuit, saag what the alternative is. [2]

(v) Give an example of a sequential circuit. [1]

(vi) Name three of the main components of a CPU andlyodescribe their function. [3]

(b) You are required to design a circuit which,agivan input xyz representing a 3 bit binary nummer
produces an output abc representing n+1. For exanifpthe input is 011 (x=0, y=1, z=1), represegtin
n=3, then the output is 100, representing 4. Ifitpait is 111 then the output is 000.

0] Draw a truth table which shows a, b, ¢ as functiofins vy, z. [3]
(i) Draw a Karnaugh map for each of a, b, c. [3]
(iii) Use the Karnaugh maps to work out formulae for and c in terms of x, y and z. [3]
(iv) Draw a diagram of the circuit which calculates anld ¢ from x, y and z. . [3]
(v) Compare the number of components in your circuihwie number of components in

a standard 3 bit adder. [3]

[Continued overleaf]

22

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Question 2

(a) Explain the difference between circuit switchinglgracket switching. Give an
example of a communications network which uses sadh. [4]

(b) Explain why routes in the Internet are not chosgndnsulting a central database
of all possible host-to-host routes. [5]

(c) Explain in general terms how Internet routing ituadly carried out. [6]

(d) Most airline web sites now allow customers to bigkets online. An alternative way of supporting
online ticket sales would be for customers to ihstpecialised client software which would
communicate with a server at the airline, eithangighe Internet or by means of direct telephone
connections. What do you think would be the adwgegaor disadvantages of this alternative system,
both technically and in relation to HCI issues? [10]

23

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Worksheet 10 (Semester 2, Week 11 Lab)

The exercises on this worksheet will illustraterpp@ifrom recent lectures and improve your undedstan The
last exercise will be useful preparation for tharax You should also take advantage of this fipglastunity to
ask your tutor any questions about topics fromvthele module.

Investigating Processes

Press Ctrl-Alt-Del and select Task Manager. Thi# start the Task Manager, an application whichpldigs
information about the tasks or processes whiclbaigg executed, and the resources they are using.

Click on the Applications tab to see a list of #pplications which are running. See how this changeen you
start a new application, or close a running apfibca

Click on the Processes tab to see a list of allpfteeesses which are running. These are the taklchare
taking it in turns to be executed by the CPU: thisvhere multi-tasking is working. Notice that teeare far
more processes than the number of running apmitstitithe operating system uses several procegsis dovn
purposes. For example, the process called EXPLORKR s the user interface of the operating systeselfi
it controls the desktop.

Click on the Performance tab to see a graph of @B&be. This shows the proportion of time the CPU is
spending on executing applications, rather thanagizug multi-tasking. Start a new application (foeample,
Microsoft Word) and observe the corresponding peakPU activity.

Within the Applications view, it is possible to meinate any of the currently running applicationscligking on
End Task. Try this out, but beware that terminatimgapplication may result in loss of data becausey not
be given a chance to tidy itself up. Sometimes hécessary to terminate applications in this wathey get
themselves into error states from which they a@biento recover.

It is also possible to terminate internal operasggtem processes in the same way, within the Bseseview,
but this is not a good idea because they are regess the normal operation of the OS. For example
terminating the EXPLORER.EXE process you can rentbgeauser interface of the operating system; tiséesy
will continue to run without the Start menu, thektdoar or the normal desktop view. It would thembeessary
to log out, and log in again to restore normal e

Investigating the Internet: DNS Lookup

Start Internet Explorer and go to the site www lklpgt/services/nslookup.php which provides an fater to
the Domain Name Service. You can enter any domainenand find out the corresponding IP address.

In the Domain box, enter a domain name (for examplgs.bbc.co.uk). In the Query box, select A (IBrasds).
Click on the button Look it up. (What is happeniaghat a program called nslookup is executed emihchine
which is running the web server for www.kloth.ne¥jou will see an IP address: four decimal numbers
separated by dots (e.g., 212.58.226.8). Type theutRber into the address field of Internet Explaaed see
what happens.

It is possible for a domain name to resolve to sV® addresses. Typically this means that anresgéion is
using several servers to provide the same sermpiobably because a high volume of requests is ¢ggedry
looking up www.nascar.com to see an example of this

[Continued overleaf]

24

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Investigating the Internet: Route Tracing

In Internet Explorer, go to the site www.tracerootg which is a catalogue of sites providing rotreeing
services. A good one to try is University of Califia, Berkeley (scroll down or follow the link toSA, then
click on the Berkeley link). Type a domain name I@raddress, if you like) into the box and presseErFor
example, try www.dcs.gla.ac.uk which is the departimveb server. What happens is that a prograrectall
tracert is executed on the machine running theertratcing service --- this machine is presumabbated in
California. This program sends a series of pactethe chosen address (and measures how long dakeyta
arrive), producing a list of intermediate pointsieththe packets pass through. How many network kogs it
take for packets to reach Glasgow from Califorr¥a® will see all sorts of domain names and IP askie in
the listing. IP addresses beginning with 130.2@iarthe University of Glasgow. Domain names endiitip
Jja.net are part of JANET, the network used by Uitversities to access the internet.

Try some of the other route tracing servers orotiiginal list at www.traceroute.org. Each one witice routes
starting from itself, so you can see routes to @ias from various parts of the world. Can you seg an
differences in route lengths from different cousdror different continents?

Investigating the Internet: HTTP Requests and Respo nses

In Internet Explorer, go to the site www.rexswaimehttpview.html which allows you to see the exzamtent
of the HTTP request and response when the brovesesses a website. Enter the name of a websitg¢hato
URL field, for example www.dcs.gla.ac.uk, click SMBI and see what comes back. The header contams so
information about the server, and specifies what lof information follows (in this case, HTML codédjhe
content is the HTML code that the browser has toved into the visual representation of a web page.

Creating an HTML Document

In AMS, set up the exercise S2Week1l. Go into tAé&/&k11 folder in your CS1Q workspace and double-
click on the file lab5. Because it is an HTML docmh (as you can see by selecting Details from theavV
menu), Internet Explorer will start, and you willesa very simple page with some text and a linlec§&ource
from the View menu to see the HTML code which proetuthis page.

In your S2Week11 folder, double-click on the filEbbword. This is also an HTML document, which was
produced by Save as web page from Microsoft Woildw\Mhe source and compare it with the previous one
you will see that Word inserts a large amount offatting information into the HTML file.

The file lab5 can be edited with Programmer's Eiiéor or Notepad. The web page produced by lab8wan
be edited directly with Word (right-click and usepen with’). Using Word is an easy way to producgbw
pages, although more specialised HTML editors gimeh more control over the structure of the page.

The department does not allow first year studeatpublish web pages, so these HTML files can ordy b
viewed locally; you can't make them visible frone tHepartment's web site. However, if you have mnaer
access at home, or if you sign up with a commempmaVider of web space, you could create and plulylaur
own web site.

Useful Preparation for the Exam

The university provides you with an email servicghie form of a web application; you use it by cacting to
the appropriate web site with your web browser éeample, Internet Explorer). Web-based email ses/are
also popular outside the university; you might hased an email service such as Hotmail or Gmail.

An alternative way of providing email is throughspecial-purpose software application which would an
your computer, storing your messages locally andgushe internet when necessary to send and receive
messages. You might have used an email applicefitms kind at home, for example Outlook or Eudora

25

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

What do you think are the advantages and disadgestaf each kind of email service? There are atssuf
issues, including HCI, security, technical impletagion details, and others. Think about this questand
discuss it with your friends, but you do not haeentite anything down or hand anything in. You viilid that
thinking about the issues raised will be usefuppration for the exam.

26

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Appendix 1: A User Guide for the ITM, A Simple Computer
Architecture

Cordelia Hall and John O’Donnell
University of Glasgow

October 2002

The ITM (Information Technology Machine) is a simple computer architecture designed specifically
for learning the fundamentals of computer systems and machine language. It omits many of the
features that make real machines complicated, while retaining most of the essential characteristics
of computers. The ITM is a modern RISC style architecture, with 16-bit words and 16 registers and a
Load/Store style instruction set. It lacks facilities for Input/Output; the only way to find out what is
happening inside the machine is to use the emulator.

Programming is supported by a software package that contains an assembler and an emulator that
gives both interactive feedback and post-mortem trace files. These tools can be controlled from a
graphical user interface.

Architecture of the ITM

To keep the ITM simple, it doesn’t have bytes, short words, long words, and so on, unlike most real
computers. Instead, it has a word size of 16 bits, and each register and each memory location
contains a 16-bit word.

The central processing unit (CPU) contains a register file with 16 registers named RO, R1, R2, ..., R9,
Ra, Rb, Rc, Rd, Re, and Rf. It also has several registers concerned with program execution, including:

e The PC (program counter) register contains the address of the next instruction to be
executed

e The IR (instruction register) contains the instruction currently being executed

The Instruction Set

The ITM has a simple instruction format with a 4-bit operation code (opcode) field. This limits it to
16 instructions, and actually it doesn’t even have quite that many!

The table below summarises the instructions. The Opcode column gives the hexadecimal digit
operation code, which is needed in order to figure out the machine language representation of the
instruction. The Mnemonic column gives the symbolic name of the instruction used in assembly
language programming. The Operand column shows the typical form of operands for the
instruction. Finally, the Meaning column describes the behaviour of the instruction using Java-like
notation.

For clarity, the table contains specific examples—for example, it mentions register R1 and a label. In
practice, any register or label may be used instead, with one exception: it is an error to execute an

27

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

instruction that modifies RO. The value of RO is always 0, and a program should never attempt to
change that.

Addresses are specified in the form label[R2], where label is a name that appears in the label field of
some assembly language statement. The assembler figures out what address corresponds to label,
and it will place that into the instruction. The effective address used in an instruction is the value of
the address word (the address of the label) plus the contents of the index register. For example,
suppose that result is a label that refers to memory location $002c¢, and suppose that R4 contains
$0012. Then LOAD R1,result[R4] will fetch the word from memory location S003e (the sum of
$002c and $0012), and that value will be placed into register R1.

Opcode | Mnemonic Operand M eaning

1 LOAD R1,label[R2] R1 := Mem [label+R2]

2 LDVAL R1,Snum R1 := Snum

3 ADD R1,R2,R3 R1:=R2+R3

4 SUB R1,R2,R3 R1:=R2 - R3

5 NEG R1,R2 R1:=-R2

6 MUL R1,R2,R3 R1:=R2 * R3

7 STORE R1,label[R2] Mem [label+R2] :=R1

8 CMPEQ R1,R2,R3 R1:= (R2 == R3)

9 CMPLT R1,R2,R3 R1:=(R2 < R3)

A CMPGT R1,R2,R3 R1:=(R2>R3)

B JUMPT R1,label[R2] if (R1==1) then PC := label+R2
C JUMPF R1,label[R2] if (R1==0) then PC := label+R2
D JUMP label[R1] PC :=label+R1

E CALL label[R1] push(PC); PC := label+R1

F RETRN PC := pop

Assembly Language

Format of Assembly Statements

A program written in ITM assembler language is a text file; that is, it contains plain ASCII characters
with no formatting. The program consists of a sequence of lines, and a line may be one of the
following:

28

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

* Aninstruction
* A DATA statement
e Acomment
* Ablankline
Everything that appears after a % is a comment, and has no effect on the program’s meaning. Blank

lines and comments have no effect on the program’s meaning, but they are used to make it more
readable.

Instruction statements consist of the three fields. Each field must contain no spaces, and the fields
are separated by one of more spaces (use spacing to line up the fields vertically and make the
program look neat). After the last field, there should be a comment beginning with %. The fields of
an instruction statement are:

e Label: The label field optional; if the statement has a label, it must begin in the first
character of a line, and it may contain only letters.

e Operation mnemonic: This is the symbolic name for an instruction, and must be one of the
mnemonics listed in the Instruction Set table above.

e Operands: This field specifies the registers, numbers and addresses that are required by the
instruction. Its syntax should follow the form given in the Instruction Set table. No spaces
are permitted within the operand field.

DATA statements are used to define a word containing a number rather than an instruction. It looks
syntactically like an instruction statement, where DATA appears in the mnemonic field, and a
hexadecimal constant appears in the operand field. When you use a DATA statement to define an

ordinary integer variable, it should have a label—the variable name—but the label is not required.

Running the ITM Software

The ITM software contains an assembler, an emulator, and a graphical user interface. You can

launch the system by clicking on the IT_Machine icon. In general, you write a program, prepare the
assembly language source file, assemble it, load it, and execute it. We'll go through each of these
steps in detail.

Prepare the Assembly Language Source Program

The assembly language program needs to be a text file (i.e. a file containing only visible ASCII
characters, with no binary formatting characters), and it needs to have an extension of .ap for
assembly program. This means that the file must have a name like program.ap. The file name must
not end with .txt.

It can be surprisingly difficult to get an editor on Windows to produce a text file with the right name.
Don’t use Word or WordPad. Edit the source program with NotePad, and when you save the file,
you must (1) enter the file name as program.ap, and then (2) select type All Files in the Save As
Type combo box (do not leave the default type Text Documents (*.txt)). If you don’t follow these
instructions, you’re likely to end up with a file with a name like program.ap.txt and/or containing
binary formatting codes, and it just won’t work.

29

CS1Q Systems Workbook Prof. C.W. Johnson and Dr. Simon Gay

Launch the ITM System

Click on the IT_Machine jar file, and the system will launch.

Navigate to the Source Program

Select File: Open, and a dialogue box will appear that lets you navigate to your source program. By
default it will open in a folder containing some example programs, and you can develop your
program in that same folder.

Assemble the Source

Once you have edited and saved your source program using NotePad, select Run: Assemble, and the
system will translate your program to machine language. Now select View: Assembler Listing. Look
at the result; if there are any error messages you must fix the mistakes in the source program, save
it, and do Run: Assemble again. Don’t go on to the next step until all the error messages have been
resolved!

Load the Object

Now select Run: Load, which tells the operating system to load your machine language file into the
ITM computer’'s memory. You'll see a lot of hexadecimal numbers appearing in the memory section
of the window—you’ll see that this is the same as the machine language code in the assembler
listing

Execute the Machine Language Program

Now run the program. You can either run it one instruction at a time (recommended for debugging)
by clicking on the single right triangle icon, or you can run it at full speed by clicking on the double
triangle. These operations are also available through the run menu. You can also experiment by
setting breakpoints; these enable you to tell the system to stop the execution at a certain
instruction, which is helpful in debugging.

Examine the Post-mortem Trace
When the program has finished, look at the state of the registers and memory to determine whether
it worked correctly.

Acknowledgements.
The ITM architecture was designed by David Gillespie, Cordelia Hall and John O’Donnell. The

assembler and emulator were implemented by Cordelia Hall, and the first version of the system
documentation was also written by Cordelia Hall. The graphical user interface was implemented by
Grant McGarry, supervised by John O’Donnell.

30

