MORT and Organisational Failures

Prof. Chris Johnson,
School of Computing Science, University of Glasgow.
johnson@dcs.gla.ac.uk
http://www.dcs.gla.ac.uk/~johnson
• Organisational Failure.
 – Are safety culture & standards sufficient?
 – Need high level management support.

• MORT:
 – Management Oversight & Risk Tree;
 – maps generic concerns for safety management.

• Dublin Airport Case Study.
 – Limits on what management can do?
 – Can they understand technical systems?
Importance of Management

- Standards supported by
 - Safety Management Systems.

- Safety culture defended by
 - Safety Management Systems.

- Without managerial support:
 - safety culture will die;
 - standards will be abused.

- Limits – financial not engineering background
Organisational Failure

- Increasing focus on management.
- Standards can be miss-applied?
- Incidents can be ignored?
- Management controls context of failure?
• Management Oversight and Risk Tree.

• Draws on management and safety.

• Based on fault-tree notation:
 – AND, OR gates;
 – Basic and intermediate events.

• Novel use of LogicWorks 8
Fault Tree Components (More Later)

Fault Tree Gates

- Intermediate Event
- Basic Event
- Undeveloped Event
- Conditional Event (with INHIBIT gate)
- Transfer symbol
- House Event (Does or does not occur)

Fault Tree Events
Derailment of MARC 286 and AMTRAK 29

MARC 286 approached Georgetown Junction at a speed consistent with Signal 1124-2 being set to CLEAR.

MARC 286 Conductor fails to intervene to reduce speed (Conclusion 5)

MARC 286 Assistant Conductor fails to intervene to reduce speed (Conclusion 5)

Signal 1124-2 was set to APPROACH.

Engineer forgets APPROACH aspect of Signal 1124-2. (Conclusion 4)

Engineer does not see APPROACH aspect of Signal 1124-2

Engineer correctly reads incorrect CLEAR aspect on Signal 1124-2

Bad weather impaired the operator’s ability to identify the indication of Signal 1124-2 (Conclusion 2)

The signalling system failure leads to incorrect indication for signal 1124-2 (Conclusion 3)

There was bad weather.

Engineer’s memory of the aspect of signal 1124-2 is interfered with by an unscheduled stop between signal 1124-2 and Georgetown Junction. (Conclusion 4)

Engineer’s judgement is unimpaired by ill health (Conclusion 1)

Engineer’s judgement is unimpaired by alcohol (Conclusion 1)

The signalling system fails.
• Lets suppose we have an incident.

• Usually easy to spot direct causes?

• Operator error, system failure.

• How to identify managerial causes?

• MORT uses fault tree notation to provide a graphical checklist.
Injuries, damage, other costs, lost or degraded program/public impact.

Oversights and omissions

Assumed risks

S - control systems branch

Specific control factors less than adequate

Accident

SA1

Recovery less than adequate

SA2

M - management branch

Management system factors less than adequate

Policy less than adequate

MA1

Implementation less than adequate

MA2

Risk assessment system less than adequate

MA3

R1

R2

Rn
• Illustrates problems of safety management.
 – Busiest period of the year.

• Initial hardware failure:
 – Poor quality of service from LAN;
 – Slows flight data processing system.

• ATCOs cannot access data on radar targets:
 – including aircraft identification and type data.

• Capacity restrictions for safety reasons.
REPORT OF THE IRISH AVIATION AUTHORITY

INTO THE ATM SYSTEM MALFUNCTION AT DUBLIN AIRPORT

CONTENTS

1. Background Information .. 1

2. Contingency Arrangements in Place .. 1

3. Arrangements in place with the System Supplier to provide support ... 2

4. Explanation of the problem which led to the malfunction ... 2

5. Measures taken to rectify the problem 4

6. Details of any Safety Issues Arising .. 6

7. Level of Communication between the IAA, the Airlines and Dublin Airport Authority (DAA) ... 6

8. Observations ... 7

19th September 2005

• ATM system provided by contractor:
 – maintained under annual service contract;
 – provide both hardware and software support;
 – Preventative maintenance of components;
 – On-site support for diagnosis and debugging.

• ANSP relies upon subcontractor:
 – key areas of technical support;
 – lacks sufficient in-house capability;
 – Is outsourcing a form of de-risking?
Initial Failure

- First symptoms observed:
 - aircraft id & type not displayed by flight tracks;
 - but only for flights entering system...

- ANSPs engineering staff correct symptoms;
 - Cannot identify root causes of the problem.

- Capacity restrictions to maintain safety levels;
 - Above operating demands so little impact?
Secondary Response

- Problem stemmed from double failure:
 - triggered by a faulty network interface card;
 - flooded network with spurious messages;
 - delayed FDPS updates on network.

- Symptoms of the fault were masked:
 - recovery mechanisms in Local Area Network;
 - made it hard for engineering teams to identify initial component failure.
Aging, Complex Critical Infrastructures...
Management Issues

• Do management understand:
 – Computational problems?
 – Basics of safety (eg risk assessment)?
 – Consequences of technical issues?
 – Reliability links to sub-contractors…

• The Ryanair effect:
 – Organizational damage enormous;
 – They are well managed and successful;
 – Things will only get more complex (SESAR).
Conclusions

• Organisational Failure.
 – Are safety culture & standards sufficient?
 – Need high level management support.

• MORT:
 – Management Oversight & Risk Tree;
 – maps generic concerns for safety management.

• Dublin Airport Case Study.
 – Limits on what management can do?
 – Can they understand technical systems?
Any Questions…