Ta| Uni 1t
G Glacoc?

Fault Trees and Software PRA

Prof. Chris Johnson,

School of Computing Science, University of Glasgow.
lohnson@dcs.gla.ac.uk
http://www.dcs.gla.ac.uk/~johnson

¢1a Unaversity :
@ of Glasgow Introduction

=

* Fault Tree Analysis: Recap.

 Software Fault Trees.

o Software Probabilistic Risk Assessment.

#1a University
@ of Glasgow Fault Trees: Recap

=

[L | | Ninputs I : I I
NOT AND OR Moutof N Exclusve OR INHIBIT Priority AND
VOTING

Fault Tree Gates

I O<> T O A

H Ewvent
Intermediate Basic Undeveloped Conditional T ransfer (Dg:zeor Z?: g
Event Event Event Event symbol not occwr)

(with INHIBIT gate)

Fault Tree Events

#1a University :
@ of Glasgow Fault Tree AnaIyS|s

=

 Each tree considers 1 failure:
— Carefully choose top event;
— Carefully choose system boundaries.

* Assign probabilities to basic events:
— Stop if you have the data;
— Circles denote basic events.

« Simple but tool support is critical.

#1a University :
o0 of Glasgow Fault Tree Analysis: Hardware

Failure of water cooling
system on demand

-

Mo water Mo water to
from nozzle nhozzle
[|
No water from pump Pipe P3

ﬁ: blocked

[|
Pump fails No water to pump @

to start.

[|
Mo water from Line 1 Mo water from Line 2

A A

#1a University .
E of Glasgow Fault Tree Analysis: Hardware

Mo water from Line 1

- A

No water No water to
through valve valve
|
[|
Pipe blocked No water
into pipe
| |
Filter Mo water
blocked.

0

#1a University :
<0 of Glasgow Fault Tree Analysis - Cut Sets

Each failure has several modes:
— ‘different routes to top event”.

Cut set:

— basic events that lead to top event.

Minimal cut set:
— removing a basic event avoids failure.

Path set:

— basic events that avoid top event;
— list of components that ensure safety.

#1a University .
@ of Glasgow Fault Tree Analysis - Cut Sets

=

T1

a=
@ (0 () G

T1=BE1+BEZ.BE3 + BE4.BE5 +BES

« Top Event=K1+K2+..K n

— K_i minimal cut sets, + is logical OR.

« Ki=X1.X2.Xn

— MCS are conjuncts of basic events.

#1a University :
<0 of Glasgow Fault Tree Analysis - Cut Sets

Top-down approach:
— replace event by expression below;
— simply if possible (C.C = C).

Can use Karnaugh map techniques;
— cf logic circuit design;
— recruit tool support in practice.

Notice there is no negation.

Notice there is no XOR.

<= | [Jniversitv
0y ey MOCUS Cut Set Algorithm

=

1. Assign unique label to each gate.
2. Label each basic event.
3. Create a two dimensional array A.
4. Initialise A(1,1) to top event.
5. Scan array to find an OR/AND gate:
If current position in A is OR gate...
- replace current position with a column;
- put gate's input events in new row of that column.
- replace current position with a row;
- put gate's input events in new column of that row.
6. Repeat 5 until no gates remain in array.
/. Remove any non-minimal cut sets.

=1 U niversitv
@ qf%li‘“aigé% Fault Trees: MOCUS Cut Set Algorithm

=

T

[2]

T1l1=BEl1+ BEZBEZ + BE4.BES + BES

T1 | ——™ BEl1L | —» BE1l —_— BE1l
=1 BEZ BE3 BEZ BES
=2 =2 BE4 BES

BEGS BES BES

#1a University S _
@ of Glasgow Fault Trees: Probabilistic Analysis

=

T

EREN
(o1) (o2

o @

For simplicity assume probabilityv o f all basic events is O.1

P(&1) = P(BE2).P(BE3) = 0.1 * 0.1 = 0.01.
P(G2) = P(BE4.P(IBES) = 0.1+ 0.1 = O.2.

P{T 1)

001 +0.2 + P(BEEL) + P(BEZ)
o014+ 0.24+01+0.1
L Ny

#1a University S _
E of Glasgow Fault Trees: Probabilistic Analysis

* Beware: independence assumption.

“If the same event occurs multiple times/places in a tree, any
quantitative calculation must correctly reduce the boolean
equation to account for these multiple occurrences.
Independence merely means that the event is not caused due
to the failure of another event or component, which then
moves into the realm of conditional probabilities."

Clif Ericson, ISSS.

* Inclusion-exclusion expansion (Andrews & Moss).

é1a| University _ _
@ gf‘IGﬁmgoﬁr Fault Tree Analysis: Applied to Systems

=

Derailment of MARC 286
and AMTRAK 29
J |
|
MARC 286 approached Georgetown MARC 286 Conductor fails MARC 286 Assistant Signal 1124-2 was set to
Junction at a speed consistent with to intervene to reduce speed Conductor fails to intervene to APPROACH.
Signal 1124-2 being set to CLEAR. (Conclusion 5) reduce speed (Conclusion 5) (Conclusion 4)
(Conclusion 4)

» Usually applied to hardware...

« Can be used for software (later).

é1a| University _ _
@ gf‘IGﬁmgoﬁr Fault Tree Analysis: Applied to Systems

=

Engineer forgets APPROACH
aspect of Signal 1124-2.
(Conclusion 4).

Engineer’s memory of the
aspect of signal 1124-2 1s
interfered with by an
unscheduled stop between
signal 1124-2 and

. Engneer’sjudgement is Engneer’s judgement 1s
Georgetown Junction. unimpaired by ill health unimpaired by alcohol

(Conclusion 4).

(Conclusion 1) (Conclusion 1)

n

 House events: “switch™ true or false.

* OR gates - multiple fault paths.

otal University : :
@ of Glasgow Fault Tree Analysis: Applied to Systems

MARC 286 approached Georgetown
Junction at a speed consistent with
Signal 1124-2 being set to CLEAR.

]

Engineer forgets APPROACH Engineer does not see Engneer correctly reads
aspect of Signal 1124.-2. APPROACH aspect of incorrect CLEAR aspect
(Conclusion 4). Signal 1124-2 onSignal 1124-2

Bad weather impaired the operatot’s
ability to identify the indication of
Signal 1124-2 (Conclusion 2).

The signalling system failure
leadsto incorrect indication for
signal 1124-2 (Conclusion 3).

There was bad weather. The signalling system fails.

* Probabilistic inhibit gates.

« Used with Monte Carlo techniques
— True if random number < probability.

#1a University
@ of Glasgow Software Fault Trees

As you'd expect.

Starts with top-level failure
— Trace events leading to failure.

 But:

— Don’t use probabilistic assessments;

If you find software fault path REMOVE IT!

¢1a Unaversity
@ of Glasgow Software Fault Trees

=

Leveson, N.G., Cha, S.S., Shimeall, T.J. “Safety Verification
of Ada Programs using Software Fault Trees," IEEE
Software, July 1991.

Backwards reasoning.

Weakest pre-condition approach.

Similar to theorem proving.

Uses language dependent templates.

#1a University
@ of Glasgow Software Fault Trees

=

Assignment
causes event

[]

Change in value Exception Operand evaluation
causes event. causes event. causes event.

#1a University
@ of Glasgow Software Fault Trees

=

If-Then-Else
|
| |
Condition Condition Condition
TRUE, THEN- evaluation FALSE ELSE-
part causes causes event. part causes
event. event.
| | | |
Condition TRUE THEN-part Condition FALSE ELSE-part
be fore IF- causes event before IF- causes event
THEN-ELSE THEN-ELSE
statement. statement.

#1a University
IE of Glasgow Software Fault Trees

=

WHILE statement
causes event.

£

Statement not Statement
executed executed #
times.
I I
Event before Condition false [I
WHILE before WHILE Condition true #sth iteration
statement be fore WHILE. causes event

[@ I_J"_niiversity

=7 of Glasgow

Software Fault Trees

Pc(pl, p2. ... pn)

causes event.

[]

Evaluation of

parameters
causes event.

Execution of
Pc with pl,

p2....pn

causes event.

Failure of Pc
causes event.

[@ University

& of Glasgow Example Software Fault Tree

WHILE statement
causes ¥ Pos > 10

]

Statement not Statement
executed. executed #
times.
Y Pos > 10 X_Pos >z Limit
before WHILE before WHILE X_Pos <Limit Y Pos +Limit - X_Pos > 10
statement. be fore WHILE. be fore WHILE

while ¥ Pos < Limit do

_ -- Let"s assu
bhegin

-- Y Pos » 10

#_ Pos
Y Pos

#_Pos + 1:
¥_Pos + 1:

me dangerous conditilion

o1a Unuversity :
@ qf'l(zf"asgoﬁr Exception template for Ada83

=

Excepfiun causes

failure
| |
Exception body Exception was Exception
causes failure. raised. handler exists.
Exception was Exception raised

propagated. locally.

ora| University _
@ of Glasgow Exception template for Ada95

E:-:c:e:p'l'in:-n causes

failure
|
| |
Locally raised exception A propagating exception
causes fTailure. causes fTailure.
| | |
Exception raised Fﬂ“'—'"E‘_ in Exce ption
locally. exce ption. handler exists.
[|
Evaluation of parameter Execution of handler
causes Tailure body causes failure.

See: S.-Y. Min, Y-K. Jang, A-D Cha, Y-R Kwon and D.-H. Bae, Safety Verification of
Ada95 Programs Using Software Fault Trees. In M. Felici, K. Kanoun and A. Pasquini
(eds.) Computer Safety, Reliability and Security, Springer Verlag, LNCS 1698, 2002.

¢1a Unaversity
@ of Glasgow PRA for Software

John Musa's work at Bell Labs.

Failure rate of software before tests.

Faults per unit of time A_0):
— function of faults over infinite time.

« Based on execution time:
— not calendar time as in hardware;
— S0 no overall system predictions.

#1a University :
@ of Glasgow Musa's PRA for Software

=

AO=KxPxW.0

K: Constant that accounts for the dynamic structure of the program and
the varying Machines, k = 4.2E-7.

P: Estimate of the number of executions per time unit, p = r/SLOC/ER

r : Average instruction execution rate, determined from the manufacturer
or Benchmarking, Constant

SLOC: Source lines of code (not including reused code).

#1a University :
@ of Glasgow Musa's PRA for Software

=

AO=KxPxW0

« ER: Expansion ratio constant per programming language: Assembler, 1.0;
Macro Assembler, 1.5; C, 2.5;: COBAL, FORTRAN, 3; Ada, 4.5

W_0: Estimate of the initial number of faults in the program. Can be calculated
using: w0 = N x B, or a default of 6 faults/1000 SLOC can be assumed

* N: Total number of inherent faults. Estimated based upon judgment or past
experience.

- B: Fault to failure conversion rate; proportion of faults that become failures.
Proportion of faults not corrected before the product is delivered. Assume B =
995; i.e., 95% of the faults undetected at delivery become failures after delivery

¢1a Unaversity
@ of Glasgow PRA for Software

Considerable debate about this:
— No account for experience of coders?
— No account for number of teams?
— No account for complexity of requirements?
— What about configuration management?

Many variants on the theme.

Metrics are crude...

In meantime, be sceptical.

#1a University :
@ of Glasgow Conclusions

=

* Fault Trees:
— cut sets, cut paths;
— quantitative analysis.

« Software Fault Trees:
— language dependent templates;
— if you see faults, remove them!

« Software PRA: the Musa formula...

@ University
7 of Glasgow Any Questions...

=

mrd reviker prossm el

e

Sty Cmam i+

