Safety Critical Systems Development

Prof. Chris Johnson,
Department of Computing Science,
University of Glasgow,
Glasgow,

Scotland.

G12 8QJ.

URL: http://www.dcs.gla.ac.uk/~johnson
E-mail: johnson@dcs.glasgow.ac.uk
Telephone: +41 330 6053

October 2006 (Part II of the Notes).

©C.W. Johnson, 2006 - Safety Critical Systems Developmen t.

1

Hazard Analysis

e Hazard Analysis.

e FMECA/FMEA.

e Case Study.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Hazard Analysis

e Safety case - why proposed system is safe.

e Must identify potential hazards.

e Assess liklihood and severity.

e Lots of Hazard Analysis techniques:
- fault tress (see later);
- cause consequence analysis;

- HAZOPS;
- FMECA/FHA /FMEA....

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA - Failure Modes, Effect and Criticality
Analysis

e MIL STD 1629A (1977!).

e Analyse each potential failure.

e Determine impact of system(s).

e Assess its criticality.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA - Failure Modes, Effect and Criticality
Analysis

e 1. Construct functional block diagram.

e 2. Use diagram to identify any associated failure modes.
e 3. ldentify effects of failure and assess criticality.

e 4. Repeat 2 and 3 for potential consequences.

e 5. ldentify causes and occurence rates.

e 6. Determine detection factors.

e 7. Calculate Risk Priority Numbers.

e 8. Finalise hazard assessment.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA - Step 1: Functional Block Diagram

e Establish scope of the analysis.

e Break system into subcomponents.

e Different levels of detail?

e Some unknowns early in design?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA - Step 1: Functional Block Diagram

1.7 Power hoses 1.11 Diverter valves

1.10 Diverter control ” 1.2 Mihuteman Pod ‘

| 1.6 Hydraulic hose bundle |

‘ LHility air supply ‘—| 1.1 Accumulator unit ‘ _—
Rig air suppl
'9 Al SUpPly [18.0 Air Hose Bundle 1 | [18.2 Air Hose Bundle 2 |

‘ Customer air supply ‘ | 1.12 Electric cable bundle | ‘ 1.5 Abandon ship panel

‘ 1.3 briller’s panel ‘

‘ 1.4 Toolpusher’s panel ‘

Acknowledgement: taken from J.D. Andrews and T.R. Moss, Reliability and Risk Assessment,
Longman, Harlow, 1993 (ISBN-0-582-09615-4).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA - Step 2: Identfy Failure Modes

e Many different failure modes:
- complete failure;
- partial failure;
- intermittant failure;
- gradual failure;
- etc.

e Not all will apply?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA - Step 3: Assess Criticality

10. Hazardous without warning
Very high severity ranking when a potential failure mode affects safe operation
or involves non-compliance with a government regulation without warning.

9. Hazardous with warning
Failure affects safe product operation or involves noncompliance with govern-
ment regulation with warning.

8. Very High
Product is inoperable with loss of primary Function.

7. High
Product is operable, but at reduced level of performance.

6. Moderate
Product is operable, but comfort or convenience item(s) are inoperable.

5. Low
Product is operable, but comfort or convenience item(s) operate at a reduced
level of performance.

4. Very Low
Fit & finish or squeak & rattle item does not conform. Most customers notice
defect.

3. Minor
Fit & finish or squeak & rattle item does not conform. Average customers
notice defect.

2. Very Minor
Fit & finish or squeak & rattle item does not conform. Discriminating customers
notice defect.

1. None
No effect

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA - Step 4: Repeat for potential
consequences

e Can have knock-on effects.

e Additional failure modes.

e Or additional contexts of failure.

e |terate on the analysis.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA - Step 5: Identify Cause and Occurence
Rates

e Modes with most severe effects first.

e What causes the failure mode?

e How likely is that cause?

e risk = frequency x cost

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA - Step 5: Identify Cause and Occurence
Rates

Very High: Failure is almost inevitable
Rank 10: 1 in 2
Rank 9: 1in 3

High: Repeated failures
Rank 8: 1in 8
Rank 7: 1 in 20

Moderate: Occasional failures
Rank 6: 1 in 80

Rank 5: 1 in 400

Rank 4: 1 in 2000

Low: Relatively few failures
Rank 3: 1 in 15,000
Rank 2: 1 in 150,000

Remote: Failure is unlikely
Rank 1: 1 in 1,500,000

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA - Step 6: Determine detection factors

Type (1):
These controls prevent the Cause or Failure Mode from occurring, or reduce
their rate of occurrence.

Type (2):
These controls detect the Cause of the Failure Mode and lead to corrective
action.

Type (3):
These Controls detect the Failure Mode before the product operation, subse-
quent operations, or the end user.

e Can we detect/control failure mode?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA - Step 6: Determine detection factors

10. Absolute Uncertainty
Design Control does not detect a potential Cause of failure or subsequent Failure
Mode; or there is no Design Control

9. Very Remote
Very remote chance the Design Control will detect a potential Cause of failure
or subsequent Failure Mode

8. Remote
Remote chance the Design Control will detect a potential Cause of failure or
subsequent Failure Mode

7. Very Low
Very low chance the Design Control will detect a potential Cause of failure or
subsequent Failure Mode

6. Low
Low chance the Design Control will detect a potential Cause of failure or sub-
sequent Failure Mode

5. Moderate
Moderate chance the Design Control will detect a potential Cause of failure or
subsequent Failure Mode

4. Moderately High

Moderately high chance the Design Control will detect a potential Cause of
failure or subsequent Failure Mode

3. High

High chance the Design Control will detect a potential Cause of failure or
subsequent Failure Mode

2. Very High

Very high chance the Design Control will detect a potential Cause of failure or
subsequent Failure Mode

1. Almost Certain

Design Control will almost certainly detect a potential Cause of failure or sub-
sequent Failure Mode

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA - Step 7: Calculate Risk Priority
Numbers

e Risk Priority Numbers (RPN)

e RPN =S x O x D, where:
- S - severity index;
- O - occurence index;
- D - detection index.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA: Step 8 - Finalise Hazard Analysis

e Must document the analysis...

e ...and response to analysis.

e Use FMECA forms.

e Several formats and tools.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA: Step 8 - Finalise Hazard Analysis

FMECA Worksheet
System: Date: Author: Approved by
Function Failure Failure Effect Severity Cccurrence | Detection otes
Mode Systemn | Local rate Method

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA: Tools

FMECA. Part PENTIUM PRO

ltermn/Description Mame/Function Failure tode Local Effect E
.
Pentium Fro Frocessor. | Contrals the primary Processor Section The Pentium Fro Chip |
Microprocessorwhich |operation of the personal Failure Fails.
1 |provides a central computer. b h
processing unit and an
internal cache. |
Address Section Failure The Pentium Pro Chip
2 ¥ |Fails. 3
temory Section Failure i Failure of the internal N
memary of the Pentium
3 ¥ |Fro causes erroneous | Y
information to be
___|generated.
4 -
5 ~
: —
2 ~
: —

=
a3 973 P31 P P
44| 4

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FMECA: Tools

Hebabdsip wimbberch - Propec 1 W W E LA b b - by g B Spprdmd

b gl [@ Tpestsr Yes [Apdaa edos Jep
S| Sl] AIRIS| 3 isieelo] F|e] (8] 6] |

FMECA | WL2T7 | Bedicers | Mechanicw |

¢ DRI «| 70 |Cocrpion | | Conses qirtuds |8

. 1 WarrdlE el
1 PORES BLEFLY FRa T A '..l"
S0 CPURCAR DR R=10 180T

I k cihle Effeci for
1:1 =TI T A |

3 |k lfaer

B AG, DTALF B
i1 TCARPACTOR, FEE
B FCAPACTOR, FRE

W11 A RERSTOR, FsED

fidA |

B S RESRETON, FRED 1 |Calasinahic i
= MRS LRET FR= 7 | | I
191 B M il L |Mo cpmuien
=122 HON BOASD MHa piva |

== i 7 Rel BOER0 FRz

it
"l
&

i 4l R

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Conclusions

e Hazard analysis.

e FMECA/FMEA.

e Qualitative — quantitative approaches.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA Introduction

The use of PRA technology should be increased in all regulatory matters to the
extent supported by the state of the art in PRA methods and data and in a
manner that complements the NRC’s deterministic approach and supports the
NRC’s traditional defense-in-depth philosophy.

PRA and associated analyses (e.g., sensitivity studies, uncertainty analyses,
and importance measures) should be used in regulatory matters, where practi-
cal within the bounds of the state of the art, to reduce unnecessary conservatism
associated with current regulatory requirements, regulatory guides, license com-
mitments, and staff practices.

NRC - REGULATORY GUIDE 1.177
An Approach for Plant-Apecific, Risk-Informed Decisionmaking: Technical Spec-
ifications

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Hazard Analysis vs PRA

e FMECA - hazard analysis.

e PRA part of hazard analysis.

e Wider links to decision theory.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Decision Theory

e Risk = frequency x cost.

e Which risk do we guard against?

Vo € X : F,(z) = P([0,]) (1)

Risk is modelled through the set D(X) where the probability, P, of obtaining a reward in the
range [0, x| is determined by a cumulative distribution functi on F, € D(X), the number F,(z)
is interpreted as the probability of receiving an amount less than or equal to x.

VF, € D(X):V(F,) = Z u(z)p' (2)

=1
VF,,G, € D(X): F, = G, < V(F,) >V(G,) (3)

e Are decision makers rational?

e Can you trust the numbers?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA - Meta-Issues

e Decision theory counter intuitive?

e But just a formalisation of FMECA?

e What is the scope of this approach?
- hardware failure rates (here)?
- human error rates (here)?
- software failure rates?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA

Generalised mechanical

equipment
hit)
Generalised electronic
h __‘_‘—\—\—;—F"—H—F

Life expectancy Randem failure rate

» Time

Bum-in peried Use ful-life period Wear-out period

Acknowledgement: J. D. Andrews and T.R. Moss, Reliability and Risk Assessment, Longman,
New York, 1993.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA

e Failure rate assumed to be constant:
- electronic systems approximate this.

e Mechanical systems:
- bed-down failure rates:
- degrade failure rates;

e MTTF:
reciprocal of constant failure rate;
MTTF =1/ A. X - base failure rate.

e 0.2 failures per hour: MTTF =1 /0.2 =5 hrs.

e See Andrews and Moss for proof.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA - Or Put Another Way...

Probability that product will work for T without failure:
R(T) = exp(-T/MTTF)

o If MTTF = 250,000 hours.

e Over life of 10 years (87,600 hours).

e R = exp(-87,600/250000) = 0.70441

e 70.4% prob of no failure in 10 years.

e 70.4% of systems working in 10 year.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA

e For each failure mode.

Criticality m = a x b x A, x time

Ap - base failure rate with environmental/stress data

a - proportion of total failures in specified failure mode m
b - conditional prob. that expected failure effect will result

e If no failure data use occurence rate estimates.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA - Sources of Data

e MIL-HDBK-217:
Reliability Prediction of Electronic Equipment

e Failure rate models for:
- |Cs, transistors, diodes, resistors,
- relays, switches, connectors etc.

e Field data + simplifying assumptions.

e |atest version F being revised.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA

e 217 too pessimistic for companies...

e Bellcore (Telcordia):
- reliability prediction procedure..

During 1997, AT&T’s Defects-Per-Million performance was 173, which
means that of every one million calls placed on the to a network failure.
That equals a network reliability rate of 99.98 percent for 1997.

www.att.com

e Business critical not safety critical.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA

e Commercial reliability databases.

e But MTTF doesnt consider repair!

e MTTR considers observations.

e MIL-HDBK-338B (1,000+ pages!)

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA and FMECA Mode Probability

e FMECA:
- we used subjective criticality;
- however, MIL-338B calculates it;
- no. of failures per hour per mode.

o CR = azfzA:
CR - criticality level,
a - failure mode frequency ratio,
[- loss prob. of item from mode
A - base failure rate for item.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA and FMECA Mode Probability

Accumulator Ledkirg 47
Seized 23
Wfarn 20
Zont arninat ed A0

Actuadtar Spurious Pozition)
change 27
Eindirg 22
Ledking 15
Sei 2

Alarm Falz& Indication 45
Failure to Operate 29
Spurious Operat ion 15
Deqroded Alarm 05

Antenna Mo Transmiz zion a4
Signal Ledkage 21
Spurious Transmizsion |25

Battery, Lithiun Degroded Output 78
Startup Delay 14
Shart s
Clpien nz

Battery, Lead Acid Deqroded Output Fo
Shart 20

Intermit tent Cutput | 10

Battery, MNi-Cd Deqroded Output Tz
Mo Cutput 28

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA

e We focussed on hardware devices.

e PRA for human reliability?

e Probably not a good idea.

e But for completeness...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Technique for Human Error Rate Prediction

(THERP)

“The THERP approach uses conventional reliability technology modi-
fied to account for greater variability and independence of human per-
formance as compared with that of equipment performance... The
procedures of THERP are similar to those employed in conventional
reliability analysis, except that human task activities are substituted
for equipment outputs.”

(Miller and Swain, 1987 - cited by Hollnagel, 1998).

A.D. Swain and H.E. Guttman, Handbook of Human Reliability with
Emphasis on Nuclear Power Plant Applications NUREG-CR-1278, 1985.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Technique for Human Error Rate Prediction
(THERP)

o Pe=x>7_| Psf k«W_ k+C

e Where:
Pe - probability of error;
He - raw human error probability;
C - numerical constant:
Psf_k - performance shaping factor;
W _k - weight associated with PSF k;
n - total number of PSFs.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Technique for Human Error Rate Prediction

(THERP)

e “Psychological vaccuous” (Hollnagel).

e No model of cognition etc.

e Calculate effect of PSF on HEP
- ignores WHY they affect performance.

e Succeeds or fails on PSFs.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

THERP - External PSFs

Situational
characteristics (PSFs
general to one or maore

Architectural features,
CGuality of environment:
(Temperature, humidity, air

Staffing parameters,
Organisational structure
{authority, responsibility,

jobs ina work| quality and radiation, lighting, communication channels),
situation) hoise and vibration, degree of Actions by supervisors, co-
general cleanliness), WOrkers, union
Waork hours/work breaks, representafives and
Availability/adequacy of regulatory personnel,
special equipment, tools and Rewards, recognition and
supplies. benefits.
Shift rotation,
Jab and task | Procedures required (writtenor Written or oral communications,
instructions: single | unwrit ten), Work methods,
most important teol| Cautions and warnings. Plant palicies (shop practices)
for most tasks.
Task and equipment | Percepfual requirements, Calculation requirements,
characteristics (PSFs | Motor requirements (speed, Feedback (knowledge of

specific to fasks in a
Job)

strength, precision).
Controkdisplay relationships.
Anticipatory reguirements,
Interpretation,
Decizion-making,

Complexity (information load),
MNarrowness of task,
Frequency and repefitiveness,
Task criticality.

Long and short-term memory

results),

Dynamic ws step-by-step
activities.

Team structure and
communication,

Man-machine interface factors
{design of
prime/test/manufacturing
equipment, job aids, fools,
fixtures).

Acknowledgement: A.D. Swain, Comparative Evaluation of Methods for Human Reliability
Analysis, (GRS-71), Garching FRG: Gesellschaft fur Reaktorsicherheit.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

THERP - Stressor PSFs

Psychological stressors | Suddenness of onset. Conflicts of motives about job
{(PSFs which directly | Duration of stress. performance.
affect mental stress) | Task speed. Reinforcement absent or
High jeopardy tasks. negative.
Threats (of failure, job loss Sensory deprivation.
etc). Distractions (hoise, glare,
Monotonous, degrading or movement, flicker, colour).
meaningless work. Inconsistent cueing.
Long, unevent ful vigilance
periods.
Physiological stressors | Duration of stress. Atmospheric pressure
(PSFs that directly | Fatigue. extremes.
affect physical stress) | Pain or discomfort. Oxygen insufficiency.
Hunger or thirst. Vibration.
Temperature extremes. Movement constriction.
Radiation. Lack of physical exercise.
&G-force extremes. Disruption of circadian rhythm.

Acknowledgement: A.D. Swain, Comparative Evaluation of Methods for Human Reliability
Analysis, (GRS-71), Garching FRG: Gesellschaft fur Reaktorsicherheit.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

THERP - Internal PSFs

Organismic factors [Previous training/ experience. Emotional state.
(characteristics of [State of current practice or Sex differences,
people resulting from | skill, Physical condition,
internal and external |[Personality and intelligence Attitudes bazged on influence
influences) variables, of family and other outside
Motivation and attitudes persons or dgencies,
Knowledge required Eroup identification,
(performance standards),
Streszz (mental or bodily
tension).

Acknowledgement: A.D. Swain, Comparative Evaluation of Methods for Human Reliability
Analysis, (GRS-71), Garching FRG: Gesellschaft fur Reaktorsicherheit.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

CREAM

E. Hollnagel, Cognitive Reliability and Error Analysis Method, Else-
vier, Holland, 1998.

e HRA 4+ theoretical basis.

e Simple model of control:
scrambled - unpredictable actions;
opportunistic - react dont plan;
tactical - procedures and rules;
strategic - consider full context.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

CREAM - Simple Model of Control

Actions

Feedback and Feed-forward plans &

input information Expectations

CONTROL:
Scrambled;
Opportunistic;
Tactical;
Strategic.

I
COMPETENCE:
Observation;
Inferpr‘e tation:

Planning;
Execution.

Acknowledgement: E. Hollnagel, Cognitive Reliability and Error Analysis Method, Elsevier,
Holland, 1998.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

CREAM - Simple Model of Control

Human

Performance
Reliability

F 3

High

Medium

Low

Scrambled Opportunistic Tactical Strategic

Type of Control

Acknowledgement: E. Hollnagel, Cognitive Reliability and Error Analysis Method, Elsevier,
Holland, 1998.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

CREAM

e Much more to the technique...

e But in the end...

Strategic = 0.000005 < p < 0.01
Tactic =0.001 < p <0.1
Opportunistic = 0.01 < p < 0.5
Scrambled = 0.1 < p < 1.0

e Common performance conditions to:
- probable control mode then to
- reliability estimate from literature.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Conclusions

e PRA for hardware:
- widely accepted with good data.

e PRA for human performance:
- many are skeptical;

- THERP — CREAM — 777

e PRA for software?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA and Fault Tree Analysis

e Fault Trees (recap).

e Software Fault Trees.

e Software PRA.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Trees (Recap)

AR QS

W ingnats

HNOT AN OR Mot of N Exclusive OFR INHIBIT Priority AND
VOTING

Fault Tree Gates

O<> O N[]

H Ewent
Intermediate Basic Undeveloped Conditional Transfer ED?;S:M‘;:ES

Ewent Ewvernt Ewent Ewvent symhol
(with INHIEIT gate)

fot ocow)

Fauli Tree Events

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Tree Analysis

e Each tree considers 1 failure.

e Carefully choose top event.

e Carefully choose system boundaries.

e Assign probabilities to basic events.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Tree Analysis

e Assign probabilities to basic events.

e Stop if you have the data.

e Circles denote basic events.

e Even so, tool support is critical.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Tree

Analysis

Derailment of MARC 286
and AMTRAK 20

MARC 286 approached Georgetown
Junction at a speed consistent with
Bignal 11242 being set to CLEAR.
(Conclusion 4

MARC 286 Conductor fails
to ittervens to reduce speed
(C onclusion 5)

MARC 286 Assistant
Conductor fails to intervene to
reduce speed (C onclusion 5)

Signal 1124-2 was set to
APPROACH.
(C onclusion 4)

e Usually applied to hardware...

e Can be used for software (later).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Tree Analysis

Engitieer forgets APPROACH
aspect of Signal 11242,
(Conclusion 4.

Engineer’s memory of the
aspect of signal 1124-2 45

inntetfer ed with by an

wnscheduled stop between

signal 1124-4 and Engnest’ s judgement is Enginest’s judgement is
Georgetown Junction. vrimpaired by ill health unimpaired by alcohal

(T onclusion 4). (Conclusion 1) (Condusionl)

e House events: “switch” true or false.

e OR gates - multiple fault paths.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Tree Analysis

MARC 286 approached Georgetown
Tutietion at a speed consi stent with
Hignal 1124-2 being set to CLEAR.

Engineer forgets APPROACH Engineer does not see Engineer correctly reads
aspect of 3ignal 1124-2. AFPROACH aspect of incotrect CLEAR aspect
(Conclusion 4). Bignal 1124-2 on Fignal 1124-2

EBad weather impaired the operator’s
ahility to identify the indication of
Bignal 1124-2 (Concdusion2),

The signalling system failure
leadsto incorrect indication for
signal 11242 (Conclusion 3).

There was bad weather | The signalling system fails ‘

e Probabilistic inhibit gates.

e Used with Monte Carlo techniques
- True if random number < prob.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Tree Analysis

Failure of water cooling
system on demand

;

No water Mo water to
from nozzle nozzle
[owater from pamp | |
No water from pump Pipe P3
blocked
| |
Pump fails | No water to pump |
to start.
O o '
‘ No water from Line 1 | | Mo water from Line 2

A A

e Usually applied to hardware...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Tree Analysis

| Mo water from Line 1 ‘

- i\

[|
Mo water Mo water to
through valve valve

()

I
Pipe blocked No water

into pipe

blocked.

® @

Acknowledgement: J.D. Andrews and T.R. Moss, Reliability and Risk Assessment, Longman
Scientific and Technical, Harlow, 1993.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Tree Analysis - Cut Sets

e Each failure has several modes
- 'different routes to top event'.

o Cut set:
basic events that lead to top event.

e Minimal cut set:
removing a basic event avoids failure.

e Path set:
basic events that avoid top event;
list of components that ensure safety.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Tree Analysis - Cut Sets

T1

]
O

T1= BE1+BEZ.BE3 + BE4.BES +BES

e Top_Event = K1 + K2 + ... Kon
K_i minimal cut sets, + is logical OR.

e Ki=X1.X2.Xn
MCS are conjuncts of basic events.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Tree Analysis - Cut Sets

e Top-down approach:
replace event by expression below;

simply if possible (C.C = C).

e Can use Karnaugh map techniques;
cf logic circuit design;
recruit tool support in practice.

e Notice there is no negation.

e Notice there is no XOR.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

MOCUS Cut Set Algorithm

b—l

. Assign unique label to each gate.

2. Label each basic event.

3. Create a two dimensional array A.

4. Initialise A(1,1) to top event.

5. Scan array to find an OR/AND gate:

If current position in A is OR gate... - replace current position with a,
column; - put gate’s input events in new row of that column. - replace
current position with a row; - put gate’s input events in new column
of that row.

6. Repeat 5 until no gates remain in array.

7. Remove any non-minimal cut sets.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

MOCUS

T

id

o

T1=BEl+ BEZBE3 + BE4.BES +BES

T1|—» |BEl |—»

&l

G2

BEG

(o)

BE1

]

G

BEZ

BE3

G2

BEG

BE1
BEZ || BE3
BE4 || BED
BE&

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Probabilistic Analysis

For simplicity assume probability o f all basic events is 0.1

P(61) = P(BE2).P(BE3) = 0.1 *0.1 = 0.01.
P(62) = P(BE4).P(BE5) = 0.1+ 0.1 = 0.2.
P(T1) = 0.01 + 0.2 + P(BEL) + P(BE2)

=001+02+01+0.1
=041

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Probabilistic Analysis

e Beware: independence assumption.

“If the same event occurs multiple times/places in a tree, any quantita-
tive calculation must correctly reduce the boolean equation to account
for these multiple occurrences. Independence merely means that the
event is not caused due to the failure of another event or component,
which then moves into the realm of conditional probabilities.”

Clif Ericson, Boeing.

e Inclusion-exclusion expansion (Andrews & Moss).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Fault Trees

e As you'd expect.

e Starts with top-level failure

e Trace events leading to failure.

e But: dont use probabilistic assessments;

e If you find software fault path REMOVE IT!

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Fault Trees

Leveson, N.G., Cha, S.S., Shimeall, T.J. “Safety Verification of Ada
Programs using Software Fault Trees,” IEEE Software, July 1991.

e Backwards reasoning.

e Weakest pre-condition approach.

e Similar to theorem proving.

e Uses language dependent templates.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Assignment
causes event

]

Software Fault Trees

Change in value
causes event.

Exception

causes event.

Operand evaluation
causes event.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Fault Trees

‘ If-Then-Else ‘

]

Condition

part causes

event.

FALSE, ELSE-

Condition Condition
TRUE, THEN- evaluation
part causes causes event.
event.
Condition TRUE THEN-part
be fore IF- causes event
THEN-ELSE
statement.

Condition FALSE
before IF-

ELSE-part
causes event

THEN-ELSE
statement.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Fault Trees

WHILE statement
causes event.

e

Statement not
executed

Statement
executed »
times.

Event before
WHILE

statement

Condition false
before WHILE

Condition true
be fore WHILE.

sth iteration
causes event

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Fault Trees

Pe(pl, p2. ... pn)

causes event.

]

Evaluation of

parameters
causes event.

Execution of
Pc with pl,

p2....pn

causes event.

Failure of Pc
causes event.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Fault Trees

WHILE statement
causes ¥_Pos > 10

[]

Statement not Statement
executed. executed
times.
Y Pos > 10 X_Pos »= Limit
before WHILE before WHILE X_Pos < Limit Y_Pos +Limit - X_Pos > 10
statement. be fore WHILE. before WHILE

while X_Pos < Limit do

begin

¥ _Pos :=
¥ _Pog :=

and:

-- Let’s assu

-- ¥ _Pos » 10
¥ _Pos + 1:

Y _Pos + 1;

me dangercus condition

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Fault Trees

Exception causes
failure

-

Exception body

causes failure.

Exception was
raised.

Exception

handler exists.

Excep‘l‘ion was

propagated.

Exception raised

locally.

e Exception template for Ada83.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Fault Trees

Exception causes
failure

-

T

Locally raised exception A propagating exception
causes failure. causes failure.

Exception raised Failur'e_ in Exception
locally. exception. handler exists.

[

Evaluation of parameter
causes failure

Execution of handler
body causes failure.

See: S.-Y. Min, Y-K. Jang, A-D Cha, Y-R Kwon and D.-H. Bae, Safety
Verification of Ada95 Programs Using Software Fault Trees. In M.
Felici, K. Kanoun and A. Pasquini (eds.) Computer Safety, Reliability

and Security, Springer Verlag, LNCS 1698, 2002.

e Exception template for Ada95.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA for Software

e John Musa’'s work at Bell Labs.

e Failure rate of software before tests.

e Faults per unot of time (A _0):
- function of faults over infinite time.

e Based on execution time:
- not calendar time as in hardware;
- so no overall system predictions.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Musa’'s PRA for Software

A0 = KzxPzW O

k

Constant that accounts for the dynamic structure of the program and
the varying machines

k = 4.2E-7

P
Estimate of the number of executions per time unit

p = r/SLOC/ER

r
Average instruction execution rate, determined from the manufacturer
or benchmarking

Constant

SLOC
Source lines of code (not including reused code).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Musa’'s PRA for Software

ANO= KxPzW 0

ER

Expansion ratio, a constant dependent upon programming language
Assembler, 1.0; Macro Assembler, 1.5; C, 2.5;: COBAL, FORTRAN, 3;
Ada, 4.5

W0

Estimate of the initial number of faults in the program

Can be calculated using: w0 = N x B or a default of 6 faults/1000
SLOC can be assumed

N
Total number of inherent faults
Estimated based upon judgment or past experience

B

Fault to failure conversion rate; proportion of faults that become fail-
ures. Proportion of faults not corrected before the product is delivered.
Assume B = .95; i.e., 95undetected at delivery become failures after
delivery

©C.W. Johnson, 2006 - Safety Critical Systems Development.

PRA for Software

e Considerable debate about this.

e Many variants on the theme.

e Metrics are crude...

e In meantime, be skeptical.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

FTA - Conclusions

e Fault Trees:
- cut sets, cut paths;
- quantitative analysis.

e Software Fault Trees:
- language dependent templates;
- if you see faults, remove them!

e Software PRA.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Introduction

e Why is software different?

e Software requirements:
- Leveson's completeness criteria.

e Software design (summary):
MIL-338B preliminary design;
MIL-338B detailed design.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Why is Software Different?

Software is an abstract concept in that it is a set of instructions on
a piece of paper or in computer memory. It can be torn apart and
analyzed in piece parts like hardware, yet unlike hardware it is not a
physical entity with physical characteristics which must comply with
the laws of nature (i.e., physics and chemistry).

Since software is not a physical entity it does not wear out or degrade
over time. This means that software does not have any failure modes
per se. Once developed it always works the same without variation

Unlike hardware, once a software program is developed it can be du-
plicated or manufactured into many copies without any manufacturing
variations.

Software is much easier to change than is hardware. For this reason
many system fixes are made by modifying the software rather than the
hardware.

There are no standard parts in software as there are with hardware.
Therefore there are no high reliability software modules, and no indus-
try alerts on poor quality software items.

If software has anything which even resembles a failure mode, it is in
the area of hardware induced failures.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Why is Software Different?

Hardware reliability prediction is based upon random failures, whereas
software reliability prediction is based upon the theory that predestined
errors exist in the software program.

Hardware reliability modeling is well established, however, there is no
uniform, accurate or practical approach to predicting and measuring
software reliability.

Since software does not have any failure modes, a software problem is
referred to as a software error. A software error is defined as a situation
when the software does not perform to specifications or as reasonably
expected, that is when it performs unintended functions. This defini-
tion is fairly consistent with that of a hardware failure, except that the
mechanisms or causes of failure are very different.

Hardware primarily fails due to physical or chemical mechanisms and
seldom fails due to human failure mechanisms (e.g., documentation er-
rors, coding errors, specification oversights), whereas just the opposite
is true with software.

Software has many more failure paths than hardware, making it diffi-
cult to test all paths.

By itself software can do nothing and is not hazardous. Software must
be combined with hardware in order to do anything.

Clif Ericosn, Boeing.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Defects (Initial Views)

A software defect is either a fault or discrepancy between code and
documentation that compromises testing or produces adverse effects in
installation, modification, maintenance, or testing.

Requirements Defects: Failure of software requirements to specify the
environment in which the software will be used, or requirements docu-
mentation that does not reflect the design of the system in which the
software will be employed.

Design Defects: Failure of designs to satisfy requirements, or failure of
design documentation to correctly describe the design.

Code Defects: Failure of code to conform to software designs.

Robert Dunn, Software Defect Removal, McGraw-Hill, 1984.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Hazard Analysis

e Already seen software fault trees.

1. Trace identified software hazards to the software-hardware interface.
Translate the identified software related hazards into requirements and
constraints on software behaviour.

2. Show the consistency of the software safety constraints with the
software requirements specification. Demonstrate the completeness of
the software requirements, including the human-computer interface re-
quirements, with respect to system safety properties.

Acknowledgement: Nancy Leveson, Safeware: System Safety and Com-
puters, Addison Wesley, Reading Massachusetts, 1995.

e Point 2 links to safety case slides?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Requirements Analysis

e Leveson identifies 3 components.

e Basic function or objective.

e Constraints on operating conditions.

e Prioritised quality goals;
- to help make tradeoff decisions.

e Same as general hazard analysis?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Kernel Requirements and Intent Specifications

e Kernel or core set of requirements.

e Determined by current knowledge of:
- intended application functionality;
- environment & constraints.

e Analytically independent.

e Only know they are complete if
- we know specification intent...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Leveson's Completeness Criteria

Environment

Actuators

F Y

Disturbances
Process options
» | Controlled >
Process

Control variables

Sensors

Measured variables

Controller
(with implicit model of process and
operating environment)

F 3

F 3

Control algorithm,
initialisation etc

Qperator

e Remember - ‘Black Box' architecture.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Leveson's Completeness Criteria

e Human Computer Interface Criteria.

e State Completeness.

e Input/Output Variable Completeness.

e Trigger Event Completeness.

e Output Specification Completeness.

e Output to Trigger Relationships.

e State Transitions.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Leveson's Completeness Criteria

e Human Computer Interface Criteria.

e Criteria depend on task context.

e Eg in monitoring situation:
what must be observed/displayed?
how often is it sampled /updated?
what is message priority?

e Not just when to present but also
when to remove information...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Leveson's Completeness Criteria

e State Completeness Criteria.

e Consider input effect when state is:
- normal, abnormal, indeterminate.

e Start-up, close-down are concerns.

e Process will change even during
- intervals in which software is ‘idle’.

e Checkpoints, timeouts etc.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Leveson's Completeness Criteria

e Input/Output Variable Completeness.

e Input from sensors to software.

e Output from software to actuators.

e Specification may be incomplete if:
- sensor isnt refered to in spec;
- legal value isnt used in spec.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Leveson's Completeness Criteria

e Trigger Event Completeness.

Robustness:
every state has a transition defined for every possible input.

Non-determinism:
only 1 transition is possible from a state for each input.

Value and Timing assumptions:

- what triggers can be produced from the environment?
- what ranges must trigger variables fall within?

- what are the real-time requirements...

- specify bounds for responses to input (timeouts)

e And much, much more...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Leveson's Completeness Criteria

e Output Specification Completeness.

- from software to process actuators.

e Check for hazardous values.

e Check for hazardous timings;
- how fast do actuators take events?
- what if this rate is exceeded?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Leveson's Completeness Criteria

e Output to Trigger Relationships.

e Links between input & output events.

e For any output to actuators:
can effect on process be detected?
if output fails can this be seen?

e What if response is:
missing, too early or too late?

e |f response recieved without trigger
then erroneous state.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Leveson's Completeness Criteria

e State Transitions.

Reachability:
all specified states can be reached from initial state.

Recurrent behaviour:
desired recurrent behaviour must execute for at least one cycle and be
bounded by exit condition.

Reversibility:
output commands should wherever possible be reversible and those
which are not must be carefully controlled.

Preemption:
all possible preemption events must be considered for any non-atomic
transactions.

e Again more complexity here...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Reality Check...

Bl ' . N PRee
Period A i Period B ' Perion €
i :

1hure Kata

e Completeness criteria change.

e Environment and functions change.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

From Requirements to Design

Once the requirements have been detailed and accepted, the design will
process of allocating and arranging the functions of the system so that
the aggregate meets all customer needs. Since several different designs
may meet the requirements, alternatives must be assessed based on
technical risks, costs, schedule, and other considerations. A design
developed before there is a clear and concise analysis of the systems
objectives can result in a product that does not satisfy the requirements
of its customers and users. In addition, an inferior design can make
it very difficult for those who must later code, test, or maintain the
software. During the course of a software development effort, analysts
may offer and explore many possible design alternatives before choosing
the best design.

US Department of Defence: Electronic Reliability Design Handbook

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Preliminary Design

Preliminary or high-level design is the phase of a software project in
which the major software system alternatives, functions, and require-
ments are analyzed. From the alternatives, the software system archi-
tecture is chosen and all primary functions of the system are allocated
to the computer hardware, to the software, or to the portions of the
system that will continue to be accomplished manually.

US Department of Defence: Electronic Reliability Design Handbook

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Preliminary Design

Develop the architecture:

system architecture - an overall view of system components hard-
ware architecture - the systems hardware components and their inter-
relations

software architecture - the systems software components and their
interrelations

Investigate and analyze the physical alternatives for the system and
choose solutions

Define the external characteristics of the system

Refine the internal structure of the system by decomposing the high-
level software architecture

Develop a logical view or model of the systems data

US Department of Defence: Electronic Reliability Design Handbook

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Detailed Design

Detailed design or low-level design determines the specific steps re-
quired for each component or process of a software system. Responsi-
bility for detailed design may belong to either the system designers (as
a continuation of preliminary design activities) or to the system pro-
grammers. Information needed to begin detailed design includes: the
software system requirements, the system models, the data models, and
previously determined functional decompositions. The specific design
details developed during the detailed design period are categories: for
the system as a whole (system specifics), for individual processes within
the system (process specifics), and for the data within the system (data,
specifics).

US Department of Defence: Electronic Reliability Design Handbook

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Detailed Design (Example concerns)

System specifics:
e Physical file system structure

e Interconnection records or protocols between software and hard-
ware

e Packaging of units as functions, modules or subroutines
e Interconnections among software functions and processes
e Control processing

e Memory addressing and allocation

e Structure of compilation units and load modules

US Department of Defence: Electronic Reliability Design Handbook

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Detailed Design (Example concerns)

Process specifics:
e Required algorithmic details
e Procedural process logic
e [unction and subroutine calls

e Error and exception handling logic

US Department of Defence: Electronic Reliability Design Handbook

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Detailed Design (Example concerns)

Data specifics:
e Global data handling and access
e Physical database structure
e Internal record layouts
e Data translation tables
e Data edit rules

e Data storage needs

US Department of Defence: Electronic Reliability Design Handbook

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Don’t Forget the Impact of Standards

Sean Matthews sean@aipna.edinburgh.ac.uk Fri, 30 Jun 89 13:49:12 BST

I have just seen a copy of the UK department of defence draft standard for
safety critical software (00-55).

Here are a few high (and low) points.

1. There should be no dynamic memory allocation (This rules out explicit
recursion - though a bounded stack is allowed).

2. There should be no interupts except for a regular clock interupt.

3. There should not be any distributed processing (i.e. only a single proces-

4. There should not be any multiprocessing.
5. NO ASSEMBLER.

6. All code should be at least rigourously checked using mathematical meth-
ods.

7. Any formally verified code should have the proof submitted as well, in
machine readable form, so that an independent check can be performed.

8. All code will be formally specified.

9. There are very strict requirements for static analysis (no unreachable
code, no unused variables, no unintialised variables etc.).

10. No optimising compilers will be used.

11. A language with a formally defined syntax and a well defined semantics,
or a suitable subset thereof will be used.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Don’t Forget the Impact of Standards

Comments.

1. means that all storage can be statically allocated. In fact somewhere it
says that this should be the case.

2-4 seem to leave no option but polling. This is impractical, especially in
embedded systems. No one is going to build a fly by wire system with those sorts
of restrictions. (maybe people should therefore not build fly by wire systems,
but that is another matter that has been discussed at length here already). it
also ignores the fact that there are proof methods for dealing with distributed
systems.

5. This is interesting, [seem to remember reading somewhere that Nasa used
to have the opposite rule: no high level languages, since they actually read the
delivered binary to check that the software did what it was supposed to do.

8. this is an excellent thing, though it does not say what sort of language
should be used. Is a description in terms of a Turing machine suitable? After
all that is a well understood formal system.

10. Interestingly, there is no requirement that the compiler be formally ver-
ified, just that it should conform to international standards (though strictly),
and not have any gross hacks (i.e. optimisation) installed. There is also no
demand that the target processor hardware be verified (though such a device
exists here already: the Royal Signals Research Establishment’s Viper proces-
sor).

11. seems to be a dig at Ada and the no subsets rule. It also rules out C.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Don’t Forget the Impact of Standards

Conclusions.

I find the idea of the wholesale mayhem and killing merchants being forced
to try so much harder to ensure that their products maim and kill only the
people they are supposed to maim and kill, rather amusing.

The standard seems to be naive in its expectations of what can be achieved
at the moment with formal methods (That is apparently the general opinion
around here, and there is a *lot™ of active research in program verification in
Edinburgh), and impossibly restrictive.

An interesting move in the right direction but too fast and too soon. And
they might blow the idea of Formal verification by tring to force it too soon.
And I would very much like to see these ideas trickle down into the civil sector.

I might follow this up with a larger (and more coherent) description if there
is interest (this was typed from memory after seeing it yesterday) there is quite
a bit more in it.

Sean Matthews Dept. of Artificial Intelligence, University of Edinburgh.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Conclusion

e Why is software different?

e Software requirements:
- Leveson’s completeness criteria.

e Software design (summary):
MIL-338B preliminary design;
MIL-338B detailed design.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Safety-Critical Software Development

e Software design by:
- hazard elimination:
- hazard reduction:;
- hazard control.

e Software implementation issues:
- dangerous practices;
- choice of ‘safe’ languages.

e The DO-178B Case Study.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Leveson's Taxonomy of Design Techniques

e Hazard elimination/avoidance.

e Hazard reduction (see 47).

e Hazard control.

e Hazard minimization (see 27).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Design and Hazard Elimination

e Substitution:
hardware interlocks before software.

e Simplification:
new software features add complexity.

e Decoupling :
computers add common failure point.

e Human Error ‘Removal’ :
readability of instruments etc.

e Removal of hazardous materials :
eliminate UNUSED code (Ariane 5).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

azard Elimination: Datalink Example

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Design and Hazard Reduction

e Design for control:
- incremental control:
- intermediate states;
- decision aids;
- monitoring.

e Add barriers:

- hard/software locks;

e Minimise single point failures:
- increase safety margins;
- exploit redundancy;
- allow for recovery.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Hazard Reduction: Interlock Example

This heavy duty solenoid controlled tongue switch controls access to
hazardous machines with rundown times.

Olympus withstands the arduous environments associated with the
frequent operation of heavy duty access guards. The unit also self
adjusts to tolerate a high degree of guard misalignment. The stainless
steel tongue actuator is self-locking and can only be released after the
solenoid receives a signal from the machine control circuit. This ensures
that the machine has completed it’s cycle and come to rest before the
tongue can be disengaged and machine access obtained.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Design and Hazard Control

e Limit exposure.
- back to ‘normal’ fast (exceptions).

e Isolate and contain.
- dont let things get worse...

e Fail-safe.
- panic shut-downs, watchdog code.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Hazard Control: Watchdog Example

e Hardware or software (beware).

e Check for processor activity:
- 1. load value into a timer;
- 2. decrement timer every interval;
- 3. if value is zero then reboot.

e Processor performs 1 at a frequency
- great enough to stop 3 being true;
- unless it has crashed.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Design Techniques: Fault Tolerance

e Avoid common mode failures.

e Need for design diversity.

e Same requirements:
- different programmers?
- different contractors?
- homogenous parallel redundancy?
- microcomputer vs PLC solutions?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Design Techniques: Fault Tolerance

e Redundant hardware may duplicate
any faults if software is the same.

e N-version programming:
shared requirements;

different implementations;
voting ensures agreement.

e \What about timing differences?
comparison of “continuous” values?
what if requirements wrong?

costs make N;j2 very uncommon;
performance costs of voting.

e A340 primary flight controls.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Design Techniques: Fault Tolerance

e Exception handling mechanisms.

e Use run-time system to detect faults:
- raise an exception;
- pass control to appropriate handler;
- could be on another processor.

e Propagate to outmost scope then fail.

e Ada...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Design Techniques: Fault Tolerance

e Recovery blocks:
write acceptance tests for modules;
if it fails then execute alternative.

e Must be able to restore the state:
take a snapshot/checkpoint;
if failure restore snapshot.

e But:

if failed module have side-effects?

eg effects on equip under control?

recovery block will be complicated.

e Different from execptions:
dont rely on run-time system.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Design Techniques: Fault Tolerance

e Control redundancy includes:
- N-version programming;
- recovery blocks;
- exception handling.

e But data redundancy uses extra data
- to check the validity of results.

e Error correcting/detecting codes.

e Checksum agreements etc.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Implementation Issues

e Restrict language subsets.

e Alsys CSMART Ada kernel etc.

e Or just avoid high level languages?

e No task scheduler - bare machine.

e Less scheduling/protection risks
- more maintenance risks;
- less isolation (no modularity?).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Implementation Issues

e Memory jumps:
control jumps to arbitrary location?

e Overwrites:
arbitrary address written to?

e Semantics:
established on target processor?

e Precision:
integer, floating point, operations...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Implementation Issues

e Data typing issues:
- strong typing prevents misuse?

e Exception handling:
- runtime recovery supported?

e Memory monitoring:
-guard against memory depletion?

e Separate compilation:
- type checking across modules etc?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Implementation Issues

CORAL SPADE Modula-2 Ada subset

subszet subzet subzet
Wild Jumps * * * *
Overwrites * * * *
Clear Semantics * * * 7
Clear math ops 7 * 7 *
Strong typing B * * *
Exception x x 7 *
handling
Safe subsets 7 * * 7
Memory monitor * * 7 7
Separate 7 ? * *
compilatian

X - facility is not provided and this may result in equipment that is unsafe.

? - longuage provides some protection but there remains a risk of malfunction.

* - sound protection is provided and good design and verification should minimise
the risk of a serious incident.

Acknowledgement: W.J. Cullyer, S.J. Goodenough, B.A. Wichmann, The choice of a Computer
Language for Use in Safety-Critical Systems, Software Engineering Journal, (6)2:51-58, 1991.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Implementation Issues

e CORAL subset:

staff training issues?

e SPADE Pascal:
Praxis version of ISO Pascal.

e Modula 2 subset:
SACEM trains in Paris.

e Ada subset:
attempts at formal verification.

e Meta question:
programmer more important than language?
or protect all programmers from themselves?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Implementation Issues

Newsgroups: comp.lang.ada,comp.lang.c++,comp.lang.misc,comp.software-
eng From: cpp@netcom.com (Robin Rowe) Subject: Safety-Critical
Survey (Results) Message-ID: Organization: NETCOM On-line Com-
munication Services (408 261-4700 guest) Date: Sun, 13 Nov 1994
22:34:10 GMT Lines: 180

Here are the results of my recent informal survey of computer languages
used in safety-critical embedded systems and other interesting systems.
In responses, Ada was by far the most popular language for these sys-
tems followed by assembler. There is a list describing 722 Ada projects
that is available via ftp from the Ada Information Clearinghouse. The
current version is 213K in size (contact adainfo@ajpo.sei.cmu.edu). I
did not attempt to integrate that data into this report.

No assertion is intended here that any language is necessarily superior
to any other.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Implementation Issues

Aerospace:

e Boeing: Mostly Ada with assembler. Also: Fortran, Jovial, C,
C++. Onboard fire extinguishers in PLM. 777 seatback entertain-
ment system in C++ with MFC (in development by Microsoft).
757/767: approximately 144 languages used. 747-400: approxi-
mately 75 languages used. 777: approximately 35 languages used.

e Boeing Defense & Space Group: (777 cabin mgmt. system in
Ada?)

e DAINA /Air Force: Aircraft mission manager in Ada.
e Chandler Evans: Engine Control System in Ada (386 DOS).
e Draper Labs/Army/NASA: Fault tolerant architecture in Ada/VHDL.

e Furopean Space Agency: mandates Ada for mission critical sys-
tems. [SO (Infrared Space Observatory) SOHO (Solar and Helio-
spheric Observatory) Huygens/Cassini (a joint ESA/NASA mis-
sion to Saturn) Companies involved: British Aerospace (Space Sys-
tems) - Bristol, UK Fokker Space Systems - Amsterdam, Holland
Matra-Marconi Espace - Toulouse, France Saab - Sweden Logica -

UK DASA - Germany MBB - Germany

e Ford Aerospace: Spacecraft in Ada with assembler. GEOS and
INSAT spacecraft in FORTRAN. (Ford Aerospace is now Space
Systems/Loral.)

e Hamilton-Standard: (777 air cowling icing protection system in
Ada?).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Implementation Issues

Aerospace (Continued):

e Honeywell: Aircraft navigation data loader in C. (777 airplane
information mgmt. system in Ada?)

e Intermetrics/Houston: space shuttle cockpit real-time executive in
Ada 83 with 80386 assembly

e Lockheed Fort Worth: F-22 Advanced Tactical Fighter program in
Ada 83 (planning to move to Ada 94) with a very small amount in
MIL-STD-1750A assembly. Maintain older safety-critical systems

for the F-111 and F-16/F-16 variant airframes primarily done in
JOVIAL.

e NASA: Space station in Ada. (Sources differed on whether it was
Ada only, or Ada with some C and assembler.)

e NASA Lewis: March 1994 space shuttle experiment in C++ on
386.

e Rockwell Space Systems Div.: Space shuttle in Hal/s and Ada.
Defense Initiative in Ada. Other systems in Ada and C.

e Space Systems/Loral: Spacecraft in Ada with assembler.
e Teledyne: Aircraft flight data recorder in C.

e TRW/Air Force: Realtime avionics OS in Ada.

e Wilcox Electric: Navigation aids in C prior to 1990, Ada after.
VOR-DME in Ada. Microwave landing system in Ada. Wide
Area GPS in C and C++.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Implementation Issues

Air Traffic Control:
e Hughes: Canadian ATC system in Ada.
e Loral FSD: U.S. ATC system in Ada.
e Thomson-CSF SDC: French ATC system in Ada.

Land Vehicles:

e Delco: Engine controls and ABS in 68C series (Motorola) assem-
bler. C++ used for data acquisition in GM research center. 93+
GM trucks vehicle controllers mostly in Modula-GM (Modula-GM
is a variant of Modula-2. A typical 32-bit integrated vehicle con-
troller may control the engine, the transmission, the ABS system,
the Heating/AC system, as well as the associated integrated diag-
nostics and off-board communications systems.)

e Ford: Assembler.

e General Dynamic Land Systems: MI1A2 tank tank software in
Ada with time-critical routines in 68xxx assembler. Tank software
simulators in C.

e Lucas: Many systems in Lucol (Lucas control language). Diesel
engine controls in C++. ABS in 68xxx assembler.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Implementation Issues
Ships:
e Vosper Thornycroft Ltd (UK): navigation control in Ada.

Trains:

e CSEE Transports (France): TGV Braking system in Ada (68K).
Denver Airport baggage system: This well publicized problem sys-
tem is written in C++. (A source familiar with the system said
the problems were political and managerial, not directly related to
C++.)

e Furopean Rail: Switching system in Ada.
e FuroTunnel: in Ada.
e Extension to the London Underground: in Ada.

e GEC Alsthom (France): Railway and signal control systems for
trains and the TGV (north lines and Chunnel) in Ada. Subway
network control systems (Paris; Calcutta, and Cairo).

e TGV France: Switching system in Ada.
e Union Switch & Signal, Pittsburgh: (Switching system in 7)

e Westinghouse Signals Ltd (UK): Railway signalling systems in
Ada.

e Westinghouse Brake & Signal UK: Automatic Train Protection
(ATP) systems for Westrace project in PASCAL.

e Westinghouse Australia: ATP systems in PASCAL and ADA.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Implementation Issues

Medical:
e Baxter: Left Ventricular Heart Assist in C with 6811 assembler.

e Coulter Corp.: ONYX hematology analyzer in Ada.

Nuclear Reactors:

e Core and shutdown systems in assembler, migrating to Ada.

SURVEY METHODOLOGY

I operated under the theory that, with regard to what languages are
really in use, the recollections of the engineers themselves are probably
the most accurate and open source. In general, I did not have enough
sources that I could cross check the information. In cases where I could,
the most interesting discrepancy was that companies that thought they
had adopted one language as the total solution for all their software
designs often had something in assembler or some other language some-
where.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Implementation Issues

Every response to the survey was positive except one. An individual at
Rockwell Collins said: “The language(s) we do/don’t use is a matter
best left to us, our customers, and the appropriate regulatory agencies
governing our businesses and markets. All of these parties also look out
for the public’s interests in safety, cost, etc. as well.” This individual
took me to task for not contacting the PR department of his company,
but was unwilling to help me do so. Per his request, I have omitted his
company.

If you wish to add information or make a correction please send
mail to cpp@netcom.com. I'd like to fill in the companies that have
question marks by them. I'm particularly interested in systems written
in C++. Names of respondents are held confidential. If you respond
with a public follow-up on the net, please cc via e-mail to me so that
I don’t miss you.

Thanks to everyone who helped with this. I meant to post this in
August, but got busy with work and relocating to Monterey and forgot.
Sorry for the delay:.

Robin

cpp@netcom.com, Rowe Technology.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Development: DO-178B

Intended Aircraft
Function

Aircraft System
Development Process

Safety Asseszment
Process Guidelines and
Methods
(ARP 4761

Function, Failure and
Safety Information

System Development
Frocesses

(ARP 4754)

Functions and
Requirements

T System Design

Functional System

Implementation

Hardware Life-Cycle
Frocess

Software Life-Cycle

Process

Hardware Development Life-
Cyele
(DO-thd)

Software Development Life-
Cyele
(LO-1788)

e Software Considerations in
in Airborne Systems and Equipment Certification.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Development:

e Planning Process:
coordinates development activities.

e Software Development Processes:

requirements process
design process
coding process
integration process.

e Software Integral Processes:
verification process
configuration management
quality assurance

certification liaison.

DO-178B

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Development: DO-178B

(a) A detailed description of how the software satisfies the specified
software high-level requirements, including algorithms, data-structures
and how software requirements are allocated to processors and tasks.

(b) The description of the software architecture defining the software
structure to implement the requirements.

¢) The input/output description, for example, a data dictionary, both
internally and externally throughout the software architecture.

(d) The data flow and control flow of the design.

(e) Resource limitations, the strategy for managing each resource and
its limitations, the margins and the method for measuring those mar-
gins, for example timing and memory.

(f) Scheduling procedures and interprocessor/intertask communication
mechanisms, including time-rigid sequencing, pre-emptive scheduling,
Ada rendez-vous and interrupts.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Development: DO-178B

(g) Design methods and details for their implementation, for example,
software data loading, user modifiable software, or multiple-version
dissimilar software.

(h) Partitioning methods and means of preventing partitioning breaches.

(i) Descriptions of the software components, whether they are new or
previously developed, with reference to the baseline from which they
were taken.

(j) Derived requirements from the software design process.

(k) If the system contains deactivated code, a description of the means
to ensure that the code cannot be enabled in the target computer.

(1) Rationale for those design decisions that are traceable to safety-
related system requirements.

e Deactivated code (k) (see Ariane b).

e Traceability issues interesting (1).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Development: DO-178B - Key Issues

e Traceability and lifecycle focus.

e Designated engineering reps.

e Recommended practices.

e Design verification:
- formal methods “alternative” only;
- “inadequate maturity”;
- limited applicability in aviation.

e Design validation:
- use of independent assessors etc.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

DO-178B - NASA GCS Case Study

A Comprehensive Look at the
Guidance and Control Software
(GCS) Project

Kelly J. Hayhurst — Project Lead

NASA Langlkey Research Center
hAS 130
Hamptfon VA 236810001
[804] B64-6215
kj-hayhust@larc.nea.gov

©C.W. Johnson, 2006 - Safety Critical Systems Development.

DO-178B - NASA GCS Case Study

1.PE #: |E.Planet: |3.D:'5::=:ﬁ'-=_rr§.' Date: 4, Indtiaior e Fole:

TR ALY
S
Develyrnant Phaze: | DR SR | RS |RE |TRRE TCR |'r-:3 TCE I |0

oo I

Code

Un X Testng
Funchonal
Shudural

subdrann e Tesn &

Frane Tastm
Top- Level Zxnukia

Inbegrabion Testngz

6. Deccription of Problero

7. Artitact Identification:

Desin Desapton _ Suppod Confyamat on Iben
Souros Code — Doamuentabon

Exeacuhle Ubjed Code Otheax

8. Test Caee Identification:

2. Historw Loog:

Iate T | Dak= From Peraon s 1 AF¥
10, Tiodzl # of Changres: 11, Total # of Mo Changess:

12, Indtiztod Signature & Dete 13, 3248 Seratmre & Date

©C.W. Johnson, 2006 - Safety Critical Systems Development.

DO-178B - NASA GCS Case Study

1. Conhguralion Hermc 2. Dole 3. Fosnd

4. Portof Conippurolion Hem Afieciedt

5. Beoson for NModihc olion:

7. 504 Signoiue: & Doler

©C.W. Johnson, 2006 - Safety Critical Systems Development.

DO-178B - NASA GCS Case Study

e Project compared:
- faults found in statistical tests:
- faults found in 178B development.

e Main conclusions:
- such comparisons very difficult;

- DO-178B hard to implement;
- lack of materials/examples.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Development: DO-178B Practitioners’
View

The difficulties that have been identified are the DO-178 requirements
for evidence and rigorous verification... Systematic records of accom-
plishing each of the objectives and guidance are necessary. A documen-
tation trail must exist demonstrating that the development processes
not only were carried out, but also were corrected and updated as nec-
essary during the program life cycle. Each document, review, analysis,
and test must have evidence of critique for accuracy and completeness,
with criteria that establishes consistency and expected results. This
is usually accomplished by a checklist which is archived as part of the
program certification records. The degree of this evidence varies only
by the safety criticality of the system and its software.

...Engineering has not been schooled or trained to meticulously keep
proof of the processes, product, and verification real-time. The engi-
neers have focused on the development of the product, not the delivery.
In addition, program durations can be from 10 to 15 years resulting
in the software engineers moving on by the time of system delivery.
This means that most management and engineers have never been on
a project from “cradle-to-grave.”

Original source on http://stsc.hill.af.mil /crosstalk /1998 /oct /schad.asp

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Development: DO-178B Practitioners’
View

The weakness of commercial practice with DO-178B is the lack of con-
sistent, comprehensive training of the FAA engineers/DERs/foreign
agencies affecti ng:

e the effectiveness of the individual(s) making findings; and,
e the consistency of the interpretations in the findings.

Training programs may be the answer for both the military and com-
mercial environments to avoid the problem of inconsistent interpreta-
tion and the results of literal interpretation.

Original source on http://stsc.hill.af.mil /crosstalk /1998 /oct /schad.asp

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Safety-Critical Software Development -
Conclusions

e Software design by:
- hazard elimination:
- hazard reduction;
- hazard control.

e Software implementation issues:
- dangerous practices;
- choice of ‘safe’ languages.

e The DO-178B Case Study.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Conclusions

e Software design by:
- hazard elimination:
- hazard reduction:;
- hazard control.

e Software implementation issues:
- dangerous practices;
- choice of ‘safe’ languages.

e The DO-178B Case Study.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Hardware Design: Fault Tolerant Architectures

e The basics of hardware management.

e Fault models.

e Hardware redundancy.

e Space Shuttle GPC Case Study.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Parts Management Plan

e MIL-HDBK-965
- help on hardware acquisition.

e General dependability requirements.

e Not just about safety.

e But often not considered enough...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

The Basics: Hardware Management

e MIL-HDBK-965
Acquisition Practices for Parts Management

e Preferred Parts List

e Vendor and Device Selection

e Critical Devices, Technologies & Vendors
e Device Specifications

e Screening

e Part Obsolescence

e FRACAS:

- Failure Reporting, Analysis and Corrective Action

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Types of Faults

e Design faults:
- erroneous requirements;
- erroneous software;
- erroneous hardware.

e These are systemic failures;
- not due to chance but design.

e Dont forget management/regulators!

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Types of Faults

e Intermittent faults:
- fault occurs and recurrs over time:
- fault connections can recur.

e Transient faults:
- fault occurs but may not recurr;
- electromagnetic interference.

e Permanent faults:
- fault persists;
- physical damage to processor.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Models

e Single stuck-at models.

e Hardware seen as ‘black-box’.

e Fault modelled as:
- Input or output error;
- stuck at either 1 or O.

e Models permanent faults.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Models - Single Stuck-At...

Fault-free

Input connected to lor O Input connected to 1 or O

_ L

Single stuck-at
fault modes
Output connected to O or 1
Input connected to lor O

—t = L

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Models

1] A B =
Al F 0 0 1
0 1 1

1 0 1

L, 1 1 0

:H g
CMOS - NAND Gate - fault detection on:
(Al Bl Al BO) (Al Bl AO,B1)and (Al Bl AO, BO).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Models

e Bridging Model:
- input not ‘stuck-at’ 1 or 0;
- but shorting of inputs to circuit;
- input then is wired-or/wired-and.

e Stuck-open model:
- both CMQOS output transistors off;
- results is neither high nor low...

e [ransition and function models.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Software Faults (Aside...)

e Much more could be said...
- see Leveson or Storey.

e Huge variability:
specification errors;
coding errors;
translation errors;
run-time errors...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Redundancy

e Adds:

cost;

weight;

power consumption;
complexity (most significant).

e These can outweigh safety benefits.

e Other techniques available:
- improved maintenance;
- better quality materials;

e Sometimes no choice (Satellites).

©C.W. Johnson, 2006, Safety Critical Systems Development.

Hardware Redundancy Techniques

| Hardware redundancy techniques ‘

Grace ful

degradation

Kof N

|
Bimodal ‘Duplex ‘ | Simple ‘

[I
Parallel | Voting | ‘ Dynamic ‘
|

‘ Qperating | | Noh-operating ‘

Hybrid

Pooled
squares

series/

parallel
Majority
voting

Simple

| Hot squares ‘ ‘ Cold squares |

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Active Redundancy

e When component fails...

e Redundant components do not have:
- to detect component failure;
- to switch to redundant resource.

e Redundant units always operate.

e Automatically pick up load on failure.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Standby Redundancy

e Must detect failure.

e Must decide to replace component.

e Standby units can be operating.

e Stand-by units may be brought-up.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Triple Modular Redundancy (TMR)

e Possibly most widespread.

e In simple voting arrangement,
- voting element — common failure;
- so triplicate it as well.

e Multi-stage TMR architectures.

e More cost, more complexity...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Multilevel Triple Modular Redundancy (TMR)

e No protection if 2 fail per level.

— Al Voting — B1 Voting .
element element
4 4
— A2 Yoting _— RZ Voting —
) clement clement
h Voting Voting
- A3 element /% B3 element / ™

e No protection from common failure
- eg if hard/software is duplicated.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Fault Detection

e Functionality checks:
routines to check hardware works.

e Signal Comparisons:
compare signal in same units.

e Information Redundancy:
parity checking, M out of N codes...

e Watchdog timers:
reset if system times out.

e Bus monitoring:
check processor is ‘alive’.

e Power monitoring:
- time to respond if power lost.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Space Shuttle General Purpose Computer (GPC)
Case Study

“GPCs running together in the same GN&C (Guidance, Navigation
and Control) OPS (Operational Sequence) are part of a redundant
set performing identical tasks from the same inputs and producing
identical outputs. Therefore, any data bus assigned to a commanding
GN&C GPC is heard by all members of the redundant set (except the
instrumentation buses because each GPC has only one dedicated bus
connected to it). These transmissions include all CRT inputs and mass
memory transactions, as well as flight-critical data. Thus, if one or more
GPCs in the redundant set fail, the remaining computers can continue
operating in GN&C. Each GPC performs about 325,000 operations per

7

second during critical phases.

http://spaceflight.nasa.gov /shuttle/reference /shutref /orbiter /avionics/dps/s

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Space Shuttle General Purpose Computer (GPC)
Case Study

“GPC status information among the primary avionics computers. If a
GPC operating in a redundant set fails to meet two redundant multi-
plexer interface adapter receiver during two successive reads of response
data and does not receive any data while the other members of the re-
dundant set do not receive the data, they in turn will vote the GPC
out of the set. A failed GPC is halted as soon as possible.”

“GPC failure votes are annunciated in a number of ways. The GPC
status matrix on panel O1 is a 5-by-5 matrix of lights. For example,
if GPC 2 sends out a failure vote against GPC 3, the second white
light in the third column is illuminated. The yellow diagonal lights
from upper left to lower right are self-failure votes. Whenever a GPC
receives two or more failure votes from other GPCs, it illuminates its
own yellow light and resets any failure votes that it made against other
GPCs (any white lights in its row are extinguished). Any time a yellow
matrix light is illuminated, the GPC red caution and warning light on
panel F7 is illuminated, in addition to master alarm illumination, and
a GPC fault message is displayed on the CRT.”

http://spaceflight.nasa.gov /shuttle/reference /shutref /orbiter /avionics/dps/s

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Space Shuttle General Purpose Computer (GPC)
Case Study

“Each GPC power on , off switch is a guarded switch. Positioning a
switch to on provides the computer with triply redundant normally,
even if two main or essential buses are lost. ”

“(There are) 5 identical general-purpose computers aboard the orbiter
control space shuttle vehicle systems. Each GPC is composed of two
separate units, a central processor unit and an input/output proces-
sor. All five GPCs are IBM AP -101 computers. Each CPU and IOP
contains a memory area for storing software and data. These memory
areas are collectively re ferred to as the GPC’s main memory.

The IOP of each computer has 24 independent processors, each of which
controls 24 data buses use d to transmit serial digital data between
the GPCs and vehicle systems, and secondary channels between the
telemetry system a nd units that collect instrumentation data. The 24
data buses are connected to each IOP by multiplexer interface adapt
ers that receive, convert and validate the serial data in response to
discrete signals calling for available data to be transmitted or received
from vehicle hardware.”

http://spaceflight.nasa.gov /shuttle/reference /shutref /orbiter /avionics/dps/s

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Space Shuttle General Purpose Computer (GPC)
Case Study

“A GPC on orbit can also be " freeze-dried;” that is, it can be loaded
with the software for a particular memory configuration and then
moded to standby. It can then be moded to halt and powered off.
Since the GPCs have non-volatile memory, the software is retained.
Before an OPS transition to the loaded memory configuration, the
freeze-dried GPC can be moded back to run and the appropriate OPS
requested.

A failed GPC can be hardware-initiated, stand-alone-memory-dumped
by switching the powered computer to terminate and halt and then
selecting the number of the failed GPC on the GPC memory dump
rotary switch on panel MO42F in the crew”

http://spaceflight.nasa.gov/shuttle/reference /shutref /orbiter /avionics/dps/s

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Space Shuttle General Purpose Computer (GPC)
Case Study

“A simplex GPC is one in run and not a member of the redundant set,
such as the BFS (Backup Flight System) GPC. Systems management
and payload major functions are always in a simplex GPC.”

“Even though the four primary avionics software system GPCs control
all GN&C functions during the critical phases of the mission, there is
always a possibility that a generic failure could cause loss of vehicle
control. Thus, the fifth GPC is loaded with different software created
by a different company than the PASS developer. This different soft-
ware is the backup flight system. To take over control of the vehicle,
the BF'S monitors the PASS GPCs to keep track of the current state
of the vehicle. If required, the BF'S can take over control of the vehicle
upon the press of a button. The BF'S also performs the systems man-
agement functions during ascent and entry because the PASS GPCs
are operating in GN&C. BF'S software is always loaded into GPC 5
before flight, but any of the five GPCs could be made the BFS GPC if

necessary.”

http://spaceflight.nasa.gov/shuttle /reference/shutref/orbiter /avionics/dps/s

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Conclusion

e The basics of hardware management.

e Fault models.

e Hardware redundancy.

e Space Shuttle GPC Case Study.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Hardware Implementation Issues

e COTS Microprocessors.

e Specialist Microprocessors.

e Programmable Logic Controllers

e Electromagnetic Compatability

©C.W. Johnson, 2006 - Safety Critical Systems Development.

COTS Microprocessors

e As we have seen:
safety of software jeopardised
if flaws in underlying hardware.

e Catch-22 problem:

best tools for COTS processors;
most experience with COTS;

- least assurance with COTS...

e Redundancy techniques help...
- but danger of common failures;
- vs cost of heterogeneity;

©C.W. Johnson, 2006 - Safety Critical Systems Development.

COTS Microprocessors

e Where do the faults arise?
1. fabrication failures;
2. microcode errors;
3. documentaiton errors.

e Can guard against 1:
- using same processing mask;
- tests then apply to all of batch;
- high cost (specialist approach).

e Cannot distinguish 2 from 37

e Undocumented instructions...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

COTS Microprocessors

“Modern microprocessor chips are getting very complex indeed. The
current gate count can exceed 2.5 million. One must therefore expect
that new versions of such chips will contain logical bugs. A common
form of bug is in the microcode, but since the distinction between a
microcode fault and another form of design bug is difficult to define, the
distinction is not made here. We are *not™ concerned with fabrication
faults.”

“Attempts to report bugs openly have not been successful. A con-
sequence of the above is that it is very difficult of users undertaking
a critical application to protect themselves against a potential design
bug. One approach that has been tried with one project is to use iden-
tical chips from the same mask so that rig and development testing
will extrapolate to the final system. In some cases, the suppliers have
provided information under a non-disclosure agreement, be this seems
to be restricted to major projects. In contrast, quite a few software
vendors have an open bug reporting scheme — and almost all provide
a version number to the user. Hence it appears in this area, software
is in ‘advance’ of hardware.”

Brian Wichmann, Microprocessor design faults (comp.risks)

©C.W. Johnson, 2006 - Safety Critical Systems Development.

COTS Microprocessors

“The key issues extracted are as follows:

e Farly chips are unreliable:

There have been some dramatic errors in very early releases of
chips.

e Rarely used instructions are unreliable:

One report sent to me reported that some instructions not gener-
ated by the ‘C’ compiler were completely wrong. Another report
noted that special instructions for 64-bit integers did not work, and
when this was reported, the supplier merely removed them from
the documentation!

e Undocumented instructions are unreliable:

Obviously, such instructions must be regarded with suspicion.

e Case handling is unreliable:

A classic instance of this problem is an error which has been re-
ported to me several times of the jump instructions on the 6502.
When such an instruction straddled a page boundary, it did not
work correctly. This issue potentially gives the user most cause
for concern, since it may be very difficult to avoid the issue. For
instance, with machine generated code form a compiler, the above
problem with the 6502 would be impossible to avoid.”

Brian Wichmann, Microprocessor design faults (comp.risks)

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Specialist Microprocessors

e Commercial microprocessor flaws.

e \What happens if illegal opcode?
- or result may be undefined?

e Motorola 6801 test instruction
- fetches infinite bytes from memory;
- good to test for faults on bus;
- but could be executed erroneously;
- see Storey or comp.risks for more.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Specialist Microprocessors - AAMP2

e Collins Avionics/Rockwell group.

o AAMP2
- 30+ in every Boeing 747-400.

e High criticality implies cost
- can you sell enough to cover input?

e What is money spent on?
- extra time spent on design?
- bench testing (see later);
- formal verification...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Specialist Microprocessors - AAMP5

“The AAMP5 verification was a project conducted to explore how
formal techniques for specification and verification could be introduced
into an industrial process. Sponsored by the Systems Validation Branch
of NASA Langley and Collins Commercial Avionics, a division of Rock-
well International, it was conducted by Collins and the Computer Sci-
ence Research Lab at SRI International. The project consisted of spec-
ifying in the PVS language developed by SRI a portion of a Rockwell
proprietary microprocessor, the AAMP5, at both the instruction set
and register-transfer levels and using the PVS theorem prover to show
the microcode correctly implemented the specified behavior for a repre-
sentative subset of instructions. The formal verification was performed
in parallel with the development of the AAMP5 and did not replace
any production verification activities.”

“This methodology was used to formally verify a core set of eleven
AAMPS5 instructions representative of several instruction classes. The
core set did not include floating point instructions. Although the
number of instructions verified is small, the methodology and the for-
mal machinery developed are adequate to cover most of the remaining
AAMPSbS microcode. The success of this project has lead to a sequel in
which the same methodology is being reused to verify another member
of the AAMP family of processors”

Steve Miller and Manadayam Srivas, Formal Verification of AAMP5,
Comp.risks

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Specialist Microprocessors - AAMP5

“Another key result was the discovery of both actual and seeded er-
rors. T'wo actual microcode errors were discovered during development
of the formal specification, illustrating the value of simply creating a
precise specification. Both errors were specific to the AAMP5 and
corrected prior to first fabrication. Two additional errors seeded by
Collins in the microcode were systematically uncovered by SRI while
doing correctness proofs. One of these was an actual error that had
been discovered by Collins during testing of an early prototype but left
in the microcode provided to SRI. The other or simulation.”

Steve Miller and Manadayam Srivas, Formal Verification of AAMP5,
Comp.risks

e Formal verification can be done,
- but still very expensive;
- need techniques and tools;
- reduce costs and increase subsets.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Specialist Microprocessors - Verifiable Integrated
Processor for Enhanced Reliability (VIPER)

e This is an old story - but still very controversial.

e Royal Signals & Radar Establishment.

e LCF-LSM and Ella.

e Big claims about confidence levels:
- did MOD claim “fully proven”?
- proof from spec to production?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Specialist Microprocessors - Verifiable Integrated
Processor for Enhanced Reliability (VIPER)

e Charter technologies market the chip.

e Sue MOD over “ungrounded” claims.

e Charter into liquidation as costs rise.

e Key lesson:
- general ignorance about proof;
- argument not absolute guarantee.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Specialist Microprocessors - 1750A, 1750B

e Introduced in 1979, Revised in 1982.

e Deactivated in 1996.

e Well documented/understood.

e But dont forget safety of language.

e Not just processor reliability.

e Started but never completed?

e 1750A remains a de facto standard.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Specialist Microprocessors - ERC32

e Reliable not safety-critical?

e Space and radiation tolerant.

e Ada development tools.
- integer unit (1U);
- floating-point unit (FPU);
- memory controller (MEC).

e Single-chip (TSC695E) June 2006.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Microprocessor

e MIL-STD1750 - expensive.

e Select processor for application.
Storey cites widespread use;

range of less critical areas.
specifically for airbag applications;
“general purpose in-system programmable microcontrollers”.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Programmable Logic Controllers (PLCs)

e Self contained:
- power supply;
- interface circuitry;
- 14 processors.

e Different from GPCs (eg Shuttle):
- replace electromechanical relays;

- perform simple logic functions.

e Designed for high MTBFs:

- kernels provide trusted functions;
- proprietary source for firmware.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Programmable Logic Controllers (PLCs)

e Widely used, well tested

e But hard/software proprietary.

e Certification by trusted bodies.

e However. ..

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Programmable Logic Controllers (PLCs)

“Lin Zucconi” lin_zucconi@lccmail.ocf.lInl.gov
3 Mar 1993 16:50:50 U

People using Modicon 984 Series programmable controllers with Graysoft
Programmable Logic Controller (PLC) software Version 3.21 are ad-
vised to contact Graysoft (414) 357-7500 to receive the latest version
(3.50) of the software. A bug in Version 3.21 can corrupt a controller’s
logic and cause equipment to operate erratically. PLCs are frequently
used in safety-related applications. Users often assume that if their
“logic” is correct then they are ok and forget that the underlying logic
is implemented with software which may not be correct.

Lin Zucconi zucconi@IInl.gov

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Programmable Logic Controllers (PLCs)

e PC emulators to develop software:
- download to target PLC;
volaile store is dangerous;

wide use of EEPROMS.

e Fail safe PLC's:

two or more independent CPU'’s;
voting forms of redundancy;

if conflict close down in safe state

e Several graphical design techniques:
ladder & function block diagrams...

e See Storey for more detail.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Electromagnetic Compatability (EMC)

e Work in presence of interference.

e AND not create interference.

e Interference from external noise

e Interference from external source
2 radio signals on same frequency.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Electromagnetic Compatability (EMC)

e Difficult to predict.

e Intensity changes over time;
- eg with work patterns;

e Sources may also be mobile;
- or you may be mobile!

e Mobile telephones, car ignitions...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Electromagnetic Compatability (EMC)

e Protection.

e Screening:
use conductive cage/enclosure.

e Check design of PCBs if possible:
(power) loops form antennas;

check use of ground planes.

e Check CMOS output capacitance;
can buy chips (Philips 8051);

- help discriminate signal edges.

e Seek help from a specialist...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Hardware Implementation Issues

e COTS Microprocessors.

e Specialist Microprocessors.

e Programmable Logic Controllers

e Electromagnetic Compatability

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Validation and Verification

e \What are the differences?

e When, why and who?

e UK MOD DEF STAN 00-66

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Definitions and Distinctions

e Verification:
- does it meet the requirements?

e \alidation:
- are the requirements any good?

e Testing:
- process used to support V&V.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Definitions and Distinctions

B.5.3.6 Verification and Validation.

This sub-process evaluates the products of other Software Modifica-
tion sub-processes to determine their compliance and consistency with
both contractual and local standards and higher level products and
requirements. Verification and validation consists of software testing,
traceability, coverage analysis and confirmation that required changes
to software documentation are made. Testing subdivides into unit
testing, integration testing, regression testing, system testing and ac-
ceptance testing.

MOD DEF STAN 00-66
Integrated Logistic Support: Part 3, Guidance for Software Support.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Definitions and Distinctions

e Misuse of terms?

A. The certification /validation process should confirm that hazards
identified by hazard analysis, (HA), failure mode effect analysis (FMEA),
and other system analyses have been eliminated by design or devices,
or special procedures. The certification /validation process should also
confirm that residual hazards identified by operational analysis are ad-
dressed by warning, labeling safety instructions or other appropriate
means.

OSHA Regulations (Standards - 29 CFR)
Nonmandatory guidelines for certification/validation of safety systems
for presence sensing device initiation of mechanical power presses -
1910.217 App B

e More like verification?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Validation

e During design
external review before commission:
external review for certification.

e During implementation:
additional constraints discovered:
additional requirements emmerge.

e During operation:
were the assumptions valid?
especially environmental factors.

e Validate:
PRA'’s; development processes etc.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Validation: Waterfall Model

System
Feasibilit

Validation \

Software Plans &

Requirements
Validation \

\ Product Design
Verification \

\ Detailed Design
Verification \

\ Code
Unit Test \

\ Integration
Product
Verification
\ Implementation
System Test \

\ Operations and
Maintenance

Revalidation

e Validation at start and end.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Determine Objectives,
Alternatives, Constraints

Review
Comimit-

Validation: Spiral Model

p Cumulative

Cost

—

Process Through Steps Ewvaluate Alternatives:
Identify, Resolve Risks

Risk Analysis (RA)

Risk Analysis (RA)

Risk Analysis (RA)

Operational
Prototype

rototvpe |
P Protoiype 3

mdotype 2

ment
Partition

Develop,
Verify
Next-Level
Process Plans

Ewaluate Process
Alternatives: Identify,
Resolve Process Risks

Plan
Next Phases

e \alidation

Determine
Process
Objectives,

Alternatives,

Constraints

Concepr of
Oiperation

-
—

Detailed
Design

Integration

|
|
| and Tast
|
|

Develop, Verify
Next-Level Product

|
Implementation |
I
|

more continuous.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Validation: IEC 61508 (Draft)

The following should be considered in an overall safety validation plan:
e Details of when the validation should take place.
e Details of who should carry out the validation.

e Identification of the relevant modes of the system operation, in-
cluding:
— preparation for use, including setting up and adjustment
— start up
— teach
— automatic
— manual
— semi-automatic
— steady-state operation
— resetting
— shutdown
— maintenance

— reasonably foreseeable abnormal conditions

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Validation: IEC 61508 (Draft)

e Identification of the safety-related systems and external risk reduc-
tion facilities that need to be validated for each mode of the system
before commissioning commences.

e The technical strategy for the validation, for example, whether
analytical methods or statistical tests are to be used.

e The measures, techniques and procedures that shall be used to
confirm that each safety function conforms with the overall safety
requirements documents and the safety integrity requirements.

e The specific reference to the overall safety requirements documents.

e The required environment in which the validation activities are to
take place.

e The pass/fail criteria.

e The policies and procedures for evaluating the results of the vali-
dation, particularly failures.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Validation: MOD DEF STAN 00-60

D.4.1.6 Validation.

At the earliest opportunity support resource requirements should be
confirmed and measurements should be made of times for completion
of all software operation and support tasks. Where such measurements
are dependent upon the system state or operating conditions, averages
should be determined over a range of conditions. If measurements are
based on non-representative hardware or operating conditions, appro-
priate allowances should be made and representative measurements
carried out as soon as possible. The frequency of some software sup-
port tasks will be dependent upon the frequency of software releases
and the failure rate exhibited by the software.

MOD DEF STAN 00-66
Integrated Logistic Support: Part 3, Guidance for Software Support.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Validation: MOD DEF STAN 00-60

D.4.1.6 Validation (cont.)

Measurements of software failure rates and fault densities obtained dur-
ing software and system testing might not be representative of those
that will arise during system operation. However, such measurements
may be used, with caution, in the validation of models and assump-
tions. For repeatable software engineering activities, such as compila-
tion and regression testing, the time and resource requirements that
arose during development should be recorded. Such information may
be used to validate estimates for equivalent elements of the software
modification process. For other software engineering activities, such as
analysis, design and coding, the time and resource requirements that
arose during development should be recorded. However, such infor-
mation should only be used with some caution in the validation of
estimates for equivalent elements of the software modification process.
The preceding clauses might imply the need for a range of metrics

MOD DEF STAN 00-66
Integrated Logistic Support: Part 3, Guidance for Software Support.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Validation: Summary of Key Issues
e Who validates validator?

- External agents must be approved.

e Who validates validation?
- Clarify links to certification.

e What happens if validation fails?
- Must have feedback mechanisms;
- Links to process improvement?

e NOT the same as verification!

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Verification: Leveson’s Strategies

Verify the functional requirements
against the more specific safety
Software safety requirements. General so ftware

requirements and “ functional
constraints requirements

/;r'ify correctness of
5o ftware im plementation | im plementation against

the functional requirements.

e Show that functional requirements
- are consistent with safety criteria ?

e Implementation may include hazards
not in safety/functional requirements.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Verification: Leveson’s Strategies

Verify the functional requirements
against the more specific safety

Software safety requirements. General software
requirements and - functional
constraints requirements
v

Verify that the implementation
only does what is specified in the
general requirements and no more.

Software implementation ‘

e Show that implementation is
- same as functional requirements?

e Too costly and time consuming
all safety behaviour in specification?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Verification: Leveson’s Strategies

Verify the functional requirements
against the more specific safety

Software safety requirements. General so ftware
requirements and B functional
constraints requirements
-
Verify that the im Iem L oo . .
DIRE)éﬂymeefs fphe coftuware | So ftware implementation Verify that the implementation

meets the general requirements.

safety requirements.

e Or show that the implementation
- meets the safety criteria.

e Fails if criteria are incomplete...
- but can find specification errors.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Verification: Lifecycle View

System
Feasibilit

Validation \

Software Plans &

Requiretnerts
Validation \

\ Product Design
Verification \

\ Detailed Design
Verificalion \

\ Code
Unit Test \

\ Integration
Product
Verification
\ Implementation
Systemn Test \

\ Operations and
Maintenance,

Revalidation

e At several stages in waterfall model.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Verification: Lifecycle View

Determine Objectives,
Alternatives, Constraints

4

S

p Cumulative
Cost
Process Through Steps Ewvaluate Alternatives:

Identify, Resolve Risks

Risk Analysis (RA)

Risk Analysis (RA)

Risk Analysis (RA)

] Operational
Review Prototype 1 Prototype 2 Proypes Y P rototype
Comimit-
ment T T —~
Partition
Concepr of - e _
Flan, 'rA“'-: ation Seftwa -

Develop,
Verify
Next-Level
Process Plans

Ewaluate Process
Alternatives: Identify,
Resolve Process Risks

Plan
Next Phases

Development

=

Determine
Process
Objectives,
Alternatives,
Constraints

Detailed
Design

and Vel

Acoeptance

Test

|
Implementation |
I
|

Develop, Verify
Next-Level Product

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Verification

e Verification as a catch-all?

e A recurrent cost, dont forget...
verification post maintenance.

e Verification supported by:
determinism (repeat tests);
separate safety-critical functions;
well defined processes;

simplicity and decoupling.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Verification

D.5.1 Task 501 Supportability Test, Evaluation and Verification

D.5.1.1 Test and Evaluation Strategy:.

Strategies for the evaluation of system supportability should include
coverage of software operation and software support. Direct measure-
ments and observations may be used to verify that all operation and
support activities - that do not involve design change - may be com-
pleted using the resources that have been allocated. During the design
and implementation stage measurements may be conducted on similar
systems, under representative conditions. As software modification ac-
tivity is broadly similar to software development the same monitoring
mechanism might be used both pre- and post-implementation. Such
a mechanism is likely to be based on a metrics programme that pro-
vides information, inter alia, on the rate at which software changes are
requested and on software productivity.

MOD DEF STAN 00-66
Integrated Logistic Support: Part 3, Guidance for Software Support.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Verification

D.5.1.3 Objectives and Criteria.

System test and evaluation programme objectives should include ver-
ification that all operation and support activities may be carried out
successfully -within skill and time constraints - using the PSE and other
resources that have been defined. The objectives, and associated cri-
teria, should provide a basis for assuring that critical software support
issues have been resolved and that requirements have been met within
acceptable confidence levels. Any specific test resources, procedures or
schedules necessary to fulfil these objectives should be included in the
overall test programme. Programme objectives may include the col-
lection of data to verify assumptions, models or estimates of software
engineering productivity and change traffic.

MOD DEF STAN 00-66
Integrated Logistic Support: Part 3, Guidance for Software Support.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Verification

D.5.1.4 Updates and Corrective Actions.

Evaluation results should be analyzed and corrective actions deter-
mined as required. Shortfalls might arise from:

e Inadequate resource provision for operation and support tasks.
e Durations of tasks exceeding allowances.

e Software engineering productivity not matching expectations.
e Frequencies of tasks exceeding allowances.

e Software change traffic exceeding allowances.

Corrective actions may include: increases in the resources available;
improvements in training; additions to the PSE or changes to the soft-
ware, the support package or, ultimately, the system design. Although
re-design of the system or its software might deliver long term bene-
fits it would almost certainly lead to increased costs and programme

slippage.

MOD DEF STAN 00-66
Integrated Logistic Support: Part 3, Guidance for Software Support.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Verification: Summary of Key Issues

e What can we affoard to verify?

e Every product of every process?

- MIL HDBK 338B...

e Or only a few key stages?

o |f the latter, do we verify :
- specification by safety criteria?
- implementation by safety criteria?
- or both...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Verification: Summary of Key Issues

e Above all....

e Verification is about proof.

e Proof is simply an argument.

e Argument must be correct but
- not a mathematical ‘holy grail'...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Validation and Verification

e \What are the differences?

e When, why and who?

e UK MOD DEF STAN 00-66

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Testing

e The processes used during - validation and verification.

e White and black boxes.

e Static and Dynamic techniques

e Mode confusion case study.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Definitions and Distinctions

e Black box tests:
- tester has no access to information
- about the system implementation.

e Good for independence of tester.

e But not good for formative tests.

e Hard to test individual modules...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Definitions and Distinctions

e White box tests:
- tester can access information about
- the system implementation.

e Simplifies diagnosis of results.

e Can compromise independence?

e How much do they need to know?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Definitions and Distinctions

e Module testing:
- tests well-defined subset.

e Systems integration:
- tests collections of modules.

e Acceptance testing:
- system meets requirements?

e Results must be documented.

e Changes will be costly.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Dynamic Testing - Process Issues

e Functional testing:
- test cases examine functionality;
- see comments on verification.

e Structural testing:
- knowledge of design guides tests;
interaction between modules...
test every branch (coverage)?

e Random testing:
choose from possible input space;
or beyond the “possible” ...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Definitions and Distinctions

e Dynamic testing:
execution of system components;
Is environment being controlled?

e Static testing:
investigation without operation;
pencil and paper reviews etc.

e Most approaches use both.

e Guide the test selection by using:
- functional requirements:
- safety requirements;
- (see previous lecture).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Definitions and Distinctions

Lifecycle phase

Dynamic testing

Static testing

Requirements analysis and
specification

Top-level design
Detailed design
Im plementation

Acceptance testing

x

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Dynamic Testing

e Where do you begin?
e Look at the original hazard analysis;
- demonstrate hazard elimination?

- demonstrate hazard reduction?
- demonstrate hazard control?

e Must focus both on:
- expected and rare conditions.

e PRA can help - but for software?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Dynamic Testing - Leveson's Process Issues

e All of this will cost time and money.

1. Review test plans.

2. Recommend tests based on the hazard analyses, safety standards
and checklists, previous accident and incidents, operator task analyses
etc.

3. Specify the conditions under which the test will be conducted.

4. Review the test results for any safety-related problems that were
missed in the analysis or in any other testing.

5. Ensure that the testing feedback is integrated into the safety reviews
and analyses that will be used in design modifications.

e Must be planned, must be budgeted.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Dynamic Testing Techniques

e Partitioning:
identify groups of input values;
do they map to similar outputs?

e Boundary analysis:
extremes of valid/invalid input.

e Probabilistic Testing:
examine reliability of system.

e (State) Transition tests:
- trace states, transitions and events.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Dynamic Testing Techniques

e Simulation:

assess impact on EUC (IEC61508).

e Error seeding:
put error into implementation;
see is test discover it (dangerous).

e Performance monitoring:
check real-time, memory limits.

e Stress tests: - abnormally high workloads?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Dynamic Testing: Software Issues

e Boundary conditions.

e [ncorrent and unexpected inputs sequences.

e Altered timings - delays and over-loading.

e Environmental stress - faults and failures.

e Critical functions and variables.

e Firewalls, safety kernels and other safety features.

e Usual suspects...automated tests?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Limitations of Dynamic Testing

e Cannot test all software paths.

e Cannot even text all hardware faults.

e Not easy to test in final environment.

e User interfaces very problematic:
- effects of fatigue/longitudinal use?
- see section on human factors.

e Systems CHANGE the environment!

e How can we test for rare events?
- may have to wait 10” years?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Static Testing

e Dont test the system itself.

e Test an abstraction of the system

e Perform checks on requirements?

e Perform checks on static code.

e Scope depends on representation...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Static Testing Techniques

e Walkthroughs:
- peer review by other engineers.

e Fagan inspections:
- review of design documents.

e Symbolic execution:
- use term-rewriting on code;
- does code match specification?

e Metrics:
- lots (eg cyclomatic complexity);
- most very debatable...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Static Testing Techniques

e Sneak Circuit Analysis:
- find weak patterns in topologies;
- for hardware not software.

e Software animation:
- trace behaviour of software model:
- Petri Net animation tools.

e Performance/scheduling theory:
even if CPU scheduling is static;
model other resource allocations.

e Formal methods:
considerable argument even now;

compare 00-60 with DO-178B...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

e Recent, novel use formal analysis.

e To guide/direct other testing.

e The mode confusion problem...

e Several groups:
- Steve Miller et al(NASA Langley);
- Denis Javaux(Univ of Liege);
- Nancy Levelson (MIT);
- John Rusby(SRI)

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

The Flight Guidance System (FGS) compares the measured state of
an aircraft (position, speed, and attitude) to the desired state and gen-
erates pitch and roll guidance commands to minimize the difference
between the measured and desired state. When engaged, the Autopi-
lot (AP) translates these commands into movement of the aircrafts
control surfaces necessary to achieve the commanded changes about
the lateral and vertical axes. An FGS can be further broken down
into the mode logic and the flight control laws. The mode logic ac-
cepts commands from the flight crew, the Flight Management System
(FMS), and information about the current state of the aircraft to de-
termine which system modes are active. The active modes in turn
determine which flight control laws are used to generate the pitch and
roll guidance commands. The active lateral and vertical modes are
displayed (an Instrumentation System (EFIS)).

Acknowledgement: R.W. Butler, S.P. Miller, J.N. Potts and V.A. Car-
reno, A Formal Methods Approach to the Analysis of Mode Confusion.
In ATAA/IEEE Digital Avionics Systems Conference, October, 1998.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

Crew Interface

Crew selections l T Crew indications
Mode Logic Flight Director
Flight (EFLS)
Manaogement —»
System Control Laws Roll,
pitch
. . Autopilot
Flight Guidance System
Measured 4 l Actuator
T state commands
Sensor data Control
Surfaces

Acknowledgement: R.W. Butler, S.P. Miller, J.N. Potts and V.A. Carreno, A Formal Meth-
ods Approach to the Analysis of Mode Confusion. In ATAA/IEEE Digital Avionics Systems
Conference, October, 1998.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

Mode confusion can be traced to at least three fundamental sources:
e 1. Opacity (i.e., poor display of automation state),
e 2. Complexity (i.e., unnecessarily complex automation),

e 3. incorrect mental model (i.e., the flight crew misunderstands the
behaviourr of the automation).

Traditional human factors has concentrated on (1), and made signifi-
cant progress has been made. However, mitigation of mode confusion
will require addressing problem sources (2) and (3) as well. Towards
this end, our approach uses two complementary strategies based upon
a formal model:

e Visualisation Create a clear, executable model of the automation
that is easily understood by flight crew and use it to drive a flight
deck mockup from the formal model

e Analysis Conduct mathematical analysis of the model.

Acknowledgement: R.W. Butler, S.P. Miller, J.N. Potts and V.A. Car-
reno, A Formal Methods Approach to the Analysis of Mode Confusion.
In ATAA/IEEE Digital Avionics Systems Conference, October, 1998.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

e Problems stemming from modes:
- input has different effect;
- uncommanded mode changes;
- different modes — behaviours;
- different intervention options;
- poor feedback.

e ObjectTime visualisation model...

e Represent finite state machines.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

| Flight Director Autopilot |

| Dizengoged Engaged

i
i

Cues Of |
On
Cues On

Off

%

| Lateral Modes Vertical Modes ;
l Cleared Active [Cleared Active

il Al el [) L. s s

:Hea_dlng R e S

Cleared Active |
|

e

feinoer i moamemunis o
Cleared
L, coe

e

[ERU——. -
| Cleared Active
[SE———

—-‘ Amed | | | Cleared
1 B Track
1 [rEStECS .
Track e Armed

N L N e R R T | e e e

L4)
s ——— Aumed {i Bl | Cleared Bictive
11 b
Cleared e L ——
L immtsm s I]
Track | ol e i ! ;

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

The state of the Flight Director (FD), Autopilot (AP), and each of the
lateral and vertical modes are modeled as In Figure 3 (see previous
slide), the FD is On with the guidance cues displayed; the AP is En-
gaged; lateral Roll, Heading, and Approach modes are Cleared; lat-eral
NAV mode is Armed; vertical modes Pitch, Approach, and AltHold are
Cleared; and the VS mode is Active. Active modes are those that actu-
ally control the aircraft when the AP is en-gaged. These are indicated
by the heavy dark boxes around the Active, Track, and lateral Armed
modes.

Acknowledgement: R.W. Butler, S.P. Miller, J.N. Potts and V.A. Car-
reno, A Formal Methods Approach to the Analysis of Mode Confusion.
In ATAA/IEEE Digital Avionics Systems Conference, October, 1998.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

e ObjectTime model:
- give pilots better mental model?
- drive simulation (dynamic tests?).

e Build more complete FGS model
- prove/test for mode problems.

e Discrete maths:
- theorem proving;
- or model checking?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

The first problem is formally defining what constitutes an indirect mode
change. Lets begin by defining it as a mode change that occurs when
there has been no crew input:

Indirect Mode Change?(s,e): bool =
NOT Crew input?(e) AND Mode Change?(s,e)

No_Indirect_Mode_Change: LEMMA
Valid State?(s) IMPLIES
NOT Indirect Mode Change?(s,e)

Acknowledgement: R.W. Butler, S.P. Miller, J.N. Potts and V.A. Car-
reno, A Formal Methods Approach to the Analysis of Mode Confusion.
In ATAA/IEEE Digital Avionics Systems Conference, October, 1998.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

We then seek to prove the false lemma above using GRIND, a brute
force proof strategy that works well on lemmas that do not involve
quantification. The resulting unproved sequents elaborate the condi-
tions where indirect mode changes occur. For example,

{-1} Overspeed Event?(e!1)

{-2} OFF?(mode(FD(s!1)))

{-3} s!1 WITH [FD := FD(s!1) WITH [mode := CUES],
LATERAL := LATERAL(s'1) WITH [ROLL := (# mode := ACTIVE
#)]

VERTICAL := VERTICAL(s!1) WITH [PITCH :=

(# mode := ACTIVE #)]] = NS

{-4} Valid State(s!1)

{1} mode(PITCH(VERTICAL(s!1))) =
mode (PITCH(VERTICAL(NS)))

The situations where indirect mode changes occur are clear from the
negatively labeled formulas in each sequent. We see that an indirect
mode change occurs when the overspeed event occurs and the Flight
Director is off. This event turns on the Flight Director and places the
system into modes ROLL and PITCH.

Acknowledgement: R.W. Butler, S.P. Miller, J.N. Potts and V.A. Car-
reno, A Formal Methods Approach to the Analysis of Mode Confusion.
In ATAA/IEEE Digital Avionics Systems Conference, October, 1998.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

We define an ignored command as one in which there is a crew input
and there is no mode change. We seek to prove that this never happens:

No_Ignored Crew_Inputs: LEMMA
Valid State(s) AND Crew Input?(e) IMPLIES
NOT Mode Change?(s,e)

The result of the failed proof attempt is a set of sequents similar to the
following:

{-1} VS Pitch Wheel Changed?(e!1)

{-2} CUES?(mode(FD(s!1)))

{-3} TRACK? (mode (NAV(LATERAL(s!'1))))
{-4} ACTIVE? (mode(VS(VERTICAL(s!1))))

{1} ACTIVE?(mode (ROLL(LATERAL(s!1))))
{2} ACTIVE?(mode (HDG(LATERAL(s!1))))

Acknowledgement: R.W. Butler, S.P. Miller, J.N. Potts and V.A. Car-
reno, A Formal Methods Approach to the Analysis of Mode Confusion.
In ATAA/IEEE Digital Avionics Systems Conference, October, 1998.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

The negatively labeled formulas in the sequent clearly elaborate the
case where an input is ignored, i.e., when the VS/Pitch Wheel is
changed and the Flight Director is displaying CUES and the active
lateral mode is ROLL and the active vertical mode is PITCH. In this
way, PVS is used to perform a state exploration to discover all condi-
tions where the lemma is false, i.e., all situations in which a crew input
is ignored.

Acknowledgement: R.W. Butler, S.P. Miller, J.N. Potts and V.A. Car-
reno, A Formal Methods Approach to the Analysis of Mode Confusion.
In ATAA/IEEE Digital Avionics Systems Conference, October, 1998.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Formal Methods: The Mode Confusion Case
Study

e Are these significant for user?

e Beware - atypical example of formal methods.

e Haven't mentioned refinement.

e Haven't mentioned implementation.

e Much more could be said...
- see courses on formal methods.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Conclusion

e Testing.

e The processes used in validation & verification.

e \White and black boxes.

e Static and Dynamic techniques

e Mode confusion case study.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Individual Human Error

e Slips, Lapses and Mistakes.

e Rasmussen: Skill, Rules, Knowledge.

e Reason: Generic Error Modelling.

e Risk Homeostasis.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

What is Error?

e Deviation from optimal performance?
- very few achieve the optimal.

e Failure to achive desired outcome?
- desired outcome can be unsafe.

e Departure from intended plan?
- but environment may change plan...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

What is Error?

Involuntary or
NO__—¥| nonintentional action.

Was there a prior - Was 1_'her'e_
intention to act? * intention in action?
o Spontaneous or
yes subsidiary action
Did the actions ho Unintentional action
proceed as planned? v (slip or lapse)
v oves
Did the actions achieve ho Intentional but
the desired outcomes? * mistaken action.

b oyes

Success ful action

Acknowledgement:J. Reason, Human Error, Cambridge University Press, 1990 (ISBN-0-521-
31419-4).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Types of Errors...

e Slips:
correct plan but incorrect action;
more readily observed.

e Lapses:
correct plan but incorrect action;
failure of memory so more covert?

e Mistakes:
incorrect plan;
more complex, less understood.

e Human error modelling helps to:
analyse /distinguish error types.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Rasmussen: Skill, Rules and Knowledge

e Skill based behaviour:
sensory-motor performance;
without conscious control;
automated, high-integrated.

e Rule based behaviour:

based on stored procedures;
induced by experience or taught;
problem solving/planning.

e Knowledge based behaviour:
in unfamilliar situations:
explicitly think up a goal;

- develop a plan by selection;

- try it and see if it works.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Rasmussen: Skill, Rules and Knowledge

KNOWLEDGE BASED

BEHAVIOUR Svrmbol

mbols

e, Identification |—Iv ‘ Selection of task ‘—b
|

RULE BASED Signs
BEH AVIOUR ? » | Recognition | - | Association of state ftask |_, | Stored rules for tasks
SKILL BASED . - Signs . i
BEHAVIOUR ‘ Feature information ‘ > ‘ Automated sensori-motor pattemns ‘

- [P

Acknowledgement: J. Rasmussen, Skill, Rules, Knowledge: Signals, Signs and Symbols and
Other Distinctions in Human Performance Models. IEEE Transactions on Systems, Man and
Cybernetics (SMC-13)3:257-266, 1983.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Rasmussen: Skill, Rules and Knowledge

e Signals:
- sensory data from environment;
- continuous variables:
- cf Gibson's direct perception.

e Signs:
- indicate state of the environment:
- with conventions for action:
- activate stored pattern or action.

e Symbols:
- can be formally processed;
- related by convention to state.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Rasmussen: Skill, Rules and Knowledge

e Skill-based errors:
variability of human performance.

e Rule-based errors:
misclassification of situations;
application of wrong rule;
incorrect recall of correct rule.

e Knowledge-based errors:
incomplete /incorrect knowledge;
workload and external constraints...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Building on Rasmussen's Work

e How do we account for:
slips and lapses in SKR?

e Can we distinguish:
more detailed error forms?
more diverse error forms?

e Before an error is detected:
operation is, typically, skill based.

o After an error is detected:
operation is rule/knowledge based.

e GEMS builds on these ideas...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Monitoring Failures

e Normal monitoring:
- typical before error is spotted;
- preprogrammed behaviours plus;
attentional checks on progress.

e Attentional checks:
are actions according to plan?
will plan still achieve outcome?

e Failure in these checks:
often leads to a slip or lapse.

e Reason also identifies:
Overattention failures.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Problem Solving Failures

e Humans are pattern matchers:
- prefer to use (even wrong) rules;
- before effort of knowledge level.

e Local state information:
indexes stored problem handling;
schemata, frames, scripts etc.

e Misapplication of good rules:
incorrect situation assessment;
over-generalisation of rules.

e Application of bad rules:
encoding deficiencies;
action deficiencies.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Knowledge-Based Failures

e Thematic vagabonding:
superficial analysis/behaviour;
flit from issue to issue.

e Encysting:
myopic attention to small details;
meta-level issues may be ignored.

® Reason:
individual fails to recognise failure;
does not face up to consequences.

e Berndt Brehmer & Dietrich Doerner.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Failure Modes and the SKR Levels

Skill-based performance

Inattention verattention
Double-capture slips Omissions
Omission following interruptions Repetitions
Reduced intentionality Reversals

Perceptual confusion
Interference Errors

Rule-based performance

Misapplication o f good rules Application o f bad rules
First exceptions Encoding deficiencies
Countersigns and non-signs Action deficiencies
Information overload - wrong rules
Rule strength - inelegant rules
General rules - inadvisable rules.
Redundancy
Rigidity

Knowledge-based performance
Selectivity Halo effects
Workspace limitations Problems with causality
Out of sight out of mind Problems with complexity
Confirmation blas - delayed feedback
Overcontidence -insufficient consideration of
Blased reviewing processes in time.
Tllusory correlation - difficulties with exponential change

- thinking in causal series not nets
- themat ic vagabinding
~encysting

Acknowledgement:J. Reason, Human Error, Cambridge University Press, 1990 (ISBN-0-521-
31419-4).

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Error Detection

e Dont try to eliminate errors:
- but focus on their detection.

e Self-monitoring:
- correction of postural deviations;
- correction of motor responses;
- detection of speech errors;
- detection of action slips;
- detection of problem solving error.

e How do we support these activities?
- standard checks procedures?
- error hypotheses or suspicion?
- use simulation based training?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Error Detection

e Dont try to eliminate errors:
- but focus on their detection.

e Environmental error cueing:
- block users progress;
help people discover error;
“gag’ or prevent input;
allow input but warn them;
ignore erroneous Input;
self correct:
force user to explain..

e Importance of other operators

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Error Detection

e Cognitive barriers to error detection.

e Relevance bias:
- users cannot consider all evidence:
- “confirmation bias” .

e Partial explanations:
- users accept differences between
- “theory about state” and evidence.

e Overlaps:
- even incorrect views will receive
- some confirmation from evidence.

e “Disguise by familliarity”.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Practical Application

e So how do we use GEMS?

e Try to design to avoid all error?

e Use it to guide employee selection?

e Or only use it post hoc:
- to explain incidents and accidents?

e No silver bullet, no panacea.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Practical Application

e Eliminate error affoardances:
- increase visibility of task;
- show users constraints on action.

e Decision support systems:
- dont just present events;
- provide trend information;
“what if" subjunctive displays;
prostheses/mental crutches?

e Memory aids for maintenance:
often overlooked;

aviation task cards;

must maintain maintenance datal

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Practical Application

e Improve training:
- procedures or heuristics?
- simulator training (contentious).

e Error management:
- avoid high-risk strategies;
- high probability/cost of failure.

e Ecological interface design:
- Rasmussen and Vincente;
- 10 guidelines (learning issues).

e Self-awareness:
- when might | make an error?
- contentious...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Practical Application

becision aids

Shared functions
of decision and
memory aids

Memory aids

To compensate for bounded rationality: the fact that
attention can only be directed at a very small part

of the total problem space at any one time.

To direct attention to logically important aspects of the
problem sparse.

To correct the tendency to apply familiar but inappropriate
solutions.

To minimise the influence of availability bias, the tendency to
pr'z;er' diagnoses and/or strategies that spring readily to
mind.

To rectify incomplete or incorrect knowledge.

To augment the limited capacity of working memory.
This serves two primary functions:

(a) as a working database wherein analytical operations
can be performed, and

(b) as a means of keeping track of progress by relating
current data to stored plans in long-term memory.

To augment prospective memory. That is, to pr'ovide an interactive
checklist facility to enable appropriate actions to be performed in the
desired sequence at the right time. In short, to prompt the what?
And the when? Of planed actions. Also to encourage checking that all
of the necessary actions have been completed be fore moving on to the
next stage.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Outstanding Issues

e Problem of intention:
is an error a slip or lapse?
IS an error a mistake of intention?

e Given an observations of error:
aftermath of accident/incident;
guilt, insecurity, fear, anger.

e Can we expect valid answers?

e Can we make valid inferences?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

GEMS: Outstanding Issues

e GEMS focusses on causation:
- built on Rasmussens SKR model:
- therefore, has explanatory power

e Hollnagel criticises it:
- difficult to apply in the field;
- do observations map to causes?

e Glasgow work has analysed:
- GEMS plus active/latent failures;

e Results equivocal, GEMS:
- provides excellent vocabulary;
- can be hard to perform mapping.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Risk Homeostasis Theory

e \What happens if we introduce the
- decision aids Reason suggests?

“Each road user has a target (or accepted) level of risk which acts
as a comparison with actual risk. Where a difference exists, one may
move towards the other. Thus, when a safety improvement occurs,
the target level of risk motivates behaviour to compensate - e.g., drive
faster or with less attention. Risk homeostasis theory (RHT) has not
beenconcerned with the cognitive or behavioural pathways by which
homeostasis occurs, only with the consequences of adjustments in terms
of accident loss.”

Acknowledgement: T.W. Hoyes and A.I. Glendon, Risk Homeostasis:
Issues for Further research, Safety Science, 16:19-33, (1993).

e Will users accept more safety?
- or trade safety for performance?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Risk Homeostasis Theory

e \Very contentions.

e Bi-directionality?
- what if safety levels fall
- will users be more cautious?

e Does it affect all tasks?

e Does it affect work/leisure?

e How do we prove/disprove it?
- unlikely to find it in simulators.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Conclusions: Individual Human Error

e Slips, Lapses and Mistakes.

e Rasmussen: Skill, Rules, Knowledge.

e Reason: Generic Error Modelling.

e Risk Homeostasis.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work

e Workload.

e Situation Awareness.

e Crew Resource Management

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work

e High workload:
stretches users resources.

e Low workload:
wastes users resources;
can inhibit ability to respond.

e Cannot be “seen” directly;
is inferred from behaviour.

e No widely accepted definition?

: Workload

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Workload

“Physical workload is a straightforward concept. It is easy to mea-
sure and define in terms of energy expenditure. Traditional human
factors texts tell us how to measure human physical work in terms of
kilocalories and oxygen consumption...”

Acknowledgement: B.H. Kantowitz and P.A. Casper, Human Work-
load in aviation. In E.L. Wiener and D.C. Nagel (eds.), Human Factors
in Aviation, 157-187, Academic Press, London, 1988.

“The experience of workload is based on the amount of effort, both
physical and psycholoigcal, expended in response to system demands
(taskload) and also in accordance with the operator’s internal standard
of performance.”

Acknowledgement: E.S. Stein and B. Rosenberg, The Measurement of
Pilot Workload, Federal Aviation Authority, Report DOT/FAA /CT82-
23, NTIS No. ADA124582, Atlantic City, 1983.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Workload

e Various approaches:
- Wickens on perceptual channels;
- Kantowitz on problem solving;
- Hart on overall experience.

e Holistic vs atomistic approaches:
- FAA (+ Seven) a gestalt concept;
cannot measure in isolation;
(many) experimentalists disagree.

e Single-user vs team approaches:
workload is dynamic;

shared /distributed between a team;
many prvious studies ignore this.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Workload

e How do we measure workload?

e Subjective ratings?
- NASA TLX, task load index:
- consider individual differences.

e Secondary tasks?
- performance on additional task;
- obtrusive & difficult to generalise.

e Physiological measures?
- heart rate, skin temperature etc;
- lots of data but hard to interpret.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Workload

e How to reduce workload?

e Function allocation?
- static or dynamic allocation;
- to crew, systems or others (ATC?).

e Automation?
but it can increase workload:;
or change nature (monitoring).

e Crew resource management?
coordination, decision making etc;
see later in this section...

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Workload and
Situation Awareness

Perception and attention _

* Fy

Criterion

Working memor :
"9 4 setting !
s E , | .
: Choice | ———» | Action | —»
:: —++ Situation Assessment (Diagnesis) : -
Cues | 4 4
s :
—»
_p _

-

Action

Hypothesi
yporhesis generation

generation

Risk Assessment

Long term memory

Acknowledgement: C.D. Wickens and J.M. Flach, Information Processing. In E.L. Wiener and
D.C. Nagel (eds.), Human Factors in Aviation, 111-156, Academic Press, London, 1988.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Situation
Awareness

e Rather abstract definition.

“Situation awareness is the perception of the elements of the environ-
ment within a volume of time and spcae, the comprehension of their
meaning, and the projection of their status in the near future”

Acknowledgement: M. R. Endsley, Design and Evaluation for Situa-
tion Awareness Enhancement. In Proceedings of the Human Factors
Society 32nd Annual Meeting, 97-101. Human Factors Society, Santa
Monica, CA, 1988.

e Most obvious when it is lost.

e Difficult to explain behaviour:
- beware SA becoming a “catch all”’;
- just as “high workload” was.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Situation
Awareness

System capability

Interface design

Task/System Factors Stress and Workload
Com plexity
Automation
5
A/ 'y
Situation Awareness
II;BWI;';_, Level 2 Level 3: -,
State of the erceprion | Comprehension| Projection| —» —» | FETTOrMance
environment ?f elements of current of future of Actions
in current situation status 4
» situation
A ‘\‘\

| Information processing mechanisms |

Goals and Objectives

Preconditions
{Expectations)

| Long term memory stores |

Abilities T
Experience
Training

Personal Factors

Acknowledgement: M.R. Endsley, Towards a Theory of Situation Awareness, Human Factors,
(37)1:32-64, 1995.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Situation
Awareness

e Level 1: perception of environment
how much can be attended to?
clearly not everything...

e Level 2: Comprehension of situation
synthesise the elements at level 1;
significance determined by goals.

e Level 3: Projection of future.
knowledge of status and dynamics;
may only be possible in short term:;
enables strategy not just reaction.

e Novice perceives everything at L1;
- but fails at levels 2 and 3.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Situation
Awareness

Cither

Level 3 Over Projection of Trends

Cither
Over-reliance on Defaults
Trearreect Mertal Model

Level 2 Incomplete Mental adel

Mizinterpretation of Data
Data Hard to Discrim inate
Memory Errar

DatarMot Available

Level 1 Failure to Monitor Data

0 10 20 30 40 50 60 70 80

Acknowledgement: D.G. Jones and M.R. Endsley, Sources of Situation Awareness Errors in
Aviation. Aviation, Space and Evironmental Medecine, 67(6):507-512, 1996.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Situation
Awareness

e Hmm, subjective classification.

e 33 incidents with Air Traffic Control.

e NASA (ASRS) reporting system:

- how typical are reported events?

e | worry about group work:
- colleagues help you maintain SA?
- prompting, reminding, informing?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Situation
Awareness

“Investigators were able to trace a series of errors that initiated with the
flight crews acceptance of the controller’s offer to land on runway 19.
The flightcrew expressed concern about possible delays and accepted
an offer to expedite their approach into Cali... One of the AA965 pilots
selected a direct course to the Romeo NDB believing it was the Rozo
NDB, and upon executing the selection in the FMS permitted a turn
of the airplane towards Romeo, without having verified that it was the
correct selection and without having first obtained approval of the other
pilot, contrary to AA procedures... The flightcrew had insufficient time
to prepare for the approach to Runway 19.”

Acknowledgement: Controlled Flight Into Terrain, American Airlines
Flight 965 Boeing 757-223, N651AA Near CALI, Colombia December
20, 1995 Aeronautica Civil of the Republic of Colombia

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Crew Resource
Management

“...Among the results were that captains of more effective crews (who
made fewer operational or precedural errors) verbalised a greater num-
ber of plans than those of lower performing crews and requested and
used more information in making their decisions. This raises interest-
ing questions about whether situation awareness can be improved by
teaching specific communication skills or even proceduralising certain
communications that would otherwise remain in the realm of unregu-
lated CRM (crew resource management behaviour).”

Acknowledgement: S. Dekker and J. Orasanu, Automation and Situ-
ation Awareness. In S. Dekker and E. Hollnagel (eds.), Coping with
Computers in the Cockpit. 69-85, Ashgate, Aldershot, 1999. ISBN-0-
7546-1147-7.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Crew Resource
Management

e Cockpit Resource Management:
- crew coordination;
- decision making;
- situation awareness...

e More review activities inserted
into standard operating procedures.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Crew Resource
Management

Air Traffic Control Position

Terminal
Radar
Control Ground Local Control En route
delivery Controller Controller Rooms Controllers
Situation awareness rs A ry s A
Leadership A A
. Communicat ion iy & r'y A A
Categories of
E:;oc:'\r?::l?'*slon Mission analysis A A
Assertiveness A A A
Decision making & A A
Adaptability A A A A A

Acknowledgement: C.A. Bowers, E.L. Blickensderfer and B.B. Morgan, Air Traffic Control
Team Coordination. In M.W. Smolensky and E.S. Stein, Human Factors in Air Traffic Control,
215-237, Academic Press, London, 1998.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Crew Resource
Management

e Cockpit Resource Management:
- based on Foushee and Helmreich.

e Group performance determined by:
- process variables - communication;
- input variables - group size/skill.

e Goes against image of:
- pilot as “rugged individual”;
- showing “the right stuff”.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Crew Resource
Management

e Key objectives:

alter individual attitudes to groups;
improve coordination within crew;
increase team member effort;
optimise team composition.

e Can we change group norms?

e Does it apply beyond aviation?
- with fewer rugged individuals?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Crew Resource
Management

FAA Advisory Circular 120-51A 1993:

e Briefings are interactive and emphasize the importance of ques-
tions, critique, and the offering of information.

e Crew members speak up and state their information with appro-
priate persistence until there is some clear resolution.

e Critique is accepted objectively and non-defensively.

e The effects of stress and fatigue on performance are recognised.

NASA /UT LOS Checklist

e When conflicts arise, the crew remain focused on the problem or
situation at hand. Crew members listen actively to ideas and opin-
ions and admit mistakes when wrong, conflict issues are identified
and resolved.

e Crew members verbalize and acknowledge entries to automated
systems parameters.

e Cabin crew are included as part of team in briefings, as appropriate,
and guidelines are established for coordination between flight deck
and cabin.

Cited in: Quality Crew Resource Management, Human Factors Group
Of The Royal Aeronautical Society:.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Crew Resource
Management

CRM TRAINING METHODS AND PROCESSES
Phase One - Awareness training - 2 days classroom
Objectives:

e Knowledge:
— Relevance of CRM to flight safety and the efficient operation
of an aircraft
— How CRM reduces stress and improves working environment
— Human information processing
— Theory of human error
— Physiological effects of stress and fatigue
— Visual & aural limitations
— Motivation
— Cultural differences
— CRM language and jargon.
— The CRM development process
— Roles such as leadership and followership

— Systems approach to safety and man machine interface and

SHEL model
— Self awareness

— Personality types
— Evaluation of CRM

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Crew Resource
Management

Objectives (phase 1 cont.):
e Skills: Nil

e Attitudes:

— Motivated to observe situations, others’ and own behaviour in
future.

— Belief in the value of developing CRM skills.

Activities:

e Presentations

e Analysis of incidents and accidents by case study or video
e Discussion groups

e Self disclosure

e Personality profiling and processing

e Physiological experience exercises

e Self study

Quality Crew Resource Management, Human Factors Group Of The
Royal Aeronautical Society.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Crew Resource
Management

CRM TRAINING METHODS AND PROCESSES

Phase Two - Basic Skills training - 3/4 days classroom residential
Objectives:

e Knowledge:

— Perceptions

— How teams develop

— Problem solving & decision making processes
— Behaviours and their differences

— Thought processes

— Respect and individual rights

— Development of attitudes

— Communications toolkits

e Skills: See Appendix B
e Attitudes See Appendix B

Quality Crew Resource Management, Human Factors Group Of The
Royal Aeronautical Society.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Crew Resource
Management

CRM TRAINING METHODS AND PROCESSES

Activities:
e Presentations

e Experiential learning - (Recreating situations and experiences, us-
ing feelings to log in learning, experimenting in safe environments
with cause and effect behaviour exercises)

e Role play

e Videod exercises

e Team exercises

e Giving & receiving positive and negative criticism
e Counselling

e Case studies

e Discussion groups

e Social and leisure activities

Quality Crew Resource Management, Human Factors Group Of The
Royal Aeronautical Society.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Crew Resource
Management

CRM TRAINING METHODS AND PROCESSES

Classroom, CPT or simulator

Objectives: Development of knowledge, skills and attitudes to required
competency standards.

Activities: Practicing one or more skills on a regular basis under in-
struction in either the classroom, mock up/ CPT facility or full simu-
lator LOFT sessions. Also considered valuable would be coaching by
experienced crews during actual flying operations.

Quality Crew Resource Management, Human Factors Group Of The
Royal Aeronautical Society.

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work: Crew Resource
Management

“Under normal conditions, aircraft flying is not a very interdependent
task. In many cases, pilots are able to fly their aircraft successfully with
relatively little coordination with other crew members, and communi-
cation between crew members is rquired primarily during nonroutine
situations.”

Acknowledgement: C.A. Bowers, E.L. Blickensderfer and B.B. Morgan,
Air Traffic Control Team Coordination. In M.W. Smolensky and E.S.
Stein, Human Factors in Air Traffic Control, 215-237, Academic Press,
London, 1998.

e Does it work in abnormal events?

e Additional requirements ignored?

e Can it hinder performance?

©C.W. Johnson, 2006 - Safety Critical Systems Development.

Human Error and Group Work

e Workload.

e Situation Awareness.

e Crew Resource Management

©C.W. Johnson, 2006 - Human Computer Interaction.

