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Introduction 

Systems are intended to perform useful work and/or help users to get their jobs done. Security 

mechanisms are designed to prevent the system from being used in inappropriate ways. 

Unfortunately discriminating between these two activities is quite hard as users often make 

novel, unexpected, but perfectly legitimate uses of a system. Consequently, we need to assess 

the overall impact on system operation and security of a proposed security mechanism. Adding 

a 5-step multi-factor authentication mechanism to a system does not mean that the overall 

system is harder to penetrate: it's quite possible that harder authentication causes legitimate 

users to implement ‘work arounds’ to get their work done, but also reduce the effective security 

of the system.  We will never be certain that a system is going to be perfectly secure against all 

possible threats. We need to be clear about what parts of the system are intended to be secure 

against what kind of threats. Equally, we need to be explicit about which parts of the system or 

security methodology we are going to trust to be secure, i.e. not worry about, or hope that 

someone else is worrying about it.  Formal analysis based on mathematical proof can be used to 

reason about the security of system components and also about the interfaces with these 

trusted components. 

Different Perspectives 

One paper that supports these arguments is Thompson's demonstration of the ease with which 

vulnerabilities could be inserted into machine code without them appearing in the 

corresponding source code through manipulation of the compiler. Interestingly, Wheeler [2005] 

showed a method for reducing, but not eliminating this problem. MacKenzie's [2001] social 

history of the efforts to achieve formal proofs of correctness in software engineering makes a 

similar observation about the limits of mathematical proofs generated by machines (how do you 

know the machine doesn't contain bugs that invalidates the proof?). The Tokeneer case study 

[Barnes et al., 2006] of developing a formal proof for a security system, is an interesting 

example of this problem. The authors attempt to show that formal proofs are feasible for 

achieving desirable security properties in real software systems, rather than toy examples. 

However, many of the proofs are actually incomplete or rely on informal argumentation. 

A related strand of research looks at the use of deontic logic in system specification, Brunel 

[2004] for example. The idea here is that we should specify how systems should behave, by 

formulating functions as obligations imposed on the system, rather than features. In addition, 

we can specify consequences or penalties if the system fails to meet it's obligations. The 

argument is that this results in more robust system architectures that are better able to tolerate 

component or peer failure (whether that's really true or not is very much up for debate). The 
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notion of intentional access management is another example of this approach [Cao and Iverson, 

2006].  A final paper that is definitely worth a read is Spafford's account of the design and 

implementation of the Morris Worm, arguably the first released on the Internet, [Spa 

ord, 1988]. The paper is a nice example of how malware is often quite poorly designed and 

implemented.  It is important to understand how these threats work because they help to 

identify the theorems that we might need to prove during a formal analysis.  In other words, we 

can use mathematical reasoning to show that a future system is robust against a particular class 

of threats. 

Open Research Questions 

The following list provides a subset of research questions in this area: 

 What formalisms provide the best support for information security? 

Previous sections have mentioned the use of deontic logics that consider relationships 

between obligation and permission.  They can be used to reason about situations in 

which people violate security obligations/policies.  However, a large number of 

alternate notations have been developed including temporal and epistemic logics, as 

well as formal specification techniques such as Z and VDM.  There are graphical 

approaches such as Petri Nets and State Charts.  Many of these are supported by 

automated tools to support reasoning, including theorem provers and model checkers.  

Often these have only been applied to a limited number of security case studies hence it 

is difficult to make detailed comparisons of the strengths and weaknesses of these 

alternate techniques; 

 

 Can formal analysis be cost effective? 

In most cases, formal analysis can only be applied by teams with considerable training in 

mathematical reasoning.  They also require considerable amounts of time to analyse 

relatively simple sections of code.  Hence, questions remain about whether these costs 

are justified in terms of the insights that formal analysis provides into the underlying 

security of complex systems; 

 

 What are the limits of formal and informal reasoning? 

Previous sections have argued that in many cases formal analysis of secure systems is 

often supplemented and structured by a range of less formal arguments.  In other words, 

we cannot afford to create complete formal specifications of complex applications.  

Hence we have to use natural language descriptions to explain why mathematical 

techniques were used in certain areas of an application and not in others.  We may also 

have to use these natural language statements to explain why we believe those areas of 

a system that have not been subjected to formal analysis do not undermine the overall 

security if a system; 

 

 How best to integrate formal models into security cases? 

Safety cases have been developed using languages like Kelly’s [1998] Goal Structuring 

Notation.  They provide a map of the arguments that explain why a system is acceptable 

safe.  More recently, this approach has been used to develop security cases. – to explain 

why a system is acceptable secure.   This notation can be usd to integrate formal and 

informal analysis following the approach described in previous paragraphs.  Further 



work is required to determine whether this approach is scalable and supports security 

management in real-world applications. 
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