HW/SW Co-designed Processors: Challenges,
Design Choices and a Simulation Infrastructure for
Evaluation

Rakesh Kumar*, José Cano*, Aleksandar Brankovict, Demos Pavlout,
Kyriakos Stavrou?, Enric Gibert!, Alejandro Martinez¥ and Antonio Gonzalez!
*University of Edinburgh, UK Tintel illpets
§Pharmacelera YARM IlUniversitat Politécnica de Catalunya, Spain

Abstract—Improving single thread performance is a key chal-
lenge in modern microprocessors especially because the tradi-
tional approach of increasing clock frequency and deep pipelining
cannot be pushed further due to power constraints. Therefore,
researchers have been looking at unconventional architectures
to boost single thread performance without running into the
power wall. HW/SW co-designed processors like Nvidia Denver,
are emerging as a promising alternative.

However, HW/SW co-designed processors need to address
some key challenges such as startup delay, providing high per-
formance with simple hardware, translation/optimization over-
head, etc. before they can become mainstream. A fundamental
requirement for evaluating different design choices and trade-offs
to meet these challenges is to have a simulation infrastructure.
Unfortunately, there is no such infrastructure available today.
Building the aforementioned infrastructure itself poses significant
challenges as it encompasses the complexities of not only an
architectural framework but also of a compilation one.

This paper identifies the key challenges that HW/SW co-
designed processors face and the basic requirements for a simu-
lation infrastructure targeting these architectures. Furthermore,
the paper presents DARCO, a simulation infrastructure to enable
research in this domain.

I. INTRODUCTION

Microprocessor design has traditionally been and will con-
tinue to be driven by high performance requirements. However,
due to the slow down in single core (and thread) performance
improvement, chip manufacturers now put multiple simple
cores onto a single chip instead of making the core more
powerful [1]. Such multicore processors improve the overall
throughput by executing multiple threads in parallel on different
cores. However, the single thread performance suffers because
the individual core itself is less powerful. Single thread per-
formance remains of utmost importance for non-parallelizable
applications. Furthermore, even for parallel applications the
sequential execution of non-parallelizable sections significantly
affects the overall performance, as explained by Amdahl’s
law. Therefore, researchers have been looking at alternative
architectures to improve the single thread performance.

This work was done when Rakesh Kumar, José Cano, and Aleksandar
Brankovic were with UPC Barcelona; Demos Pavlou, Kyriakos Stavrou, Enric
Gibert, and Alejandro Martinez were with Intel Labs; and Antonio Gonzilez
was with both UPC Barcelona and Intel Labs.

Hardware/Software (HW/SW) co-designed processors' [3]-
[6] are a promising alternative that not only improves the single
thread performance but also reduces the power consumption,
thereby providing a better performance/watt. These processors
employ a software layer that resides between the hardware and
the operating system. This software layer dynamically translates
the guest ISA instructions to the host ISA, thereby enabling
proprietary host ISAs without modifying the software stack.
The host ISA is the ISA which is implemented in the hardware,
whereas, guest ISA is the one for which applications are
compiled. The key idea is to have a simple host ISA to reduce
both power consumption and complexity. Furthermore, dynamic
binary optimizations are applied to boost the performance.

Nvidia Denver [3] and Transmeta Crusoe [4] are the most
representative examples of commercial products based on
HW/SW co-designed architecture. Nvidia Denver executes
ARMVS binaries on 7-wide in-order cores to keep the power
budget to minimum, and relies on dynamic binary optimizations
for performance. Nvidia’s benchmark testing showed that the
64-bit CPU outperformed all other announced ARMvS cores
at that time and even matched the performance of low-end
versions of Intel’s Haswell CPU [3]. Similarly, Transmeta
Crusoe executes x86 binaries on a VLIW hardware and also
employs dynamic optimization.

Despite its potential, we have yet to see a successful
commercial product based on the HW/SW co-design paradigm,
as Transmeta Crusoe failed and Nvidia Denver is still under
scrutiny. The lack of successful products advocates the need for
further research in this domain to realize its full potential. A
fundamental requirement to explore and investigate the design
choices and trade-offs that these processors offer, is to have
a simulation infrastructure. However, there is no simulation
infrastructure available currently that provides the capabilities
to investigate the challenges in this domain.

Building a simulation infrastructure for HW/SW co-designed
processors poses significant challenges. The principal challenge
is the complexity of modelling the software layer. The software

The term “HW/SW co-designed processor” is used following the taxonomy
provided by [2]. Specifically, they call it “HW/SW co-designed virtual machine”
however, we believe the word “processor” is better suited in our context.

layer needs to provide virtually all the functionality of a
compilation framework such as translating the guest binary to
intermediate representation (IR), optimizing the intermediate
code, instruction scheduling, register allocation, generating
host code from the IR, etc. in addition to profiling the
execution for gathering runtime information and housekeeping.
Therefore, a simulation infrastructure for HW/SW co-designed
processors can be thought of as encompassing the complexities
of a compilation framework in addition to the conventional
architectural simulation.

Motivated by the potential of HW/SW co-designed proces-
sors and the need for further research in this domain, we
have developed a simulation infrastructure, called DARCO, as
a first step towards enabling research in this area. DARCO
models a processor that profiles, translates, optimizes and
executes a guest x86 binary on a RISC host architecture.
The key components of DARCO are the guest and host ISA
functional emulators, the software layer called Translation
Optimization Layer (TOL), timing and power simulators and
the accompanying debugging and monitoring tools. TOL is
equipped with an interpreter, translator, profiler and a dynamic
optimizer that applies a plethora of optimizations to the
translated regions. Except for the functional models and power
simulator, for which we used modified versions of QEMU
[7] and McPAT [8] respectively, all other components are in-
house developments. DARCO is a research enabler in HW/SW
co-designed processor domain.

The key contributions of the paper include:

o Identifies the principal challenges that HW/SW co-designed
processors face and shows how DARCO can be used to
address them.

o Identifies the challenges in building a simulation infrastruc-
ture for HW/SW co-designed processors.

e Presents DARCO, a complete infrastructure for investigating
HW/SW co-designed processors.

e Characterizes the software layer of DARCO and shows
that 90% of the guest dynamic code executes with highest
optimization level while incurring minimal overhead.

II. HW/SW CO-DESIGNED PROCESSORS

A HW/SW co-designed processor is a hybrid architecture
that leverages HW/SW co-design to couple a software layer
to the microarchitectural design of a processor. The basic idea
behind these processors is to have a simple host ISA, to reduce
power consumption and complexity, with the software layer
translating and optimizing the guest binaries for the host ISA.
This kind of processors [5], [6], [9] have enticed researchers
for more than a decade. Moreover, currently there is a renewed
interest from both industry and academia [10]-[13] in the wake
of imminent end of Moore’s law. In the transistor limited era,
the unique capabilities of the software layer will play a key
role in performance and energy optimizations.

In general, HW/SW co-designed processors implement a
proprietary ISA in hardware to achieve design simplicity
and energy efficiency. Therefore, they need to apply binary

Application Programs
Libraries

Operating
System Guest ISA
Translation Optimization
Layer (Software) Host ISA

Execution Hardware

Fig. 1. HW/SW interface in co-designed processors

translation to map the guest ISA on to the host ISA. The binary
translation, in general, can be implemented in either hardware
or software. For example, modern processors implementing
CISC ISA, like x86, implement binary translation in hardware
to translate CISC instructions to microcodes dynamically and
simplify the execution pipeline implementation [2]. On the
other hand, dynamic binary translation in HW/SW co-designed
processors is done by the software layer, as shown in Fig. 1.
We call this software layer as Translation Optimization Layer
(TOL) in this paper.

Software dynamic binary translation/optimization provides
several benefits over the hardware implementation. For example,
a hardware dynamic binary translator, typically, translates
individual CISC instruction to microcode in isolation whereas,
a software implementation translates the entire basic block or
even bigger code region at once hence increasing the scope of
optimizations. Furthermore, it allows to upgrade a processor
in the field by introducing new optimizations or fixing bugs
in the software layer which is not feasible with a hardware
implementation. The software implementation of TOL also
reduces validation and verification cost and time. Finally, the
software implementation reduces hardware complexity.

A. Dynamic Binary Translation and Optimization

As said before, translating the guest ISA code to host ISA
is the prime responsibility of TOL. The translation is done
dynamically and generally, in multiple phases. Usually, in the
first phase, an interpreter decodes and executes guest ISA
instructions sequentially. In the rest of the phases, the guest
code in translated to host ISA code and stored in a code
cache, after applying several dynamic optimizations, for faster
execution. The number of translation phases and optimizations
in each phase are implementation dependent.

A typical two stage TOL starts by interpreting the guest
ISA instruction stream sequentially. While interpreting, TOL
also profiles the guest code to collect information about the
most frequently executed code and biased branch directions.
The execution frequency guides TOL to decide which guest
code basic blocks to translate. When a basic block has been
executed more than a predetermined number of times, TOL
invokes the translator. The translator takes the guest ISA
basic blocks as input, translates them to host ISA code
and saves the translated code into the code cache for fast
native execution. Instead of translating and optimizing each
basic block in isolation, the translator uses biased branch
direction information, collected during interpretation, to create
bigger optimization regions, called superblocks. A superblock,

generally, consists of multiple basic blocks following the biased
direction of branches. Therefore, superblocks increase the scope
of optimizations to multiple basic blocks and allow more
aggressive optimizations. Superblocks have a single entry point
that is the first instruction of the first basic block included
in the superblock. However, the number of exit points are
implementation dependent.

III. CHALLENGES AND DESIGN CHOICES

Following are the key challenges and design choices in
HW/SW co-designed processors that need a simulation infras-
tructure, like DARCO, for evaluation :

Startup Delay: The time taken for initial translations before
executing the translated/optimized native code, called startup
delay, is an important factor that dictates the startup perfor-
mance or response time of the system. Transmeta Crusoe’s
software layer starts with interpreting the guest code and
deferring translations until the detection of hot code. Even
though interpretation is cheaper than translation, it is still
significantly slower than executing native code and hence,
results in poor startup performance. This was also one of the
major reasons for Crusoe’s demise. Nvidia Denver employs
a guest ISA decoder, in addition to the native decoder,
to avoid interpreting/translating the cold code and thereby
boosting the startup performance. However, a dual decoder
system results in additional hardware complexity and power
consumption. Reducing the startup delay without additional
hardware complexity remains an open question.

When and where to translate/optimize: An interesting
question is: Should the guest code be translated/optimized
as soon as it becomes a candidate for optimizations or should
it be deferred to possibly increase resource utilization. For
example, in a multicore processor, it might be desirable to defer
optimizations until a core becomes idle, so that optimizations
can get under-way while the unoptimized code is executing on
the original core in parallel. Similarly, how many, if any, cores
should be dedicated to translation/optimization in a manycore
system is also an interesting question.

Finding optimal instruction schedule: McFarlin et al. [14]
showed that 88% of the performance gain of out-of-order (O00O)
processors can be achieved by a single “best” static schedule.
In a heterogeneous multicore system with a mix of in-order
and Oo0O cores, how to profile the execution to find the “best”
schedule on an OoO core and then migrate it to an in-order
core is a compelling problem.

Speculative Execution: As co-designed processors avoid
aggressive OoO execution, they rely heavily on aggressive
code optimizations and speculative execution for performance.
Speculative execution poses its own challenges. First of all, it
requires to checkpoint the architectural state periodically to
recover from a possible speculation failure. The checkpointing
granularity presents an interesting trade-off, as a high granu-
larity reduces checkpointing/commit overhead however, more
work may need to be flushed on speculation failures. How to
find susceptible speculation failure points to take a checkpoint
just before them is an intriguing problem.

Detecting a speculation failure itself can be costly. For
example, a common approach to detect speculative memory
reordering failures is to store the addresses and sequence
numbers of all the speculatively executed memory instructions
in a hardware table and search the table to check if the current
memory reference aliases with previously executed operations.
Doing a parallel search in such a table consumes significant
power or limits the table size. On the other hand, a serial
search increases the latency.

Profiling: Co-designed processors employ binary instrumenta-
tion to profile execution behaviour of applications and optimize
them accordingly. Profiling can be a powerful tool in detecting
phase changes during program execution and re-tuning the code
correspondingly. However, as instrumentation code executes
every time along with the application code that it profiles, it
can degrade the overall performance. A common approach
to reduce this performance penalty is to avoid profiling the
optimized code. However, not profiling the optimized code
means losing the opportunity to track phase changes and re-
tuning a major portion of the application as the optimized code
accounts for more than 90% of execution time. How to strike
a balance between profiling overhead and the performance
improvement from re-tuning and what hardware support can
accelerate profiling remain to be seen.

Wide in-order or narrow out-of-order cores: HW/SW
co-designed processors, generally, employ in-order cores to
reduce the energy requirements. However, an interesting trade-
off would be to compare the performance/watt of wide in-
order cores against narrow out-of-order cores taking into
consideration the dynamic optimizations.

Interaction between TOL and application: TOL is invoked
throughout the application execution for translation, optimiza-
tion of the guest code or for guiding the application execution
as such. As TOL and applications compete for the shared
resources, it is important to understand their interaction and
its impact on overall performance.

IV. CHALLENGES IN BUILDING A HW/SW CO-DESIGN
INFRASTRUCTURE

This section describes the key challenges and essential
features that an infrastructure needs to provide to simulate
a HW/SW co-designed processor. The bulk of complexity of
such an infrastructure comes from the modelling of TOL. TOL
not only needs to provide dynamic profiling, translation and
optimization capabilities but also handles the corner cases that
have been moved up from the hardware to optimize it for the
common case, e.g. handling of complex string instructions
might be moved to the software layer from the hardware.
Following are the key features that a HW/SW co-design
simulation infrastructure needs to provide:

Correctness: Dynamic binary translation and optimization lies
at the heart of HW/SW co-designed processors. The software
layer translates the guest binary to the host ISA and applies a
number of aggressive, often speculative, optimizations. As the
correct execution of the guest binary is the prime responsibility
of a processor, the simulation infrastructure must provide ways

to validate the correctness of translation/optimization passes.
Minimum software layer overhead: The overall execution
time in a HW/SW co-designed processor can be divided into
two components: application execution time and TOL execution
time. TOL execution time corresponds to the execution of TOL
when it is doing translation and optimizations or otherwise
guiding the application execution. Since during TOL execution
time the application is not making any forward progress, it can
be considered as overhead. It is of utmost importance to keep
this overhead minimum because a high TOL overhead would
negate the performance benefits of dynamic optimizations.
From the simulation infrastructure point of view, a negligible
TOL overhead is desirable as it will lead the application code to
dominate the execution time and facilitate evaluating different
optimizations as their contribution would be more pronounced.
Minimum emulation cost: Emulation cost is the average
number of host ISA instructions required to emulate one guest
ISA instruction. The emulation cost should be kept as low
as possible. From the simulation infrastructure point of view,
a high emulation cost will make it difficult to evaluate the
real power and performance benefits of co-designed execution
compared to the native execution as it would be executing a
lot more instructions than the native execution.

Support for multiple guest ISAs: One of the distinguishing
features of HW/SW co-designed processors is the ability to
execute multiple guest ISAs on the same hardware. For example,
Nividia Denver was initially rumoured to be an x86 CPU and
later a dual mode design [15]. This feature is going to be
especially important in future as one would like to be able to
run any application (compiled for any ISA) on any computing
device. Therefore, the simulation infrastructure needs to provide
a flexible frontend interface to support multiple guest ISAs.
Plug-and-Play support: The simulation infrastructure needs
to provide the ability to implement and evaluate new features
such as new dynamic optimizations, new hardware units or
hardware support for some optimization, host ISA extension,
etc. Moreover, it is desirable that the integration of these
new features to the existing infrastructure is simple and
straightforward. Such a plug-and-play approach would allow
researchers to utilize their time in coming up with innovative
ideas rather than squandering it in figuring out how to integrate
their techniques into the infrastructure.

Powerful debug toolchain: Given the complexity of simulat-
ing a HW/SW co-designed processor, the simulation infras-
tructure should provide a powerful debug toolchain especially
compared to the conventional architectural simulators. In such
an infrastructure an erroneous behaviour could be caused by a
bug in distinct modules of TOL such as translator, optimizer,
instruction scheduler, register allocator, code generator, etc.
in addition to conventional functional and timing simulators.
Therefore, a powerful debug toolchain becomes essential to
quickly locate and fix any bugs.

V. DARCO ARCHITECTURE

DARCO encompasses the guest and host ISA functional
emulators, the software layer called Translation Optimization

X86 Component —o Binary Co-designed Component
x86 0S Translation Optimization
Layer (TOL)
X86 Authoritative x86 Host ISA Emulated x86
Functional architectural and Functional architectural and
Emulator memory state E memory state
) mulator /
Dataand Data and
Instruction Path Instruction Path
Tracker Timing/Power
Command Path| Controller ["command path :
Simulator
\

Fig. 2. DARCO main components

Layer (TOL), timing and power simulators and the accompa-
nying debugging and monitoring tools. DARCO has a clean
interface for including new optimizations in TOL and allows
easy implementation of new hardware features. As shown in
Figure 2 DARCO is composed of four main components:

The co-designed component models the functionality of
a HW/SW co-designed processor. It is constituted of TOL
and a functional emulator for the host ISA. TOL translates
and optimizes the guest x86 binary before the host functional
emulator executes the optimized code. TOL itself is also
compiled to the host ISA. This component keeps the emulated
x86 architectural and memory states which are updated as
the application execution proceeds. In its current state, the
co-designed component models only the user level code.

The x86 component provides a full-system functional
emulator for the guest x86 ISA. It runs an unmodified operating
system and is the only component that interacts with the
operating system. The authoritative architectural and memory
state is also kept by this component as it emulates x86 code and
not the translated/optimized code. The x86 component plays
an instrumental role in ensuring the correctness of translation
and optimizations in the co-designed component by validating
the emulated architectural and memory states kept by the
co-designed component against its own authoritative states.
DARCO relies on the x86 component to execute the system
code as the co-designed component models only the user code.

The timing simulator models a parameterized in-order core.
The simple in-order processor is chosen in congruence with the
simple hardware design philosophy of HW/SW co-designed
processors. It receives the dynamic instruction stream from
the co-designed component and provides detailed execution
statistics. Furthermore, McPAT [8] has been integrated with the
rest of the infrastructure for power and energy modelling. The
use of the timing and power simulators is optional and does
not affect the functionality of the rest of the infrastructure.

The Controller is the main user interface of DARCO. It
provides full control over the execution of the application as
well as debugging utilities. The main task of the controller is
to provide synchronization among different components and
the resolution of the various requests from the co-designed
component as will be explained in next section. The controller
is also responsible for comparing authoritative and emulated
x86 states to ensure the correctness of translation/optimizations.

A. Execution Flow

The execution flow of an application passes through three
distinct phases: 1) Initialization, 2) Execution, and 3) Synchro-
nization. During the Initialization phase, the controller first
starts the co-designed component, which in turn, initiates the
execution of TOL. The co-designed component then remains
idle until the controller sends the initial x86 architectural state
of the application to be executed to it. As for the x86 component,
when launched by the controller, it initiates the execution of
the application defined by the user. When it reaches the system
call EXECVE (which always takes place at the beginning
of an application) the execution pauses. A process tracker is
initialized with the application’s Control Register 3 (CR3) value,
which can be used to distinguish the specific process from the
rest of the applications running on top of the operating system.
After process tracker initialization, the x86 component sends
the initial x86 state of the application to the controller. The
Initialization phase is completed when the controller forwards
this state to the co-designed component.

In Execution phase, TOL begins by executing code from
the initial Program Counter it received during the Initialization
phase. All changes made to the x86 architectural and memory
state from the emulation of the x86 instructions are stored in
the “Emulated x86 architectural and memory state”. While the
x86 application is making forward progress in the co-designed
component, the x86 component remains idle.

The Synchronization phase is initiated by the co-designed
component when any of the following three events occurs
during the Execution phase: 1) data request, 2) system call,
or 3) end of application. The data request event occurs when
the co-designed component accesses an x86 memory page for
the first time. The co-designed component sends a request
to the controller for the particular memory page along with
the total number of dynamic x86 basic blocks executed till
that point. Then, it remains idle until the request is satisfied.
The controller forwards the request to the x86 component,
which in turn continues the execution of the application until it
reaches the same execution point as the co-designed component
(remember that the x86 component remained idle after the
initial launch of the application). When the correct execution
point is reached, the requested memory page is sent to the
controller and forwarded to the co-designed component. The
same process is followed for the other two events: system
calls and end of application. System calls need synchronization
because the co-designed component models only user-level
code. Therefore, the system calls are executed only in the x86
component. Any changes made to the x86 architectural and
memory state during the execution of system calls are passed
to the co-designed component after the completion of the
system call. As for the end-of-application, the synchronization
is necessary to ensure that the execution of the application on
the co-designed component was correct.

B. Translation Optimization Layer

Translation Optimization Layer (TOL) of DARCO is re-
sponsible for translating the unmodified guest x86 code to a

x86 eip

From Code $

Create SB

Y . .
= BB Translate Optimize SB

Store in Code $

Chain

 —

p
l Interpret I Execute from Code $

Fig. 3. TOL execution flow. The left path is followed in IM, the middle in
BBM and the right in SBM

PowerPC-like RISC host ISA. TOL does this translation in
three different modes: 1) interpretation mode (IM), 2) basic
block translation mode (BBM), and 3) superblock translation
and optimization mode (SBM). TOL starts by interpreting the
guest x86 code and promotes it to the higher optimization
levels as hot code regions are detected. The high level view of
TOL execution flow is shown in Figure 3.

1) Interpretation: TOL begins the execution of the ap-
plication in IM. While in IM mode, x86 instructions are
interpreted one by one and the emulated x86 state is updated
accordingly. The IM guarantees forward progress of the
application and is also used as a safety-net in case instructions
cannot be included in basic block translations and superblocks.
Moreover, interpretation is necessary to make forward progress
in case of speculation failures in superblock due to aggressive
optimizations.

2) Basic Block Translation: During IM, profiling informa-
tion is collected for execution frequency of the basic blocks
using software repetition counters. When the repetition counter
of a basic block reaches a predetermined threshold, TOL
switches to BBM in order to translate the corresponding x86
basic block. In this mode, the guest x86 instructions are
translated to intermediate representation (IR) code. The IR
code then undergoes some basic optimizations like dead code
elimination and constant propagation, which smoothens the
rough edges caused by the translation of individual instructions.
Finally, a code generator maps the optimized IR to host
instructions and stores them in the code cache.

3) Superblocks and Optimizations: During Basic-Block
translation Mode (BBM), profiling information is gathered for
all the basic blocks using software counters. This information
consists of execution and edge counters. The execution counters
provide the execution frequency of the basic blocks while the
edge counters monitor the biased direction of branches. Once
the execution of a basic block exceeds another predetermined
threshold, TOL creates a bigger optimization region, called
superblock, using the branch profiling information collected
during BBM.

In Superblock translation and optimization mode (SBM),
TOL generates a new superblock starting from the triggering
basic block. A superblock generally includes multiple basic
blocks following the biased direction of branches, in other
words speculating the control flow. A superblock ends at one
of the following conditions: 1) The last basic block included
in the superblock ends with an indirect branch, call, or return
instruction; 2) The last basic block included in the superblock
ends with an unbiased branch or the probability of reaching
the last basic block from the beginning of the superblock falls
below a predetermined threshold; 3) The number of instructions
in the superblock exceeds a predetermined threshold; 4) The
number of basic blocks included in the superblock exceeds a
predetermined threshold.

Moreover, the branches inside the superblocks are converted
to “asserts” so that a superblock can be treated as a single-entry,
single-exit sequence of instructions. This gives the freedom to
reorder and optimize instructions across multiple basic blocks.
“asserts” are similar to branches in the sense that both check
a condition. Branches determine the next instruction to be
executed based on the condition; however, asserts have no such
effect. If the condition is true, assert does nothing. However,
if the condition evaluates to false, the assert “fails” and the
execution is restarted from a previously saved checkpoint in IM.
Furthermore, if the number of assert failures in a superblock
exceeds a predetermined limit, the superblock is recreated
without converting branches to “asserts”. As a result, this time
the superblock has to be treated as a single-entry multiple-exit
sequence of instructions. Having multiple exits in a superblock
also reduces available optimization opportunities because the
instructions across different exit paths cannot be reordered as
freely as before.

Furthermore, loop unrolling is also employed during su-
perblock creation. Currently, we unroll loops consisting of
only a single basic block, as they are the ones which provide
maximum benefit [16]. Moreover, the unrolled version of
the loop is followed by the original loop (without unrolling).
During execution, a runtime check is performed to determine
whether to execute the unrolled version or the original loop.
The unrolled version is executed only if the number of iterations
remaining are more than the loop unroll factor.

TOL optimizer provides a set of basic code optimizations to
start with. Moreover, the modular optimizer design makes it
convenient to enable/disable and plug-in new optimizations in
TOL. The optimizer starts with transforming the intermediate
representation (IR) code of a superblock into a Static Single
Assignment (SSA) format. This transformation removes anti
and output dependences and significantly reduces the com-
plexity of subsequent optimizations. Second, a forward pass
applies a set of conventional single pass optimizations: constant
folding, constant propagation, copy propagation, and common
subexpression elimination. Third, a backward pass applies dead
code elimination.

After these basic optimizations, the Data Dependence Graph
(DDG) is prepared. To create DDG, the input and output
registers of the instructions are inspected and the corresponding

dependences are added. Memory disambiguation analysis is
also performed during DDG creation. If the analysis cannot
prove that a pair of memory operations will never/always
alias, it is marked as “may alias”. In case of reordering,
the original memory instructions are converted to speculative
memory operations. Furthermore, Redundant Load Elimination
and Store Forwarding are also applied during DDG phase so
that redundant memory operations are removed. The DDG is
then fed to the instruction scheduler that uses a conventional
list scheduling algorithm. Afterwards, the determined schedule
is used by the register allocator that implements Linear Scan
Register Allocation algorithm. Finally, the optimized IR code
is translated to the host code and is stored in the code cache.
The previous entry in the code cache that corresponds to the
first basic block of the current superblock is invalidated and
freed for later translations.
C. Timing Simulator

DARCO models an in-order superscalar processor with
front- and back-ends running independently and separated by
an instruction queue. The front-end (equipped with a BTB
and gshare branch predictor) fetches, decodes and stores the
host instructions in the instruction queue. The backend issues
and executes the instructions from this queue and employs
Scoreboarding to track dependencies and resource availabilities.
It incorporates simple, complex and vector units for execution.
DARCO models two level TLB and cache hierarchies with
a stride data prefetcher. Timing simulator parameters include:
issue width, instruction queue size, numbers of execution units
and latencies, number of physical registers (scalar/vector),
branch predictor and BTB sizes, cache and TLB sizes/latencies,
numbers of memory read/write ports and vector length for
SIMD units.
D. Meeting the challenges

Having already described DARCO architecture, next we
explain how it meets the challenges described in Section IV:
Correctness: The x86 component holds the key to ensure
the correctness of the co-designed execution. It executes the
unmodified x86 binary and keeps authoritative architectural
and memory states. DARCO compares the architectural and
memory states of x86 and co-designed components periodically
to ensure correctness. The comparison kicks off by itself at
system calls and at the end of application. Furthermore, the
user can also decide how often to validate co-designed states
against the authoritative x86 states.
Minimum TOL overhead: In addition to carefully engineering
the TOL code itself, DARCO employs several other techniques
to minimize TOL overhead. For example, 3-stage transla-
tion/optimization (IM, BBM and SBM) ensures that only
the most frequently executed code is optimized aggressively,
therefore reducing the optimization overhead. Furthermore,
DARCO ensures that TOL is invoked only when absolutely
necessary while executing optimized code from the code cache.
To reduce the number of TOL invocations, for example, the
optimized superblocks (and basic blocks) are chained together
whenever possible. Even the indirect branches are chained
using IBTC [17].

M Insn executed in IM

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

7

N/
§
N\

N
N
N

N
N
\
N|
N

Dynamic x86 Instruction Percentage

_CNLJ“-MDDE"-Q.‘—XII!UQW
Q r—
R EREE
g 3|0iq8 @82 2SSy 3E S
2529 N 0| ®|N BRI IR
58 Y sB 2 ERSE2Q NG
g < Q< g4 esge|TISI S8
k] =1 w| ®
3 < =0l x ™D S
8 =<~ o T <3R5
S e - 2
< ~ <

SPECINT2006

B Insn execute in BBM

Insn executed in SBM

N

20000
B

\ N\
B e B

'U'UX>~><DEM(UU’GJW'CU: O|lw o
vl o= X 5 3B € S| o [=]
T Ela 355 S£2 23558 2= 88l
=8 32238383l w «&«
252 8/5%Res EESL2Ee |Elag
2w 2 EIF| 222 5|el® ol Z|5 8
B¥2338 g°8%sd= oge
< S| M F Olgo &% 2
a n o

n

<
SPECFP2006 Physicsbench ‘Averages‘

Fig. 4. Dynamic x86 instruction distribution in IM, BBM and SBM

Minimum emulation cost: The biggest factor in reducing the
emulation cost is runtime optimizations. DARCO generates
aggressively, if needed speculatively, optimized host code that
not only improves performance but also lowers the emulation
cost. Furthermore, DARCO utilizes several other techniques
to ensure minimum emulation cost. For example, DARCO
maps guest architectural registers directly on the host registers.
Therefore, it saves upon the instructions that would otherwise
be needed to load a register on reads and store it on writes if the
guest architectural registers were kept in memory. Additionally,
x86 instructions have a side effect of writing the flag register.
DARCO writes to the flag registers only if the written value
is really going to be consumed by a subsequent conditional
instruction.

Support for multiple ISA: Even though DARCO currently
supports only x86 as guest ISA, incorporating additional
frontends is straightforward. As explained in Section V-B, TOL
first translates the guest ISA instructions to an intermediate
representation (IR) and all the optimization are applied to IR.
To support additional guest ISAs, DARCO just needs another
software decoder to translate the new guest ISA instructions
to IR. All the following steps from SSA to code generation
can be shared among the different guest ISAs.
Plug-and-play: DARCO is designed in a modular way making
it straightforward to enable/disable any particular feature with-
out affecting the functionality of the rest of the infrastructure.
A clean interface makes it easy to develop new features,
optimizations or hardware features, in isolation and plug them
into the whole system when ready.

Debug toolchain: DARCO provides a strong debug toolchain
with the x86 component playing a major role in it. As DARCO
periodically validates the co-designed architectural and memory
states against the authoritative x86 state, it activates the
debug mechanism if a mismatch is detected. DARCO, first of
all, pinpoints the exact basic block where the problem was
originated. Then it traces back to find out the particular step
where the bug first appeared, e.g. while translation to IR, any
of the several optimizations, during emulation in the host ISA
emulator, etc.

VI. DARCO EVALUATION

This section presents a high level evaluation of DARCO and
characterizes TOL using a set of benchmarks from SPEC2006
[18] and Physicsbench [19]. First, we examine the execution
speed of DARCO followed by a discussion on dynamic x86
instruction distribution in different execution modes. Then a
study of the emulation cost of x86 instructions in SBM is
presented. Finally, we study TOL overhead and its components
followed by a brief case study.

A. DARCO speed:

We present DARCO speed in terms of number of instructions
emulated/simulated per second for both the guest and host ISA.
For the guest x86 ISA, DARCO speed represents the rate at
which the x86 instructions pass through the entire execution
flow of DARCO including all the components shown in Fig 2.
On average, DARCO emulates 3.4 million x86 instructions per
second (MIPS) whereas the simulation speed with the timing
simulator enabled is 370 KIPS for the guest ISA. Similarly
for the host ISA, the emulation speed is 20 MIPS and the
simulation speed with the timing simulator is 2 MIPS. The
results presented are collected on a cluster where only one
core is devoted per execution task and all the components of
DARCO share this core.

B. Optimized Code Distribution:

The dynamic x86 instruction distribution in the three
execution modes of TOL: the Interpreter Mode (IM), the
Basic Block Mode (BM), and the Super Block Mode (SBM)
is depicted in Figure 4. The experimental data shows that
88%, 96%, and 75% of the dynamic instruction stream
comes from the highest level of optimization, superblocks, in
SPECINT2006, SPECFP2006, and Physicsbench respectively.
For three benchmarks in Physicsbench, namely continuous,
periodic, and ragdoll, significant number of instructions are
executed in BBM. The dynamic instruction count and dynamic
to static instruction ratio for these benchmarks are significantly
lower than other benchmarks. Therefore, only a small portion
of code is promoted to SBM.

(=)

c

o

5

>

=1

1

E4

©

®© 3 -

x

o

82 -

"

c

o1+

2

3]

20

30 -

5

1] ~ “ . o @

2 §la HEEREEIEE SR

% |53 slel2lg 855z EE&¢gaz

2 9l a AR IR g S E|<|=

[] 215 W oo O N o0 v/ o238

T = g Sle| EIR < NI & 2 =
k=] IR w5 =
Q< s Y8 3T = Slwl 8 _
S ~ =13 IR < PRI
=] N < Sl
N g g

SPECINT2006
Fig. 5.

BTOL Overhead

Host Dynamic Instruction Stream

SPECFP2006

ol x| > x o IR IR -] vl vlc
VI T = = X5 2 5/l [=3N=2*)
El3 €358 c/ 22|88 ¢glo o|o|c
2 old 2 ZlL8|3 | o NN o
- 38 ®|'G S ®|E|E S| Elalo
IS a8 E5%E 25 eE z|&3
2338 N85 %52 olaolg
w

<r<.-o_; < ©lo g_%_c
iy wv a

<

‘ Averages

Physicsbench

Host instructions per x86 instruction in SBM

Application Instructions

B8 N B R
N Y5 X w S asx o agy ° X > x Mmoo v o a o = 0 o c
S S CELET S £ 0=¢g8 =3 -g 3 sZELERES 228253 S S G
c g WE SO 2FeBEZES SO0 oS 23202 8 9] S vsT S O ¢
e g wmew 2ol T -8 EILS=2C g3 gE L3S H O o b N N T
2 - o P S N S &8 303 o4 S T s QS8 s c ES a5 e = a o
3O YT SR ERSEQREZLEIS S EST2E53H8" 25238
RS @3T8 YT PONTI AT E o558 xXE S
q < 2 0 < X o 32} S o S g Lo 0 o @ W oo >
[=} =9~ wn < <+ @ 9« < 3 < ° a »n £
s) o < & ¥ © A 2 o
< © <) v
< < <
SPECINT2006 SPECFP2006 Physicsbench Averages
Fig. 6. Overall Host Dynamic Instruction Distribution
OInterpreter overhead [BB Translator Overhead F1SB Translator Overhead M Prologue = Chaining ECode $lookup M Others
., 100% -
§ 90% 1 5 5] 5 o
T 80w LI : . ¥ v I% Bl B
s M E 3 3 g G 7
2 70% 7 5 2 nils ol it 2
£ 60% - 5 i i 5 i
S 50% 1 H it 2 N
5 40% i : §
2
3 30% | §
2 20% |
e N
5 10%
E 0% \
ol s algls|x welgleslxgleelygs o xzxloeloeygease= ol vl
< 5] 1] 5 R 4 X @ @ L
3 22 % EE S5 3 82| SEEsa ot 2Es 522232 5/8%828 |8/8¢
° 223382538 ¢g3ciq2533E88sses2zEsgs R SlF2
T S ¥9I2Y 38 ER|I5SLeq 8 g2 S8ES R EEse® g AR
32 w255 oS g o 4/ ®B8 RIS LS N 5 S5€ % & Sli2lg
3 3 23 4 L3RS D P8 o YR D0 1) S 3 o= o &%
o =S~ o ¥ EARAIAR < = < ©lo al|&k £
g o < 00 g a »n o
L < < <
SPECINT2006 SPECFP2006 ‘ Physicsbench Averages

Fig. 7. Dynamic TOL Overhead Distribution

C. Emulation Cost:

Emulation cost is the number of host instructions generated
per x86 instruction. Since the dynamic instruction stream is
dominated by the execution of code in SBM, we present the
emulation cost only in SBM. As Figure 5 shows, on average
TOL generates 4, 2.6, and 3.1 host instructions per x86 in-
structions for SPECINT2006, SPECFP2006, and Physicsbench
respectively. The emulation cost of SPECINT2006 is relatively
high because of high emulation cost of branches. Since the
basic blocks in SPECINT2006 are smaller, the emulation cost
of branch instructions dominates the overall emulation cost.
Physicsbench has a higher emulation cost because it uses
significant amount of trigonometric functions like sin, cos, etc.
These x86 instructions are not directly mapped to the host
instructions, however, they are emulated in software. Therefore,
the overall emulation cost increases.

D. Dynamic Instruction/Overhead Distribution:

The overall host dynamic instruction stream is composed of:
1) Application Instructions and 2) TOL Overhead Instructions.
Application instructions are the dynamic instructions corre-
sponding to the emulation of x86 application. On the other
hand, TOL overhead are the instructions needed to translate
the x86 code to the host code and doing housekeeping tasks.

Figure 6 shows the percentage of application instructions
vs TOL overhead in the host dynamic instruction stream. For
SPECINT2006 and SPECFP2006, 16% and 13% of the overall
instruction stream corresponds to TOL overhead respectively,
whereas for Physicsbench this number rises to 41%. The high
dynamic to static instruction ratio causes TOL overhead to be
amortized in SPEC2006. On the other hand, in Physicsbench
the overhead in not amortized due to fewer executions of
translated code.

Figure 7 shows the various components of TOL overhead.
It is divided into seven major categories (bottom-up): 1)
Interpretation Overhead: TOL overhead for interpreting the
code before it is promoted to BBM. 2) BB Translator Overhead:
TOL overhead for translating the basic block promoted to
BBM. 3) SB Translator Overhead: TOL overhead for creating,
translating, and optimizing the superblocks. 4) Prologue: Every
time control is transferred between TOL and the translated code,
a specific piece of code is executed to do some housekeeping
stuff like stack management. Prologue overhead corresponds
to executing this code. 5) Chaining: Different translated basic
blocks and superblocks can be connected to each other in the
code cache. To check whether chaining is possible and chaining
the possible pairs constitutes “Chaining” overhead. 6) Code
Cache Lookup: Every time that control is transferred to TOL,
it checks whether the translation for next x86 basic block is
already present in code cache or not. This lookup is termed as
code cache lookup overhead. 7) Others: All other overheads
like managing control flow in the main loop of TOL, collecting
statistics, TOL initialization, etc. fall under this category.

It is interesting to note that, in Physicsbench, Interpretation
Overhead and BB Translator Overhead dominate the overall
overhead, whereas in SPECFP2006 these overheads are rela-
tively smaller. The reason for this behaviour is once again the
dynamic to static instruction ratio. SB Translator Overhead,
where most aggressive/speculative optimizations are applied,
is relatively smaller for both benchmark suites.

E. Case Study

We present a brief case study to demonstrate the efficacy
of DARCO in HW/SW co-design research. The details of the
study can be found in [20]. DARCO has already catalyzed the
research in this domain as is evident from [20]—[28].
Warm-up Simulation Methodology: Sampling based simu-
lations are used universally to reduce the simulation time
with minimal loss of accuracy. Sampling relies on selecting a
small, yet representative set of samples from the application
for detailed timing simulations. Statistics are collected for each
sample after warming-up the microarchitectural components for
few million instructions. In the case of HW/SW co-designed
processors, however, the software layer state also needs to
be warmed-up in addition to the microarchitectural state. Our
experiments, using DARCO, show that warming-up the TOL
state only for a few million instructions leads to significant
loss of accuracy. The penalty of inaccuracy in TOL state
is much severe than that in the microarchitectural state. For
example, a last-level cache miss due to a warm up inaccuracy
in microarchitectural state results in a penalty of hundreds
of cycles, whereas a code region translation/optimization due
to inaccurate TOL profiler state costs thousands to tens of
thousands of cycles. Therefore, TOL state needs to be highly
accurate after the warm up period to avoid inaccuracies in the
statistics. To obtain such high accuracy, we found that, the
warm-up period needs to be 3-4 orders of magnitude longer than
the warm-up period for conventional processors. Such a long

warm-up period results in correspondingly longer simulation
times.

To tackle this problem, we have developed a new warm-up
methodology that downscales the promotion thresholds during
the TOL warm-up phase to allow the code to be promoted
to the higher optimization regions quickly and restores the
original thresholds while collecting statistics. It provides an
interesting trade-off between the scaling factor and the warm-
up period length. For example, a small scaling factor and
long warm up period provide high accuracy but long overall
simulation time. On the other extreme, a high scaling factor
and small warm-up period reduce the simulation time at the
cost of low accuracy. We use a heuristic to predict the scaling
factor and warm-up length for each sample such that the warm-
up execution represents the authoritative (complete, without
warm-up) execution faithfully. Our off-line heuristic correlates
the execution distribution (basic block execution frequencies)
of different configurations, with different scaling factors and
warm-up lengths, to the execution distribution of authoritative
execution and picks up the best match. Our technique reduces
simulation cost by 65x on average with an error of 0.75%.

VII. RELATED WORK

Dynamic binary instrumentation, translation and optimiza-
tion, which is an elementary part of HW/SW co-designed
processors, has also been of interest in itself in the last
decade. Dynamic binary instrumentation frameworks like Pin
[29] and Valgrind [30] have been used to develop powerful
tools for program analysis, debugging, security, etc. Dynamic
binary translators and optimizers have been implemented in
both hardware as well as software. Intel microprocessors
implement dynamic binary translation in hardware to translate
CISC instructions into pops [2]. On the contrary, Apple used
Rosetta [31], a software dynamic binary translator, to run
PowerPC binaries on Intel processors. Similarly, Dynamo [32],
DynamoRIO [33], IA-32 EL [34], and Strata [35] perform
optimizations in a software layer running on top of operating
system. All these optimizers apply only simple, low-cost
optimizations in order to minimize the optimization overhead.
On the contrary, hardware-only dynamic binary optimizers like
RePlay [36] and PARROT [37] do not incur this optimization
overhead as optimizations are performed in hardware and
off-the-critical path. However, hardware-only dynamic binary
optimizers pay the cost in terms of extra hardware complexity,
area and power.

Computer architects rely heavily on simulation infrastruc-
tures as is evident from the diversity of simulation infrastruc-
tures available today. Architectural simulators have consistently
grown in terms of capabilities and complexity. Earlier simu-
lators like SimOS [38], RSIM [39] and SimpleScalar [40]
targeted uniprocessor architectures. However, with the advent
of parallel and multicore architectures a new class of simulation
infrastructures like Simics [41], SIMFlex [42], GEMS [43],
Graphite [44], Sniper [45], zsim [46], gem5 [47], ESESC [48],
COTSon [49] etc. have taken over. Some of these simulators
are able to simulate thousands of processor cores. Furthermore,

functional simulators and software virtualizers like QEMU [7],
VMware [50], VirtualBox [51], etc. provide fast and flexible
architectural emulation.

As we have seen in this section, there exist simulation
infrastructures for dynamic binary translation, dynamic binary
optimizations and microarchitectural simulations. However,

there is no single infrastructure that provides all these features.

Using an ad-hoc approach of combining these infrastructures to
simulate a HW/SW co-designed processor is not attractive as all
these infrastructures target different problems. For example, the
dynamic binary optimizers discussed above optimize binaries
assuming same guest and host ISAs which is not the case for
HW/SW co-designed processors. More importantly, as these
frameworks are developed in isolation without considering the
synergy needed between the software layer (TOL) and the
hardware, the ad-hoc approach would just try to make two
disjoint components communicate with each other, whereas in
HW/SW co-designed processors TOL and hardware are tightly
coupled and specialized to work with one another. Therefore,
we decided to develop the whole new simulation infrastructure
instead of just putting few unrelated frameworks together.

VIII. CONCLUSION

This paper discussed the potentials of HW/SW co-designed
processors and the challenges they need to address in order
to compete with conventional hardware-only processors. We
motivated the need of a simulation infrastructure and showed
how it can be instrumental in exploring this domain and
evaluating the design choices. Furthermore, we presented the
challenges in building such a research infrastructure itself.
In addition, we presented DARCO, a complete simulation
infrastructure that provides host and guest ISA functional
emulators, a translation optimization layer, a timing and power
simulator for host ISA, a powerful debugging tool-chain, and
monitoring tools. DARCO executes 90% of the guest dynamic
code in the highest optimization level with minimal software
layer overhead and incurs minimal emulation cost.

ACKNOWLEDGMENTS

This work was supported by the Spanish State Research
Agency under grants TIN2013-44375-R and TIN2016-75344-R
(AEI/FEDER, EU).

REFERENCES

[1] K. Olukotun et al., “The case for a single-chip multiprocessor,” in
ASPLOS, 1996.

[2] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems
and Processes. Morgan Kaufmann Publishers Inc., 2005.

[3] D. Boggs, G. Brown, N. Tuck, and K. Venkatraman, “Denver: Nvidia’s
first 64-bit arm processor,” Micro, IEEE, vol. 35, pp. 46-55, Mar 2015.

[4] A. Klaiber, “The technology behind the crusoe processors,” in White
paper, January 2000.

[5] S. S. et al., “Boa: Targeting multi-gigahertz with binary translation,” in
In Proc. of the 1999 Workshop on Binary Translation, 1999.

[6] K. Ebcioglu et al., “Daisy: Dynamic compilation for 100architectural
compatibility,” in ISCA, 1997.

[7]1 F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings
of the Annual Conference on USENIX Annual Technical Conference,
ATEC 05, 2005.

[8] S. Li et al., “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009.

[9] J. Dehnert et al., “The transmeta code morphing™ software: Using
speculation, recovery, and adaptive retranslation to address real-life
challenges,” in CGO, 2003.

[10
(1]
[12]
[13]
[14]
[15]
[16]
(171
[18]
[19]
[20]
[21]

[22]
(23]
[24]

[25]
[26]
[27]

(28]
[29]
(30]

[31]
[32]

[33]
[34]

[35]
(36]
[37]
(38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
(48]
[49]

[50]
[51

Intel HW/SW co-designed processor project. http://www.eetimes.com/
document.asp?doc_id=1266396.

M. Lupon et al., “Speculative hardware/software co-designed floating-
point multiply-add fusion,” in ASPLOS, 2014.

W. Cheng et al., “Acceldroid: Co-designed acceleration of android
bytecode,” in CGO, 2013.

N. Neelakantam et al., “A real system evaluation of hardware atomicity
for software speculation,” in ASPLOS, 2010.

D. McFarlin et al., “Discerning the dominant out-of-order performance
advantage: Is it speculation or dynamism?,” in ASPLOS, 2013.

Linley Group Microprocessor Report. Nvidias First CPU Is a Winner.
http://www.linleygroup.com/mpr/article.php?id=11262.

S. S. Muchnick, Advanced Compiler Design & Implementation. Morgan
Kaufmann, 1997.

K. Scott et al., “Overhead reduction techniques for software dynamic
translation,” in Parallel and Distributed Processing Symposium, 2004.
Standard Performance Evaluation Corporation. SPEC CPU2006 Bench-
marks. http://www.spec.org/cpu2006/.

T. Yeh et al., “Parallax: An architecture for real-time physics,” in ISCA,
2007.

A. Brankovic et al., “Warm-up simulation methodology for HW/SW
co-designed processors,” in CGO, p. 284, 2014.

R. Kumar et al., “Assisting static compiler vectorization with a speculative
dynamic vectorizer in an hw/sw codesigned environment,” ACM Trans.
Comput. Syst. (TOCS), vol. 33, Jan. 2016.

R. Kumar et al., “Vectorizing for wider vector units in a HW/SW co-
designed environment,” in HPCC, pp. 518-525, 2013.

J. Cano et al., “Quantitative characterization of the software layer of a
HW/SW co-designed processor,” in IISWC, pp. 138-147, 2016.

R. Kumar et al., “Efficient power gating of SIMD accelerators through
dynamic selective devectorization in an hw/sw codesigned environment,”
ACM Trans. Archit. Code Optim. (TACO), vol. 11, July 2014.

A. Brankovic et al., “Accurate off-line phase classification for HW/SW
co-designed processors,” in Computing Frontiers, pp. 5:1-5:10, 2014.
R. Kumar et al., “Speculative dynamic vectorization to assist static
vectorization in a HW/SW co-designed environment,” in HiPC, 2013.
R. Kumar et al., “Dynamic selective devectorization for efficient power
gating of SIMD units in a HW/SW co-designed environment,” in SBAC-
PAD, pp. 81-88, 2013.

R. Kumar et al., “Speculative dynamic vectorization for HW/SW co-
designed processors,” in PACT, pp. 459-460, 2012.

C. Luk et al., “Pin: Building customized program analysis tools with
dynamic instrumentation,” in PLDI, 2005.

N. Nethercote et al., “Valgrind: A framework for heavyweight dynamic
binary instrumentation,” in PLDI, 2007.

Apple Rosetta. http://apple.wikia.com/wiki/Rosetta.

V. Bala et al., “Dynamo: A transparent dynamic optimization system,”
in PLDI, 2000.

D. Bruening et al., “An infrastructure for adaptive dynamic optimization,”
in CGO, 2003.

L. Baraz et al., “Ia-32 execution layer: A two-phase dynamic translator
designed to support ia-32 applications on itanium-based systems,” in
MICRO, 2003.

K. o. Scott, “Retargetable and reconfigurable software dynamic transla-
tion,” in CGO, 2003.

S. Patel et al., “replay: A hardware framework for dynamic optimization,”
IEEE Trans. Comput., vol. 50, June 2001.

Y. Almog et al., “Specialized dynamic optimizations for high-performance
energy-efficient microarchitecture,” in CGO, 2004.

M. Rosenblum et al., “Complete computer system simulation: The simos
approach,” IEEE Parallel Distrib. Technol., vol. 3, Dec. 1995.

C. Hughes et al., “Rsim: simulating shared-memory multiprocessors with
ilp processors,” Computer, vol. 35, pp. 40-49, Feb 2002.

T. Austin et al., “Simplescalar: An infrastructure for computer system
modeling,” Computer, vol. 35, Feb. 2002.

P. Magnusson et al, “Simics: A full system simulation platform,”
Computer, vol. 35, Feb. 2002.

T. Wenisch et al., “Simflex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, July 2006.

M. Martin et al., “Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset,” SIGARCH Comput. Archit. News, Nov. 2005.
J. Miller et al., “Graphite: A distributed parallel simulator for multicores,”
in HPCA, 2010.

T. Carlson et al., “Sniper: Exploring the level of abstraction for scalable
and accurate parallel multi-core simulation,” in SC, 2011.

D. Sanchez et al., “Zsim: Fast and accurate microarchitectural simulation
of thousand-core systems,” in ISCA, 2013.

N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, Aug. 2011.

E. Ardestani et al., “Esesc: A fast multicore simulator using time-based
sampling,” in HPCA, 2013.

E. Argollo et al., “Cotson: Infrastructure for full system simulation,”
SIGOPS Oper. Syst. Rev., vol. 43, Jan. 2009.

B. Walters, “Vmware virtual platform,” Linux J., vol. 1999, July 1999.
J. Watson, “Virtualbox: Bits and bytes masquerading as machines,” Linux
J., vol. 2008, Feb. 2008.

