arXiv:2110.00478v1 [cs.AR] 1 Oct 2021

SECDA: Efficient Hardware/Software Co-Design of FPGA-based
DNN Accelerators for Edge Inference

Jude Haris*, Perry Gibson*, José Cano*, Nicolas Bohm AgostiniT, David Kaelif
*University of Glasgow, UK Northeastern University, USA

Abstract—Edge computing devices inherently face tight re-
source constraints, which is especially apparent when deploying
Deep Neural Networks (DNN) with high memory and compute
demands. FPGAs are commonly available in edge devices. Since
these reconfigurable circuits can achieve higher throughput and
lower power consumption than general purpose processors,
they are especially well-suited for DNN acceleration. However,
existing solutions for designing FPGA-based DNN accelerators
for edge devices come with high development overheads, given
the cost of repeated FPGA synthesis passes, reimplementation
in a Hardware Description Language (HDL) of the simulated
design, and accelerator system integration.

In this paper we propose SECDA, a new hardware/software
co-design methodology to reduce design time of optimized
DNN inference accelerators on edge devices with FPGAs.
SECDA combines cost-effective SystemC simulation with hard-
ware execution, streamlining design space exploration and
the development process via reduced design evaluation time.
As a case study, we use SECDA to efficiently develop two
different DNN accelerator designs on a PYNQ-Z1 board,
a platform that includes an edge FPGA. We quickly and
iteratively explore the system’s hardware/software stack, while
identifying and mitigating performance bottlenecks. We eval-
uate the two accelerator designs with four common DNN
models, achieving an average performance speedup across
models of up to 3.5x with a 2.9x reduction in energy
consumption over CPU-only inference. Our code is available
at https://github.com/gicLAB/SECDA

Keywords-DNN accelerator design; Design methodology;
Hardware-software co-design; SystemC; Simulation; HLS

I. INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated high
accuracy in learning tasks, such as image classification [1],
speech recognition [2] and many more. However, current
solutions that attempt to deploy DNNs on low-power and
resource-constrained edge devices (e.g., smartphones, tablets
and wearables) are inefficient [3]], presenting challenges that
can span several levels of the hardware/software stack to
run efficiently [4]]. To address these inefficiencies, hardware-
based optimizations have been proposed to reduce DNN
inference costs. This active research area includes ISA-
level extensions to CPUs and GPUs [5], [6], as well as
TPUs [7] and other custom hardware solutions for FPGAs
and ASICs [8], [9].

There are a variety of tools available for developing
FPGA-based DNN accelerators for edge devices [10], [[11],
some of which feature model-specific tuning [12]-[14].

Flexibility is valuable, since the layers and sizes of DNNs
can vary, especially given the rapid introduction of new and
novel DNN architectures. A good example of the range of
DNNss is the large convolutional layers of InceptionV3 [[15]],
as compared to the small depth-wise separable convolutions
of MobileNets [16].

However, the process of developing DNN accelerators
using these tools is generally poorly documented, and prior
work focuses on their features and results, rather than their
design methodologies [17]], [[18]]. Since resources are more
limited on edge FPGAs, and DNNs workloads are large in
terms of their memory footprint and computational demands,
a given DNN is unlikely to fully fit on an accelerator.
Thus for DNN inference, the accelerator must operate in
close communication with the CPU, which requires careful
co-design with the host CPU code to ensure that data is
managed efficiently. Therefore, an effective design method-
ology for a DNN accelerator design should, for a given
set of hardware resource constraints, produce performant
accelerators that effectively leverage available resources, and
can respond quickly to changing workload requirements
(e.g., introduction of new types of layers or operations).

The process of mapping candidate hardware designs to an
FPGA, known as synthesis [19], is a time-consuming process
that can take minutes to hours, depending on the complexity
of the design. Compounding this with the number of itera-
tions in a typical design process, synthesis can create a clear
bottleneck in the hardware development process. Existing
solutions either accept the synthesis costs [20], surrender
low-level design fidelity [21]], or develop accelerators using
a purely simulation-based approach [22], 23] that frequently
results in non-synthesizable hardware solutions.

Motivated by the challenges of making informed ac-
celerator design choices while efficiently evaluating them,
we propose SECDA (SystemC Enabled Co-design of DNN
Accelerators), a new hardware/software co-design method-
ology to efficiently produce optimized DNN inference ac-
celerators for edge devices using FPGAs. SECDA excels in
the following five key features: (i) Design Control: ability
to easily specify low-level behavior of accelerator designs;
(1) End-to-end Evaluation: ease of performing full DNN
models inference with candidate designs; (iii) Driver Co-De-
sign: the CPU-side software driver is developed in tandem
with the hardware accelerator, so that design trade-offs

can be considered early; (iv) System Integration: candidate
accelerator designs are easily realized on FPGA hardware;
and (v) Simulation Speed: simulation of candidate acceler-
ator designs is faster than synthesis, and provides sufficient
performance information to guide design improvements.
SECDA uses SystemC [24]] as an accelerator simulation
framework, which also allows candidate designs to be iter-
ated upon efficiently. Using SystemC High Level Synthesis
(HLS), we can produce a synthesizable design from the same
accelerator definition. We leverage SystemC’s modularity
to reduce the time required to explore design changes, by
reusing and adapting existing components.

The co-design of a software accelerator driver and a
hardware accelerator is achieved by integrating SystemC’s
simulation features within the target edge-based DNN frame-
work, allowing designers to quickly test potential optimiza-
tions such as varying data transfer and tiling strategies.
Embedding the simulation environment and the hardware
accelerator into the same software environment reduces the
costs of exploring hardware/software co-design trade-offs
via simulation, relative to synthesizing the design on an
FPGA with every change.

We demonstrate the utility of SECDA with a case study
that targets acceleration of General Matrix Multiplication
(GEMM), a heavily used kernel in convolutional layers,
and the most computationally-expensive portion of many
DNNss [25]. For this case study, we develop two accelerator
designs, a Vector MAC and a Systolic Array. The DNN
framework used is TensorFlow Lite (TFLite), a mobile-
friendly version of TensorFlow [26]]. The target device is
the PNYQ Z1 board [27], a platform with a dual-core CPU
and an edge FPGA.

The contributions of this paper include the following:

« We motivate the need for a better design methodology
for DNN accelerators, and define five key features
that future methodologies should support, which are
essential for fast design exploration and integration of
hardware accelerators for DNNs using FPGAs.

o We propose SECDA, a new design methodology to ef-
ficiently explore the design space of DNN accelerators
for edge devices with FPGAs, and quickly arrive to
optimized solutions. We show how SECDA excels in
the five key features and reduces the time to obtain
efficient designs.

o« We demonstrate the capabilities of SECDA by effi-
ciently designing two GEMM accelerator designs for
DNNs using the PYNQ-Z1 platform [27], a Systolic
Array (SA) architecture and a Vector MAC (VM)
architecture.

« We evaluate the two accelerator designs with four com-
mon DNN models and achieve an average performance
speedup across models of up to 3.5x with a 2.9x
reduction in energy consumption compared to a CPU-
only baseline.

II. MOTIVATION

We separate the development of hardware accelerators for
DNNs into two stages: 1) the design of hardware primitives,
composing them to construct an accelerator architecture
and defining the software stack to support the accelerator
design; ii) an optional secondary stage where the designer
exposes aspects of the design as a set of templates with
tunable parameters (e.g., buffer sizes, number of processing
elements) and allows automated design space exploration
tools to find more performant designs. We refer to this latter
stage as accelerator frameworks, which include VTA [13]],
DNNBuilder [14], and FINN [12]]. This optional stage of
design is valuable, especially when the goal is to optimize
DNN hardware accelerator designs for a range of specific
DNN models.

The first stage, which we name as accelerator design
methodologies, is the focus of this paper. We make the
distinction between the two stages to highlight that though
there is a rich and growing literature for the second stage, for
the first stage there is a lack of discussion about the design
methodologies, and how they can better accommodate the
features of DNNs to address inefficiencies with the current
process of creating edge based accelerator solutions. This is
the motivation for defining our new methodology SECDA.

In Section [[I-A] we elaborate on accelerator design
methodologies and describe five key features they should
fully support to be efficient. Then in Section [II-B| we
discuss and compare common FPGA design methodologies
in regards to these five key features.

A. Key features of DNN Accelerator Design Methodologies

There are two important characteristics of the workload
to acknowledge when designing hardware accelerators for
DNNs using edge FPGAs. First, though DNNs are getting
more efficient [28], they are still large programs with ever-
increasing memory and compute demands. Many DNNs
involve a large number of parameters and operations, making
them difficult to fit on a typical edge FPGA without parti-
tioning them into stages. Secondly, DNNs feature a variety
of operations (in terms of layers), with varying frequency
and costs. It may be preferable to fallback to the CPU for
less frequent operations and focus accelerator resources on
the most expensive layer types. Both of these characteristics
mean that DNN accelerator designs must be closely designed
with the CPU host-side software to ensure efficient balancing
of the workload.

To effectively tackle these two characteristics, we define
five key features that accelerator design methodologies are
required to excel in, to efficiently produce optimized FPGA-
based DNN accelerators:

o Design Control: The degree of control given to the
designer for both high-level and low-level features, such
as the overall dataflow at a high-level and behavior

and interconnection of individual components at a low-
level, balancing model depth against overall simplicity.

e End-to-end Evaluation: Inference evaluation (either in
simulation or in hardware) of full DNN models is key.
This process should be as fast as possible to keep design
iterations short. Benchmarking only single layers may
cause the designer to miss the bottlenecks that only
emerge with realistic workloads.

e Driver Co-Design: The interface between the accelera-
tor and the DNN framework can play a pivotal role in
the efficiency and performance of the design [23], [29].
A good design methodology should enable the designer
to co-design the software driver and the hardware ac-
celerator, thus allowing to explore different degrees of
workload offloading, and creating an effective workload
balance between the CPU and the accelerator.

o System Integration: We need both ease and speed in the
process of mapping a proposed accelerator design to an
FPGA. This includes the integration of the accelerator
with the DNN framework software. The goal is to
have minimal overhead in realizing a design on real
hardware.

o Simulation Speed: Leveraging simulation can reduce
the time taken for logic synthesis within the design
process. Hence, it is crucial that simulation is fast,
accurate, and does not become the bottleneck of the
design loop.

B. Comparison of Methodologies

Table | compares different state-of-the-art design method-
ologies based on the previous five key features against
SECDA. Next, we discuss the details of each methodology.

OpenCL [21] uses a host-device programming model,
where the host code (i.e., the driver) prepares and transfers
data to be executed by the device (i.e., the accelerator).
Hence, the approach allows for the co-design of the driver.
The device code is written in high-level OpenCL code which
defines computation kernels that perform the processing
of the target workload. This high-level code is translated
into a synthesizable hardware design. The designer defines
the computation kernels to be accelerated, being able to
configure the number of hardware instances each kernel is
allocated. The higher the number of instances, the greater
number of instructions executed in parallel. The level of
design control offered by OpenCL can be restrictive, since
the designer cannot easily define the low-level behavior of
the accelerator, e.g. at the transaction level, which can enable
control of each sub-component and interfaces between them.
The Intel FPGA SDK for OpenCL [30] allows emulation
of accelerator designs on x86 machines, which allows for
verification of the behavior of the design. To gather dynamic
performance of the hardware accelerator, the designer has
to perform slow cycle-accurate simulation, or hardware
profiling on the target FPGA, which can take hours.

Table 1
COMPARISON OF METHODOLOGIES WITH FIVE KEY FEATURES.

Feature \ Methodology OpenCL HDL SMAUG SECDA
Design Control Low Very High Medium High
End-to-End Evaluation v x v v
Driver Co-Design (4 x v (4
System Integration Simple Difficult N/A Simple
Simulation Slow Very Slow Slow Fast

Hardware Description Language (HDL) based design
flows use highly detailed hardware descriptions in languages
such as Verilog [31] and VHDL [32], to define the desired
behavior of the accelerator. While this approach allows for
fine-grained hardware designs, it comes with high develop-
ment time costs, resulting in high code-base complexity and
strict size requirements to define a design [33]], as compared
to HLS or OpenCL-based solutions. Additionally, although
HDL solutions can use RTL simulator to provide cycle-
accurate simulation, the level of simulation detail makes
the process much slower than non-RTL based simulations.
An HDL-based approach to designing accelerators does not
lend itself well to co-design of the host driver, or end-to-
end evaluation, since RTL simulators are testbench-based
and inherently slow.

SMAUG (23] provides a simulation-based design method-
ology that uses gem5-Aladdin [34] to perform full system
simulation of the host system, the off-chip memory accesses
and the accelerator design itself. While this approach pro-
vides high fidelity in terms of design performance insights,
the simulation speed is very slow due to simulation of the
entire system (e.g., several hours for ResNet50). Rather than
integrating with an existing DNN framework, models must
be redefined using SMAUG’s Python API. SMAUG does not
offer an approach where a design can be directly synthesized
to a target FPGA and integrated with a DNN framework of
choice.

SECDA uses the SystemC programming model to define
the behavior of an accelerator at a transaction-level, and uses
HLS to produce synthesizable designs. This provides a high
degree of design control, while mitigating the issues of cum-
bersome HDLs. SECDA integrates a SystemC simulation
environment within the target DNN framework, allowing co-
design of the accelerator driver, and simulation of end-to-end
inference. Unlike SMAUG, SECDA does not simulate the
full host system, avoiding the large overheads and keeping
simulation times in the order of minutes. For most design
iterations, we argue that full host system information is
not relevant, since most design choices are related to the
performance within the accelerator. Once the accelerator
designs are refined through simulation, we identify issues
related to the full system, such as off-chip memory accesses.
We leverage SECDA’s HLS capabilities to test on real FPGA
hardware. Thus, avoiding the high simulation costs seen in
methodologies such as SMAUG, and expensive hardware

synthesis with each design iteration. For rapid design of
DNN accelerators for edge FPGAs, SECDA achieves a good
trade-off in terms of simulation fidelity, design granularity,
and ease of deployment on real hardware.

We now compare the development time of these method-
ologies with illustrative estimates of the “idle” time spent
waiting for evaluation of candidate designs. For SECDA,
we compute this time (E}) with the following equation:

E; = #Sim x (Cy 4+ ISt) + #Synth * (Sy + I;) (1)

Where #Sim is the number of simulated design iterations
performed; C; and I.S; are the times to compile and run an
end-to-end inference in simulation, respectively; #Synth is
the number of hardware synthesis passes performed; S; is
the time to perform logic synthesis of the accelerator design;
and [is the time to perform inference on the FPGA. Since
the time for Sy dominates the overall time, minimizing the
number of logic synthesis performed is desirable.

For OpenCL and HDL, their simulation costs are signif-
icantly higher than SECDA since they use cycle-accurate
simulations. We could also follow a design methodology
which eliminates simulation, and only relies on iterations
using logic synthesis alone. The equivalent time spent wait-
ing for evaluation results is given by:

E; = (#Sim + #Synth) (S; + I))

Finally, a design methodology using full system simula-
tion to perform all design iterations (e.g., SMAUG), would
have a similar idle evaluation time estimate as in Equation 2]
but with the simulation time replacing the synthesis time.

Ey = (#Sim + #Synth) * (Cy, + IS4) 3)

However, the simulation cost I; would be significantly
higher than SECDA’s low-cost SystemC simulation due to a
more complex simulation, which we argue is not needed in
SECDA due to our two-stage approach. Both OpenCL and
HDL-based methodologies can use either, or a mix of, the
approaches described by Equations [2] and [3] However, for
these types of methodologies, both simulation and synthesis
are expensive in terms of development time, whereas in
SECDA we take advantage of fast simulation, which is
sufficient for most design iterations, and only occasional
synthesis.

III. SECDA METHODOLOGY

In this work, we propose SECDA (SystemC Enabled Co-
design of DNN Accelerators), a new hardware/software co-
design methodology to efficiently design optimized DNN
inference accelerators for edge devices with FPGAs. SECDA
provides fast accelerator design space exploration, integrat-
ing software and hardware design choices, and reducing
barriers when evaluating designs in real edge hardware. As

: Application Accelerator Hardware
: Framework Driver Accelerator
SystemC SystemC
Testbench Accelerator
A

SW SystemC Simulation

Figure 1. Overview of the SECDA methodology. Components in the
dashed lines correspond to the design in simulation and components in the
dotted lines correspond to the design running on real hardware. Application
Framework and Accelerator Driver software are common to both.

discussed in Section[[, SECDA targets DNN inference at the
edge, since edge accelerators are inherently more resource
constrained. Based on the characteristics of DNN workloads,
SECDA focuses heavily on efficient host-accelerator com-
munication, which requires careful co-design to ensure that
data is managed efficiently.

Figure [I] shows a high-level overview of the proposed
methodology. The following sections provide details on the
key components of the methodology, including how the
components are interconnected to form the SECDA design
loop.

A. Application Framework

The Application Framework is the DNN software frame-
work which runs the target DNN models, from which we
offload work to the accelerator. We characterize it as soft-
ware that could run the full workload independently of the
accelerator. For example, edge inference specific versions of
popular deep learning frameworks such as TensorFlow’s [[26]
TFLite and PyTorch [35] Mobile, which reduce the feature
set of the frameworks to run inference more efficiently using
fewer resources. In SECDA, we ensure that the Application
Framework is integrated early in the design cycle so that
the accelerator development is informed by real workloads,
and that co-verification is improved by avoiding software
compatibility issues, such as misaligned data or conflicting
data types. To ensure that the designer has a realistic un-
derstanding of the bottlenecks in their designs, the SECDA
methodology is instantiated with support for running full
DNN workloads from the start, so that they can focus on
the most relevant aspects of their design for the target
workloads.

B. Accelerator Driver

The Accelerator Driver is the software component in the
co-design methodology, the bridge between the Application
Framework and the hardware accelerator. It is responsi-
ble for managing aspects such as data preparation, output
data unpacking, control flow and memory management for
DMAs, and thread synchronization. The efficiency of the

Accelerator Driver can be very impactful on the overall
runtime performance [23], [29], hence why driver co-design
is a key feature of SECDA. For example, the design of
the input data preparation stage is crucial, because the
data format of the Application Framework may not be
suited for a given accelerator design. Non-accelerated CPU-
code may reshape data to leverage vector instructions, but
we may prefer to reshape data differently to leverage the
design of a given accelerator’s architecture. Thus, we may
face co-design trade-offs where we must choose a data
format which balances the efficiency of processing it on
our hardware design while also enabling efficient CPU-side
driver conversion to-and-from this format.

With both input preparation and output unpacking stages,
the driver should ensure that data transfers between the
accelerator and main memory are performed efficiently,
since they can dominate both inference time and energy costs
for DNN accelerators [36]]. The driver is also responsible
for the workload balance between accelerator and CPU, and
should ensure that the aforementioned stages are pipelined
such that the CPU is not idle while the accelerator is
working.

We co-design the Accelerator Driver, along with the ac-
celerator, in an end-to-end SystemC Simulation environment
integrated with the Application Framework. As observed in
Figure |1} the Accelerator Driver is reused in both simula-
tion and hardware evaluation, the latter giving performance
data such as data communication latency between host and
accelerator, on system components not modeled in detail by
the cheap simulation such as off-chip memory accesses.

C. SystemC Simulation

SystemC [24] is a C++ library that models and simulates
the behavior of hardware designs. We use SystemC for
Transaction-Level Modeling (TLM) [37]], which simulates
complex designs without the overhead of exact register-level
details, while still ensuring bit-level accuracy. SystemC Sim-
ulation is the cornerstone of the SECDA methodology. Using
simulation combined with HLS we can gain insight into
candidate designs. SECDA is over an order of magnitude
faster than using logic synthesis alone to configure the FPGA
in our case study. In SECDA, we use two levels of SystemC
Simulation (testbench and end-to-end) to further refine our
co-designed steps, one for designing low-level components,
and the other for evaluating the full accelerator design.

SystemC Testbench simulation is based on unit test-
ing the accelerator design and its components on sets of
input data, which enables developers to iteratively design
accelerator components without running a full workload.
Using SystemC HLS, we feed performance estimates such
as clock cycle costs, and overall resource utilization for
each component into the design simulation model. The
testbench environment allows for quick development of

designs without needing compatible drivers to interface with
a full scale DNN framework.

End-to-end SystemC Simulation runs entire DNN mod-
els using our candidate accelerator designs, with integration
of the Application Framework via the Accelerator Driver.
This higher level of abstraction tests the correctness of the
full system and leverages the accelerator’s per-component
performance estimates to show metrics for full-workloads.
Using end-to-end simulation, we capture behavioral and
performance information of the accelerator when simulated
with the input data produced by any given model.

The metrics captured from these simulations can include
the number of total clock cycles spent within the acceler-
ator, BRAM utilization, processing element utilization and
various other metrics. These metrics can motivate further
design iterations and highlight components representing bot-
tlenecks. For example, we can identify inefficient processing
elements or provide guidance on whether to perform wider
exploration of the design space, investigate different data-
flow strategies, or increase resource utilization. The accuracy
we observe in terms of clock cycle count is over 99% in our
case study, when compared to the same designs synthesized
on hardware. The simulation accuracy level achieved within
the case study should be replicable in more complex designs,
as SystemC timing models of low-level components are
composable and hierarchical.

D. Hardware Synthesis

A key step of SECDA is mapping a candidate accelerator
design to real hardware in order to collect data which the
designer uses to improve the overall application performance
(e.g., in terms of inference time and/or energy consumption).
FPGAs are an ideal platform for testing hardware designs,
as well as running workloads. When an accelerator design
meets the performance targets in the simulation, we can
map our SystemC Accelerator onto the FPGA using HLS,
followed by logic synthesis. Then we can perform Hardware
Evaluation running the Application Framework with the
Hardware Accelerator using the Accelerator Driver, as
shown in Figure[I] This involves an end-to-end evaluation of
target DNN models using the synthesized accelerator design.

Logic synthesis is one of the most costly stages of any
FPGA-based design process. Hence, we opt to perform most
of our accelerator design space exploration using SystemC
Simulation. Compared to hardware synthesis, compiling
the same design to run in SystemC Simulation is much
faster, around 25x faster for the Vector MAC design in
our case study (Section [[V). The advantage of running the
application on the FPGA synthesized accelerator is that we
collect actual performance values, rather than the estimates
generated through simulation. Following this methodology
can highlight bottlenecks created by the host system, such
as data transfer overheads which are not modeled in the
low-cost simulation.

E. SECDA Design Loop

SECDA relies on two different iterative design loops
to explore the edge accelerator design space for DNNs.
The most frequently used design loop iterates through in-
expensive SystemC simulations, and the second loop in-
volves hardware benchmarking on edge FPGAs. Hardware
benchmarking requires logic synthesis, which is very time
consuming. Thus, SECDA aims to minimize the number of
times this occurs.

SECDA enables the designer to choose between the
two iterative design loops. The SystemC simulation design
loop is appropriate when profiling the performance of the
individual components of the accelerator, or the overall
performance of data processing within the accelerator. The
performance profile of a given DNN model within the
accelerator can also be evaluated in simulation, which with
a diversity of models can highlight weaknesses in the
hardware design. The hardware benchmarking design loop
is appropriate when the designer is interested in accurate
performance data of DNN models; in particular the data
transfer latencies between off-chip and on-chip memory,
which is not modeled by simulation to limit the cost of
simulation.

SECDA achieves increased productivity by giving the
designer this choice. Through the low-cost SystemC simula-
tion, the designer can effectively avoid expensive hardware
synthesis until an efficient accelerator design is fully devel-
oped. At this point, the design can be mapped to the target
FPGA for actual performance metrics to be gathered.

Full-system simulation, as used in SMAUG [23]], would
avoid the need to synthesize. However this simulation often
takes longer than synthesis, thus we choose to utilize a
less expensive simulation + a hardware-evaluation approach
within SECDA. Hardware synthesized designs are evaluated
and used to inform further iterations in simulation, until the
final design is chosen to meet the expected performance
targets, such as reduction in inference time or energy con-
sumption.

IV. CASE STUDY

To demonstrate the value of the SECDA methodology, we
design and implement two different FPGA-based accelera-
tors for DNN inference, a Vector MAC (VM) based-design
and a Systolic Array (SA) based-design. The Application
Framework chosen is TFLite, a popular DNN inference
framework for resource-constrained edge devices such as
our target device, the PYNQ-Z1 board. We accelerate the
convolutional layers, which in TFLite are implemented using
the GEMM convolution algorithm. Thus, we develop the
custom accelerators and their respective drivers to reduce
the inference time of the model. Our accelerators use 8-
bit quantized DNN models, a popular machine learning
approach that can reduce the inference time with a low accu-
racy penalty [38]]. Figure [2] shows the execution flow when

g Application Framework Accelerator Driver
z >
= : > q
3 TFLite Gemmlowp < GEMM Driver
I A
’§
° Accelerator DMA Main Memory
=
Figure 2. Runtime model of our case study: TFLite GEMM convolution

using hardware acceleration.

performing DNN inference using a GEMM accelerator. Our
accelerator offloading is integrated inside the TFLite runtime
through TFLite source code modifications. We describe the
design workflow used throughout the case study and provide
details of the designs in the following sections.

A. SECDA Instantiation

1) Initialization: The initialization step is essential to
identify the target workload and to achieve integration within
the Application Framework. This step varies depending
on the goal of the designer (i.e., the target application
framework and workload). Hence, it is difficult to automate
this step without limiting the capabilities of SECDA as a
methodology to work with new application frameworks and
workloads.

Within this case study, SECDA is initialized by inte-
grating end-to-end simulation with TFLite, thus establishing
the foundation of our co-design/co-verification environment.
The initial stage is to identify where in TFLite to intercept
GEMM calls, in our case the Gemmlowp library, to offload
expensive computations to the target accelerator and create
an initial implementation to fetch and return its data. We use
a native C++ implementation of the GEMM function, which
evolves with the addition of SystemC hardware definitions
as we move from the initial stage. Once initialized, we can
reuse the development hooks, such as SystemC simulation
or function calls, that we have created for the target appli-
cation framework. We reuse the SECDA integrated TFLite
codebase from the first design (VM) when developing the
second design (SA) to enable a much faster development
process.

2) SystemC Simulation co-design/co-verification: After
adding simple SystemC constructs to our GEMM accelerator
module, we develop hardware components in SystemC to
replace the initial implementation. Developing the testbench
discussed in Section [[[I-C} we implement hardware com-
ponents for computing the GEMM function (e.g., weight
buffers, multipliers). Using the testbench and the end-to-
end simulation environment, we go through several itera-
tions where we fine-tune our accelerator components. For
example, reducing the number of clock cycles, or changing
the behavior of the Accelerator Driver which improves data
reshaping.

lobal uftiers > cheduler
Global Buffc I \I Schedul
T I T
; > aemm1 | prul
| Data Handler |-— ; T T
T »_amm2 | PPu2 Hogpu
Header Handler > aavmm3 || peus o XBar
Input Handler ;I GEMM 4 l-)l PPU 4 |——)
—
GEMM Unit
Vector MAC Unit |
Input Buffers |—> ot lo2]o3os
L
05 [06 107 | O \\-\
Weighl Buffers ’ 09 [O10]O11 012
013|014]015|0O16

Figure 3. Accelerator design, featuring four GEMM Units.

3) Design Loop: When we have an accelerator design
that has no major bottlenecks in simulation in terms of
clock cycles and imposes efficient resource utilization of
the target device, we use Hardware Synthesis to map it
onto the PYNQ-Z1’s FPGA. A key strength of SECDA is
that benchmarking on real hardware uses the same Appli-
cation Framework (TFLite) and Application Driver as the
simulated version. The following sections describe the two
accelerators designs and their drivers.

B. GEMM Accelerator Driver

The software GEMM Driver is co-designed with the hard-
ware accelerator and connects to the Application Framework
TFLite. It intercepts GEMM calls within the Gemmlowp
library, as shown in Figure[2] The GEMM driver handles the
execution of convolutional layers utilizing the accelerator.
It receives both weight and input data from TFLite, and
reshapes them to our chosen accelerator data format.

This data format was co-designed with the accelerator,
such that /) CPU-side data preparation leverages vectorized
loads to reduce transformation overheads; ii) data is parti-
tioned across multiple memory-mapped buffers, hence can
be sent concurrently over the DMA interface, as shown in
Figure |2} iii) data in each partition is organized such that it
can be distributed efficiently inside the accelerator.

Once the data is reshaped, the driver is responsible for
sending it to the accelerator, and for collecting and storing
the output data. We pipelined the execution of the operations
within the GEMM driver across multiple batches of GEMM
operations within each layer to ensure that the CPU is not
idle while the accelerator is processing inputs. In later design
iterations, we found that the bottleneck was no longer the
GEMM operations. Hence we moved software-side post-
processing steps (see Section [[V-D3) to the accelerator, with
the GEMM driver managing the new functionality. Note that
the key difference between drivers for VM and SA designs
is the handling of output data, as the output layouts differ.

Global Buffers
Data Handler

4’{ Scheduler ‘

g
] '
Header Handler (<4 Systolic PPU

5 Array

Input Handler g)

——————
Systolic Array
16x16 MAC Units L — —
: »]

w

i

Figure 4.

Accelerator design, featuring a 16x16 Systolic Array.

C. GEMM Accelerator Designs

Both VM and SA designs follow an output-stationary
dataflow approach [39], which was chosen to remove the
need to store many intermediate results on valuable on-chip
memory, or incur costs associated with storing them off-chip.

1) Vector Mac Design (VM): FigureE] shows an overview
of the VM accelerator design that consists of four SIMD-
style compute units, which we refer to as GEMM units. We
are limited to four GEMM units by the resource constraints
of the target device. Each GEMM unit broadcasts sets of
weights and inputs them to its internal MAC units to produce
4 x 4 output result tiles. Each output value is calculated
using a set of four MAC units, with the intermediate results
reduced to the final output value through an adder tree.

2) Systolic Array Design (SA): Figure [shows an
overview of the SA accelerator design. The design contains
a single computation unit constructed as a 16 x 16 MAC-
based systolic array, where each MAC unit accumulates
towards a single output value. MAC units work by reading
and storing the input and weight values of the neighboring
MAC units into their own registers. Hence, the systolic array
moves weight and input values vertically and horizontally,
respectively, once at the start of each step. The inputs and
weights for the starting row and column of the MAC units
are read from a set of 32 data queues which are filled by
the scheduler.

D. Accelerator Components

Our designs are constructed with basic components, devel-
oped and tested both individually in the SystemC testbench,
and together in end-to-end simulation. Both designs contain
similar components, though their behavior and connections
vary. Adapting, reusing, and recomposing these components
for new designs is a valuable feature of any hardware design
methodology, especially in DNNs where a given design may
lose relevance quickly due to novel DNN workloads emerg-
ing. Below is a brief description of the major components.

1) The Input Handler: receives all data sent by the
GEMM Driver from main memory via DMA, as shown in
Figure 2] Metadata added by the driver is used to direct
the incoming data to the appropriate accelerator buffers. The
arrangement of the buffers varies between both designs. The
VM design makes use of local buffers within each GEMM
unit to store all input values and the active tile of weight
data, with the global buffers used for storing all weights
tiles; the SA design only uses global buffers for both input
and weight data.

2) The Scheduler: orchestrates computations which occur
within the processing units of each design. For the VM
design, the Scheduler assigns work to each GEMM unit,
broadcasting weight data tiles to all GEMM units, and ensur-
ing maximum weight data tile reuse to minimize redundant
loads. For the SA design, the Scheduler feeds input and
weight data to the corresponding data queues, which feed
the outer MAC units within the array.

3) Post Processing Unit (PPU): receives uint 32 output
tiles from their adjacent processing unit, and applies the
post-processing pipeline to obtain the quantized uint8
result tiles. Originally performed on the CPU-side, this data
size reduction enabled us to reduce output data transfer costs
by 4x at the cost of additional resource usage. Addition-
ally, the PPU performs all other functionality provided by
Gemmlowp’s “unpacking” function, including bias addition,
scaling, and applying the activation function. For the VM
design, there are multiple smaller PPUs which process
the output from each GEMM Unit. The PPU outputs are
combined later by the Output Crossbar. In comparison, the
SA design contains a single PPU which processes all the
16 x 16 output tiles and sends them back to main memory.

4) Output Crossbar: used to collect the output tiles from
all PPUs (only VM design). It rearranges the tiles such that
the results are sent back to main memory in the desired
order.

E. Accelerator Design Improvements

Our SECDA methodology enables fast and iterative de-
velopment of DNN accelerator designs. Here we discuss the
major design improvements we made to optimize the end-
to-end performance for both designs.

1) Improved Data Distribution & Bandwidth Utilization:
During the design process for the VM accelerator, in sim-
ulation, we observed a lower BRAM bandwidth utilization
than expected. To address the low BRAM utilization, we
added extra functionality to the Input Handler to distribute
the incoming input and weight data across multiple BRAMs,
increasing the number of data accesses possible per cycle.

The synthesis of our first VM design consisting of four
GEMM units, highlighted a data transfer bottleneck between
off-chip and on-chip memory that was not modeled within
the simulation. We alleviated this bottleneck by ensuring
that we leveraged all of the high-performance AXI data links

available on the PYNQ-Z1 board. From this change, we used
end-to-end simulation to quickly redesign the accelerator and
the accelerator driver to leverage the improved data links,
significantly reducing data transfers times.

For the SA design, allocating 32 data queues to feed
the outer MAC units of the systolic array and enabling
the Scheduler to fill the data queues in parallel with the
processing of the systolic array minimized MAC unit idle
time within the SA accelerator due to unavailability of data.

2) Scheduling & Post Processing: For the VM design,
the simulation highlighted a slowdown that occurred within
each GEMM unit when reading the weight tiles into the local
buffers. To address this slowdown we added the Scheduler
Unit, which improved the ordering of computations, reduc-
ing the number of reads from global weight buffers by 4x.

Through Hardware Execution we obtained a breakdown
of the inference time, which indicated that post-processing
performed within the Gemmlowp library was the new bottle-
neck. Hence, we enhanced the capabilities of the accelerators
by implementing post-processing within them. By adding
the PPU, we obtained 1.5x and 1.3x speedup on single
and dual-thread inference, respectively, when compared to
previous VM designs without it. To move more functionality
to the accelerator, we adapted the GEMM driver to receive
quantized 8-bit results produced by the post-processing
quantization, as opposed to the 32-bit results which are
generated by the GEMM operations, reducing output data
transfer costs by 4x.

3) Varying Systolic Array Sizes: The SA design was
prototyped varying the dimensions of the array. We explored
4x4, 8x8 and 16 x 16 designs, evaluating tradeoffs obtained
by varying the output tile sizes and resource utilization. We
found in simulation that the 4 x 4 design lacked the compute
power for the accelerator to improve against CPU-based
GEMM. The 8 x 8 design outperformed the CPU baseline,
though left much of the PYNQ Z1 FPGA fabric unused. The
16 x 16 design improved performance by 1.7x across the
various models for single thread inference compared to the
8 x 8 design, at the cost of higher resource utilization of the
board.

4) DNN Specific Design Optimizations: With SECDA,
we were able to make model specific changes easily to
accelerator designs, either in the host driver code or the ac-
celerator design configurations, to improve the performance
for a given model. Due to device constraints, both SA and
VM designs cannot be allocated with enough global weight
buffer space to fit some larger layers of InceptionV1 and
ResNet18 entirely on the accelerator. With SECDA’s ability
to quickly simulate the performance and correctness of new
designs, we co-designed a weight tiling scheme that was fast
to produce on the CPU side and process in the accelerators.
Compared to the previous accelerator designs, this sped up
the average inference time for InceptionV1 and ResNet18
by 2x and 2.2X, respectively.

Note that some convolutional layers of ResNetl8 were
still too large to fit into the local buffers of the VM design.
We were able to reconfigure, validate, and synthesize a
modified VM design for ResNet18, which trades off global
buffer space for local buffer space, enabling native execution
of all layer within the accelerator and reducing the inference
time by 1.6x over the previous design.

V. EVALUATION
A. Experimental Setup

We evaluate the two accelerator designs in our case study
on the PYNQ-Z1 board, which includes an edge FPGA and a
dual-core ARM Cortex-A9 CPU. We benchmark four widely
used DNN models quantized to 8 bits: MobileNetV1 [40],
MobileNetV2 [41]], InceptionV1 [42]] and ResNetl8 [43];
all defined on the ImageNet dataset [44f]. For each DNN
model, we evaluate CPU-only inference times in TFLite
using 1 and 2 CPU threads, taking the median of 100
runs, to compare against our two accelerator designs. Note
that non-accelerated TFLite layers use their native C++
implementations and are compiled with the recommended
TFLite optimizations for the target platform. Conversely, our
accelerated layers use custom-designed CPU-side accelera-
tor drivers (see Section [[V-B)) with handwritten optimizations
(e.g., vector instructions). We gather energy metrics using a
COOWOO digital USB power meter.

B. Case Study Results

Table [[Il shows the breakdown of inference time and en-
ergy consumption for the four DNN models under study for
a single image using the CPU (1 and 2 threads) and the two
accelerator designs (VM and SA). The time is split between
convolutional (CONV) layers, which our accelerators target,
and all other (Non-CONYV) layers which run on the CPU. For
the VM accelerator, we observe an average speedup across
models of 3x and 2x and an average energy saving of 2.7 x
and 1.8 for one and two threads, respectively, in each case
when compared to CPU-only inference. Similarly, for the SA
accelerator, we observe an average speedup across models
of 3.5x and 2.2x and an average energy saving of 2.9x
and 1.9x for one and two threads, respectively, in each case
when compared to CPU-only inference.

We observe less speedup and energy consumption with
dual-thread execution as expected, since the compute ca-
pacity of the CPU doubles, while both accelerator designs
remain the same. However, our accelerated runtime using
two threads improves inference time since the CPU-side
Accelerator Driver can leverage threads. While analyzing
our designs, we observe that we hit a threshold for perfor-
mance gains achieved by our hardware designs, with the
bottleneck for inference performance shifting to two other
areas. Namely, (i) CPU-side CONV data preparation and
result unpacking; (ii) and non-accelerated layers. For
breaking down single-threaded CONV time for VM, we

Table II
INFERENCE TIME (MS) AND ENERGY CONSUMPTION (J) RESULTS FOR
THE FOUR DNN MODELS UNDER STUDY WHEN USING DIFFERENT
NUMBER OF CPU THREADS AND ACCELERATOR DESIGNS.

DNN Hardware setup CONV Non-CONV Overall Energy
CPU (1 thr) 635 ms 141 ms 776 ms 1.841]
E CPU (1 thr) + VM 123 ms 141 ms 264 ms 0.68]
2 CPU (1 thr) + SA 90 ms 141 ms 231 ms 0.657
% CPU (2 thr) 329 ms 73 ms 402 ms 1.041]
§ CPU (2 thr) + VM 105 ms 73 ms 178 ms 043]
CPU (2 thr) + SA 86 ms 73 ms 159 ms 0.541]
CPU (1 thr) 526 ms 176 ms 702 ms 1.6617
E CPU (1 thr) + VM 156 ms 176 ms 332 ms 0.79]
2 CPU (1 thr) + SA 103 ms 176 ms 279 ms 0.83]
= CPU (2 thr) 277 ms 95 ms 372 ms 1017
§ CPU (2 thr) + VM 128 ms 95 ms 223 ms 0.61)
CPU (2 thr) + SA 97 ms 95 ms 191 ms 0.61)
CPU (1 thr) 1416 ms 117 ms 1533 ms 3.60J
; CPU (1 thr) + VM 263 ms 117 ms 380 ms 0971
_§ CPU (1 thr) + SA 225 ms 117 ms 342 ms 1.127
= CPU (2 thr) 736 ms 117 ms 853 ms 2207
E CPU (2 thr) + VM 249 ms 117 ms 366 ms 097)
CPU (2 thr) + SA 225 ms 117 ms 342 ms 1.12]
CPU (1 thr) 1762 ms 132 ms 1894 ms 5417
CPU (1 thr) + VM 555 ms 132 ms 687 ms 2,127
? CPU (1 thr) + SA 405 ms 132 ms 537 ms 1.76 J
> CPU (2 thr) 919 ms 132 ms 1051 ms | 3247
é CPU (2 thr) + VM 550 ms 132 ms 682 ms 2,127
CPU (2 thr) + SA 405 ms 132 ms 537 ms 1.76 1
CPU (2 thr) + VTA - - 737 ms 1.51)

observe that only 31% of the time is spent performing off-
chip data transfers and the accelerator computations. The
CPU-side data preparation and resulting unpacking represent
the majority of the CONV time, 69%, which highlights the
importance of hardware/software co-design to ensure that
additional hardware changes cannot further reduce this time.
For in single thread CPU-only inference, Non-CONV
layers only represent 14% of the inference time on average.
However, by accelerating the CONV layers, the relative
importance of Non-CONV layers increases, representing
39% and 46% of single thread inference time for VM and
SA, respectively. Comparing our two designs, SA achieves
slightly better performance, 16% on average in latency and
up to 4% in energy savings. From these observations, we
conclude that while the core compute units of VM and
SA use different strategies to perform GEMM, we achieve
similar end-to-end performance from both designs, due to
the shift in the inference performance bottlenecks to the
CPU-side.

We also observe that InceptionV1 achieves the best
speedup relative to the CPU-only version, with 4x and 2.3x
speedup for one and two threads, respectively, for VM, and
4.5x and 2.5X%, respectively, for SA. Comparing to Mo-
bileNetV1 and MobileNetV2, which feature depthwise sep-
arable convolutions (meaning that each convolutional layer
performs fewer MACs per input), InceptionV1’s standard
convolutions have greater potential for GEMM acceleration,
since the relative cost of its data preparation stage is smaller.

Additionally, for InceptionV1 and ResNetl8 we observe
negligible speedup for multi-threaded execution, relative to
the other models due to the larger GEMM operations cou-
pled with our pipelined execution. This means that the CPU-
side latency, due to data format conversions, is “hidden” by
the accelerator’s computation, and thus results in minimal
benefits from two threads.

Note that both accelerator designs could still be further
refined. However, the purpose of the case study is to
highlight that by using SECDA, we were able to quickly
develop and iterate upon viable accelerator designs that
significantly improve inference time performance and en-
ergy consumption against the CPU-only case. Providing a
fair experimental comparison of development time between
two design methodologies is difficult since measurements
could be influenced by the designer’s experience and which
methodology is evaluated first. Therefore Equation [I] is
used to provide estimates of improvements in development
times. By replacing synthesis iterations by simulations, we
observed a 25 x difference between Sy and C'. This suggests
that we spent on average 16x less time evaluating end-to-
end inference of a given design in simulation for our GEMM
accelerators, compared to developing with all evaluation
performed on an FPGA.

C. Comparison with state-of-the-art DNN accelerators

We now validate that our designs are competitive with
another state-of-the-art DNN accelerator in terms of infer-
ence time, our main design goal. We compare our designs
against VTA, which is supported through the state-of-the-art
DNN compiler framework TVM [45]]. We chose it over other
accelerator frameworks due to its recent release, support
from an active open source community, and its use of 8-
bit quantization similar to our designs. The final row of
Table [I] shows the performance of VTA for ResNetl8,
taking the median of 100 runs on the PNYQ ZI board.
ResNet18 was the only publicly available model which was
compatible with both VTA and TFLite. We refer the reader
to the TVM VTA documentation]| for details on synthesis
and execution — note that VTA leverages both threads of
the CPU. The results show that the designs developed using
the SECDA methodology are competitive with VTA, with
our VM design outperforming VTA by 8% in terms of
latency, while VTA reports 29% less energy consumption per
inference. Our SA design outperforms VTA by 37% in terms
of latency, while VTA has 14% lower energy consumption.
VTA runs more of its layers on the accelerator, which results
in fewer off-chip data transfers, therefore achieving a greater
energy efficiency than our design. In terms of our target
performance metric, inference time, we have demonstrated
that designs produced via SECDA can be competitive with
a state-of-the-art accelerator.

Uhttps://tvm.apache.org/docs/vta/tutorials/frontend/deploy_classification.
html#sphx-glr-vta-tutorials-frontend-deploy-classification- py

VI. RELATED WORK

There are a range of design tools for both DNN acceler-
ators and co-design workflows in other domains. STONNE
[22] provides cycle-accurate simulation for deep learning
accelerator designs such as MAERI [9] and SIGMA [17].
However, it does not integrate full system simulation as
SMAUG does, and similar to SMAUG, does not have a
direct path to map candidate designs to real hardware.
TFLITE-SOC [46] features aspects of the SECDA method-
ology by tightly integrating its Application Framework
(TFLite) with a SystemC system-level simulation. SystemC
has been used as a part of co-design methodologies in
other domains such as cryptographic SoCs [47]] and image
processing [48]], which demonstrate the streamlined devel-
opment time advantages of leveraging SystemC. SECDA
focuses the advantages of SystemC on the problem of
DNNs, by proposing a methodology which complements the
structure of DNNSs, such as multiple layers of varying shapes,
some of which must be run on the CPU.

As discussed in Section [II} an optional stage to DNN ac-
celerator design is automatic hardware space exploration for
a given DNN model, which we refer to as accelerator frame-
works. Examples include VTA [13]], which defines a GEMM
unit and high-level task ISA, built on top of the TVM [45]
compiler stack, to produce specific designs for a given DNN
architecture. VTA can optionally leverage the AutoTVM
tuning tool [49] for additional design space exploration.
DNNBuilder [[14] produces DNN specific architectures and
permits exploration of alternative quantization schemes, as
adopted by other schemes [[12]], [50], [51f]. The accelerator
framework approach can be extended with DNN/FPGA co-
design, such that a specific accelerator design is generated
in conjunction with a DNN architecture to more efficiently
solve the problem task [52[|-[55]]. The process of turning an
accelerator design into an accelerator framework is possible
following the principles of SECDA. However, in our case
study we instead focused on two general purpose accelerator
designs to demonstrate the core SECDA methodology.

Finally, a general objective for DNN acceleration is to
improve the efficiency of MAC operations. Approaches
include improving data reuse and different dataflow strate-
gies [36]], and leveraging sparsity in weights/activations to
reduce MACs, supported by efficient hardware designs [18]],
[56]]. SECDA enables shorter development time and efficient
exploration of hardware solutions for these opportunities.

VII. CONCLUSION

In this paper we presented SECDA, a hardware/software
co-design methodology for efficient DNN accelerator de-
sign targeting edge devices with FPGAs. SECDA tightly
integrates accelerator design with the target application, im-
proving opportunities for co-design of the accelerator driver.
By simulating the accelerator behavior using SystemC, we

https://tvm.apache.org/docs/vta/tutorials/frontend/deploy_classification.html#sphx-glr-vta-tutorials-frontend-deploy-classification-py
https://tvm.apache.org/docs/vta/tutorials/frontend/deploy_classification.html#sphx-glr-vta-tutorials-frontend-deploy-classification-py

reduce development costs by minimizing the number of syn-
thesis iterations, and allow fine-grained benchmarking and
co-verification of accelerator components. Further, we can
directly map our simulated designs to an FPGA without re-
implementation. As a case study, we proposed two GEMM-
based accelerator designs for optimizing inference of four
DNN models using TFLite and a PYNQ-Z1 board. The
accelerated models outperform the CPU baseline in all cases.
As future work, we plan to automate aspects of SECDA for
further reduction in development time, and support other
convolution strategies (e.g., Winograd) or DNN classes (e.g.,
Transformer models).

ACKNOWLEDGMENT

This work was partially supported by the Engineering and
Physical Sciences Research Council (grant EP/R513222/1).

[1]
[2]
[3]

[4]
[5]
[6]
[7]
[8]
[9]

(10]
[11]

[12]
[13]

[14]

[15]
[16]
(17]
(18]
[19]

[20]

[21]

[22]

REFERENCES

A. Krizhevsky et al., “ImageNet Classification with Deep Convolu-
tional Neural Networks,” in NIPS, 2012.

Y. Zhang et al., “Towards End-to-End Speech Recognition with Deep
Convolutional Neural Networks,” in INTERSPEECH, 2016.

N. Lane et al., “DeepEar: Robust Smartphone Audio Sensing in
Unconstrained Acoustic Environments Using Deep Learning,” in
UbiComp, 2015.

J. Turner et al., “Characterising Across-Stack Optimisations for Deep
Convolutional Neural Networks,” in IISWC, 2018.

G. Ottavi et al., “A Mixed-Precision RISC-V Processor for Extreme-
Edge DNN Inference,” in ISVLSI, 2020.

S. Markidis et al., “NVIDIA Tensor Core Programmability, Perfor-
mance & Precision,” IPDPSW, 2018.

N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in ISCA, 2017.

Y.-H. Chen et al., “Eyeriss v2: A Flexible Accelerator for Emerging
Deep Neural Networks on Mobile Devices,” IEEE JETCAS, 2019.
H. Kwon et al., “MAERI: Enabling Flexible Dataflow Mapping over
DNN Accelerators via Reconfigurable Interconnects,” ASPLOS, 2018.
M. Alwani et al., “Fused-layer CNN accelerators,” in MICRO, 2016.
Z. Liu et al., “Throughput-Optimized FPGA Accelerator for Deep
Convolutional Neural Networks,” ACM TRETS, 2017.

Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference,” in FPGA, 2017.

T. Moreau et al., “A Hardware-Software Blueprint for Flexible Deep
Learning Specialization,” arXiv, 2019.

X. Zhang et al., “DNNBuilder: An Automated Tool for Building
High-Performance DNN Hardware Accelerators for FPGAs,” in IC-
CAD, 2018.

C. Szegedy et al., “Rethinking the Inception Architecture for Com-
puter Vision,” in CVPR, 2016.

A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” arXiv, 2017.

E. Qin et al., “SIGMA: A Sparse and Irregular GEMM Accelerator
with Flexible Interconnects for DNN Training,” in HPCA, 2020.

Y. Lu et al., “A High-Performance FPGA Accelerator for Sparse
Neural Networks: Work-in-Progress,” in CASES, 2017.

R. Reese et al., Introduction to Logic Synthesis using Verilog HDL.
Morgan & Claypool Publishers, 2006.

L. Liu et al., “Automatic SoC Design Flow on Many-Core Processors:
A Software Hardware Co-Design Approach for FPGAs,” in FPGA,
2011.

J. E. Stone et al., “OpenCL: A Parallel Programming Standard for
Heterogeneous Computing Systems,” IEEE CiSE, 2010.

F. Muiioz-Martinez et al., “STONNE: Enabling Cycle-Level Microar-
chitectural Simulation for DNN Inference Accelerators,” in IISWC,
2021.

[23]
[24]

[25]

[26]
[27]
[28]
[29]
[30]
31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]

[42]
[43]

[44]
[45]

[46]

[47]

[48]
[49]
[50]

[51]

[52]
[53]
[54]
[55]

[56]

S. L. Xi et al., “SMAUG: End-to-End Full-Stack Simulation Infras-
tructure for Deep Learning Workloads,” arXiv, 2019.

IEEE, “IEEE Standard for Standard SystemC Language Reference
Manual,” IEEE Std 1666-2011, 2012.

S. Dong et al., “Characterizing the Microarchitectural Implications
of a Convolutional Neural Network (CNN) Execution on GPUs,” in
ICPE, 2018.

M. Abadi et al., “TensorFlow: A System for Large-Scale Machine
Learning,” in USENIX OSDI, 2016.

“PYNQ Z1 Manual,” https://reference.digilentinc.com/reference/
programmable-logic/pyng-z1/reference-manuall

D. Hernandez et al., “Measuring the Algorithmic Efficiency of Neural
Networks,” arXiv, 2020.

Y. Wang et al., “Exploiting Parallelism Opportunities with Deep
Learning Frameworks,” arXiv, 2019.

Altera, “Implementing FPGA design with the OpenCL standard,”
2010.

IEEE, “IEEE Standard for Verilog Hardware Description Language,”
IEEE Std 1364-2005 (Revision of IEEE Std 1364-2001), 2006.
IEEE’, “IEEE Standard for VHDL Language Reference Manual,”
IEEE Std 1076-2019, 2019.

M. Pelcat et al., “Design Productivity of a High Level Synthesis
Compiler Versus HDL,” in SAMOS, 2016.

Y. S. Shao et al., “Co-designing Accelerators and SoC Interfaces
using gem5-Aladdin,” in MICRO, 2016.

A. Paszke et al., “Automatic Differentiation in PyTorch,” in NeurlPS
Autodiff Workshop, 2017.

V. Sze et al., “Efficient Processing of Deep Neural Networks: A
Tutorial and Survey,” Proceedings of the IEEE, 2017.
L. Maillet-Contoz et al., Transaction Level Modeling.
2005.

A. Zhou et al., “Incremental Network Quantization: Towards Lossless
CNNs with Low-precision Weights,” in /CLR, 2017.

H. Kwon et al., “Understanding Reuse, Performance, and Hardware
Cost of DNN Dataflow: A Data-Centric Approach,” in MICRO, 2019.
B. Jacob et al., “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference,” in CVPR, 2018.

M. Sandler et al., “MobileNetV2: Inverted Residuals and Linear
Bottlenecks,” in CVPR, 2018.

C. Szegedy et al., “Going Deeper with Convolutions,” in CVPR, 2015.
K. He et al., “Deep Residual Learning for Image Recognition,” in
CVPR, 2016.

O. Russakovsky et al., “ImageNet Large Scale Visual Recognition
Challenge,” IJCV, 2015.

T. Chen et al., “TVM: An Automated End-to-End Optimizing Com-
piler for Deep Learning,” in OSDI, 2018.

N. B. Agostini et al., “Design Space Exploration of Accelerators
and End-to-End DNN Evaluation with TFLITE-SOC,” in SBAC-PAD,
2020.

M. Khalil-Hani et al., “SystemC HW/SW Co-Design Methodology
Applied to the Design of an Elliptic Curve Crypto System on Chip,”
in MicDAT, 2008.

W. Chong et al., “Hardware/Software Co-Design of Embedded Image
Processing System Using SystemC Modeling Platform,” JASP, 2011.
T. Chen et al., “Learning to Optimize Tensor Programs,” in NeurIPS,
2018.

X. Wei et al., “Automated Systolic Array Architecture Synthesis for
High Throughput CNN Inference on FPGAs,” in DAC, 2017.

Y. Guan et al., “FP-DNN: An Automated Framework for Mapping
Deep Neural Networks onto FPGAs with RTL-HLS Hybrid Tem-
plates,” in FCCM, 2017.

C. Hao et al., “FPGA/DNN Co-Design: An Efficient Design Method-
ology for IoT Intelligence on the Edge,” in DAC, 2019.

C. Hao et al., “NAIS: Neural Architecture and Implementation Search
and its Applications in Autonomous Driving,” in ICCAD, 2019.

W. Jiang et al., “Hardware/Software Co-Exploration of Neural Ar-
chitectures,” IEEE TCAD, Dec. 2020.

M. S. Abdelfattah et al., “Codesign-NAS: Automatic FPGA/CNN
Codesign Using Neural Architecture Search,” in FPGA, 2020.

S. Huang et al., “Accelerating Sparse Deep Neural Networks on
FPGAs,” in HPEC, 2019.

Springer,

https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual

	I Introduction
	II Motivation
	II-A Key features of DNN Accelerator Design Methodologies
	II-B Comparison of Methodologies

	III SECDA Methodology
	III-A Application Framework
	III-B Accelerator Driver
	III-C SystemC Simulation
	III-D Hardware Synthesis
	III-E SECDA Design Loop

	IV Case Study
	IV-A SECDA Instantiation
	IV-A1 Initialization
	IV-A2 SystemC Simulation co-design/co-verification
	IV-A3 Design Loop

	IV-B GEMM Accelerator Driver
	IV-C GEMM Accelerator Designs
	IV-C1 Vector Mac Design (VM)
	IV-C2 Systolic Array Design (SA)

	IV-D Accelerator Components
	IV-D1 The Input Handler
	IV-D2 The Scheduler
	IV-D3 Post Processing Unit (PPU)
	IV-D4 Output Crossbar

	IV-E Accelerator Design Improvements
	IV-E1 Improved Data Distribution & Bandwidth Utilization
	IV-E2 Scheduling & Post Processing
	IV-E3 Varying Systolic Array Sizes
	IV-E4 DNN Specific Design Optimizations

	V Evaluation
	V-A Experimental Setup
	V-B Case Study Results
	V-C Comparison with state-of-the-art DNN accelerators

	VI Related Work
	VII Conclusion
	References

