
Hardware/Software Co-Design of
Edge DNN Accelerators with TFLite
Jude Haris∗, Perry Gibson∗, José Cano∗,
Nicolas Bohm Agostini†, David Kaeli†

∗ University of Glasgow, United Kingdom
† Northeastern University, United States

ABSTRACT

In this work we discuss SECDA-TFLite, a open-source toolkit for developing DNN hardware ac-
celerators, integrated within the TFLite DNN inference framework. The toolkit leverages the prin-
ciples of SECDA, a hardware/software co-design methodology which reduces the design time of
optimized DNN inference accelerators on edge devices with FPGAs. Utilizing SECDA-TFLite, we
further reduce the initial setup costs associated with integrating a new accelerator design within a
target DNN framework, allowing developers to focus on the design. SECDA-TFLite also includes
modules for cost-effective SystemC simulation, profiling, and AXI-based data communication.
Additionally, we briefly cover our case study, where we use SECDA-TFLite to efficiently develop
three different DNN accelerator designs on a PYNQ-Z1 board. We evaluate the three accelerator
designs across five common CNN models and two BERT-based models, achieving an average per-
formance speedup across models of up to 2.9× for the CNN models and an average speedup of up
to 2.5× for the BERT-based models.
KEYWORDS: DNN accelerator design; Design methodology; Hardware-software co-design; SystemC;
Simulation; HLS

1 Introduction

Deep Neural Networks (DNNs) have demonstrated high accuracy in learning tasks, such
as image classification, speech recognition and many more. However, current solutions that
attempt to deploy DNNs on low-power and resource-constrained edge devices (e.g., smart-
phones, tablets, and wearables) are inefficient, presenting challenges that can span several
levels of the hardware/software stack to run efficiently [TCR+18]. To address these ineffi-
ciencies, custom hardware accelerators for FPGAs have been developed to reduce the DNN
inference cost.

Given the resource-constrained nature of edge FPGAs combined with the large memory
footprint and computational demands of DNN models, a given DNN is unlikely to fully fit
on an accelerator. Thus for DNN inference, the accelerator must operate in close communi-
cation with the CPU, which requires careful co-design with the host CPU code to ensure that
data is managed efficiently.

Therefore, an effective design methodology for a DNN accelerator design should, for a
given set of hardware resource constraints, produce performant accelerators that effectively



leverage available resources and can respond quickly to changing workload requirements
(e.g., introduction of new types of layers or operations).

To address these challenges, developers can utilize the SECDA methodology [HGC+21]
(SystemC Enabled Co-design of DNN Accelerators). A key part of SECDA is that most hardware
design is performed in simulation, and can be easily synthesized on real hardware (i.e., an
FPGA) for more robust testing. However, the first step in any instantiation of a SECDA-
based workflow is the initial integration with the target Application Framework. This in-
stantiation includes sub-steps such as setting up the simulation environment and providing
a path to offload host-side computations to the accelerator designer. This first step requires
great developer effort when creating new projects which can be considered as redundant as
the first step is similar for new projects within the same Application Framework. Therefore
we highlight the tailored solution for this problem, SECDA-TFLite, an open-source toolkit
which extends the TFLite DNN framework, such that it can be more easily used to develop
new DNN hardware accelerators using the SECDA design methodology.

The SECDA-TFLite toolkit leverages the TFLite delegate system to provide a robust and
extensible set of utilities for integrating DNN accelerators for any DNN operation supported
by TFLite.

2 Background

SECDA (SystemC Enabled Co-design of DNN Accelerators) is a hardware/software co-design
methodology to efficiently produce optimized DNN inference accelerators for edge devices
using FPGAs. SECDA uses SystemC as an accelerator simulation framework, which also
allows candidate designs to be iterated upon efficiently.

Using SystemC High-Level Synthesis (HLS), we can produce a synthesizable design from
the same accelerator definition. The co-design of a software accelerator driver and a hard-
ware accelerator is achieved by integrating SystemC’s simulation features within the tar-
get edge-based DNN framework. Embedding the simulation environment and the hard-
ware accelerator into the same software environment reduces the costs of exploring hard-
ware/software co-design trade-offs via simulation, relative to synthesizing the design on an
FPGA with every change.

3 SECDA-TFLite

SECDA is a generic methodology that can be applied to a variety of application frameworks
(i.e., DNN inference frameworks), with the first step being to provide integration with the
target framework. However, our observation is that there is a limited number of popular
DNN inference frameworks, and thus this initial setup step can be reused between designs
defined on the same framework, further reducing the barriers to developing new accelera-
tors.

SECDA-TFLite is a TFLite-specific toolkit that provides the initial development environ-
ment when following the SECDA methodology within TFLite, and a set of utilities to aid
development. This enables the developer to begin prototyping and integrating their new
design with significantly reduced initial setup costs. While the original SECDA case study
was embedded within TFLite [HGC+21], the integration was ad-hoc since it was focused on



Figure 1: Overview of the SECDA-TFLite toolkit and how it is used within the SECDA
design methodology for TFLite.

providing support for a single accelerator, rather than a generic integration for future de-
velopers. SECDA-TFLite aims to be a robust open-source toolkit for anyone who wants to
develop new DNN accelerators within TFLite. Figure 1 shows an overview of the key aspects
SECDA-TFLite’s integration in TFLite. Highlighting the four key components of the toolkit:
SystemC Integration, Simulation Profiling, Data Communication, and Multi-threading li-
braries. These provide the essential utilities which enable developers to start developing
their designs.

4 Case Studies & Evaluation

To demonstrate the value of the SECDA-TFLite toolkit and how it provides a foundation for
efficiently developing DNN accelerators within TFLite using the SECDA methodology, we
developed three different FPGA-based DNN accelerator designs targeting Convolutional
and BERT based DNN models.

We develop the designs for resource-constrained edge devices such as our target device,
the PYNQ-Z1 board. For Convolutional Neural Network (CNN) models we port, improve,
and integrate the Vector MAC (VM) and Systolic Array (SA) based designs, which were
previously defined within the original SECDA case study [HGC+21], using the SECDA-
TFLite toolkit. We accelerate convolutional layers, which in TFLite are implemented using
the GEMM convolution algorithm. Thus, we develop the aforementioned custom accelera-
tors and their respective drivers to reduce the inference time of the model. For models in the
BERT family, we note that they contain high-level DNN layer structures commonly referred
to as transformer layers. However, these transformer layers can be decomposed to several Ma-
trix Multiplication operations, which are represented as Fully Connected (FC) layers within
TFLite models. Thus for BERT-based models, we develop a new FC-GEMM accelerator de-
sign targeted to accelerate the FC layers within TFLite.

For CNN accelerator evaluation we benchmark five widely used CNN models quantized



to signed 8 bits integers: MobileNetV1, MobileNetV2, InceptionV1, ResNet18, and ResNet50,
all defined on the ImageNet dataset. Similarly we benchmark 8 bit quantized MobileBert and
Albert to evaluate the FC-GEMM accelerator.

For the VM accelerator, we observe an average speedup across models of 2.5× and 1.5×
and an average energy saving of 2.3× and 1.5× for one and two threads respectively, in each
case when compared to CPU-only inference.

Similarly, for the SA accelerator, we observe an average speedup across models of 2.9×
and 1.7× and an average energy saving of 2.5× and 1.6× for one and two threads, respec-
tively, in each case when compared to CPU-only inference.

Finally, for our FC-GEMM accelerator, we observe an average speedup across models
of 2.5× and 1.6× and an average energy saving of 2.4× and 1.6× for one and two threads
respectively, in each case when compared to CPU-only inference.

5 Related Works

While there are a range of design tools for designing DNN accelerators, there are fewer
tools available to enable the developer to easily integrate their design workflow and de-
sign with a pre-existing DNN framework. SMAUG [XYB+19] provides a simulation-based
design methodology that uses gem5-Aladdin to perform full system simulation of the host
system, the off-chip memory accesses, and the accelerator design itself. However, SMUAG
does not does not have a direct path to map candidate designs to hardware and run hard-
ware evaluation on target FPGA devices with the chosen DNN framework.

6 Conclusion

The SECDA-TFLite toolkit enables tight integration of accelerator designs with TFLite while
also enabling the developer to easily follow the SECDA design loop within TFLite, thus im-
proving opportunities for co-design of the accelerator delegate and driver. We provide utili-
ties for SystemC interfacing, simulation profiling, data communication, and multi-threading
for the driver.

References

[HGC+21] Jude Haris, Perry Gibson, José Cano, Nicolas Bohm Agostini, and David Kaeli.
SECDA: Efficient Hardware/Software Co-Design of FPGA-based DNN Acceler-
ators for Edge Inference. In SBAC-PAD, pages 33–43, 2021.

[TCR+18] J. Turner, J. Cano, V. Radu, E. J. Crowley, M. O’Boyle, and A. Storkey. Character-
ising Across-Stack Optimisations for Deep Convolutional Neural Networks. In
IISWC, pages 101–110, 2018.

[XYB+19] Sam Likun Xi, Yuan Yao, Kshitij Bhardwaj, Paul Whatmough, Gu-Yeon Wei, and
David Brooks. SMAUG: End-to-End Full-Stack Simulation Infrastructure for
Deep Learning Workloads. arXiv, 2019.


	Introduction
	Background
	SECDA-TFLite
	Case Studies & Evaluation
	Related Works
	Conclusion

