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Abstract—As Deep Neural Networks (DNNs) have become an
increasingly ubiquitous workload, the range of libraries and
tooling available to aid in their development and deployment has
grown significantly. Scalable, production quality tools are freely
available under permissive licenses, and are accessible enough
to enable even small teams to be very productive. However
within the research community, awareness and usage of said tools
is not necessarily widespread, and researchers may be missing
out on potential productivity gains from exploiting the latest
tools and workflows. This paper presents a case study where we
discuss our recent experience producing an end-to-end artificial
intelligence application for industrial defect detection. We detail
the high level deep learning libraries, containerized workflows,
continuous integration/deployment pipelines, and open source
code templates we leveraged to produce a competitive result,
matching the performance of other ranked solutions to our
three target datasets. We highlight the value that exploiting such
systems can bring, even for research, and detail our solution and
present our best results in terms of accuracy and inference time
on a server class GPU, as well as inference times on a server
class CPU, and a Raspberry Pi 4.

Index Terms—deep learning, docker, defect detection, pytorch,
reproducibility, bonseyes

I. INTRODUCTION

Deep Learning is becoming a common component within
applications for a number of domains, from computer vi-
sion [1]–[4], natural language processing [5], [6], scientific
computing [7]–[9], and many more. To aid in the development
of these applications, there are a wide range of libraries
and tools, such as deep learning frameworks including Py-
Torch [10], TensorFlow [11], and MXNet [12]. However,
beyond the creation of models themselves, there are a number
of supplementary steps for creating applications that leverage
Deep Neural Networks (DNNs). As shown in Figure 1, many
of the steps involved in developing a DNN application do not
directly involve DNN models (e.g., dataset preparation, setting
up development and deployment environments). Researchers
and industry practitioners generally take care when designing
(or choosing) and training their models. However, many of
these complementary steps may be overlooked or implemented
in a more ad-hoc manner, especially within the research
community. However, we argue that there are advantages to
leveraging the growing set of tools and workflows for end-
to-end DNN application development in research, even if the
end goal is not production ready deployment. For instance,
ensuring that datasets are in a consistent and easily usable for-
mat for DNN training, and that this transformation process is
reproducible. Or when evaluating on more than one hardware

Fig. 1: Simplified representation of the workflow of developing
a DNN application. Note that only one step directly involves
choosing model architectures and training.

platform, ensuring that the software environment is correctly
set up with all of the required software dependencies, and
ideally in a way which is reproducible. For the latter example,
continuous integration (CI) and continuous deployment (CD)
pipelines can fit this role, however can be time consuming
and tedious to set up from scratch. Thus, in this position
paper we discuss key tools which increased our productivity in
developing an artificial intelligence (AI) application for visual
industrial defect detection, and how integrating such tools into
DNN development workflows can help both researchers and
industry practitioners.

The contributions of this paper include the following:
• We describe several tools which we have used to increase

the productivity of our DNN research, including PyTorch
Lightning [13] and templates from the Bonseyes Market-
place Platform [14].

• We highlight how these tools were valuable to us in a
case study for visual industrial defect detection, and how
we used them to develop an end-to-end solution.

• We describe the three datasets we used to tackle our
problem, and the models we trained. We present our best
performing models in terms of accuracy and inference
time, using an Nvidia A100 as our main evaluation
platform, as well as presenting results on an x86 CPU,
and a Rapsberry Pi 4.



II. CORE DNN DEVELOPMENT/DEPLOYMENT TOOLS

Achieving high accuracy on a target problem is generally
the main motivating goal of any machine learning project,
while latency becomes more important in systems research
and when deploying to constrained devices in industrial use-
cases. Machine learning researchers can explore a wide range
of design choices, for example varying the neural architecture,
changing aspects of the training process (e.g., learning rate,
optimizer), and applying varying types of data augmentation.

However, although these aspects of the solution are pivotal,
it is important that the supporting infrastructure to help solve
the problem is not overlooked or chosen as an afterthought.
For example: how is the raw training data to be translated
into a format that the DNN can understand? Can this be
easily reproduced? What is the software environment that
a DNN will be trained in, and will it still work in future
when packages are updated? What platforms will the DNN
be deployed to, and how will this deployment be managed?
These questions are important, thus in this paper we list a
number of open source tools that we leveraged for our case
study (discussed in Section III), and the value they can bring
for deep learning application development. We do not list the
most obvious and ubiquitous tools, for example PyTorch [10],
which is the most popular deep learning framework used in
research [15], or version control systems such as git. Instead
we focus on systems and tools which we believe filled a niche
that greatly increased our productivity in carrying out our case
study discussed in Section III, and may not necessarily be
well known or commonly used within the research community.
In particular, instrumental to our success were systems and
templates provided by the Bonseyes Marketplace [14], which
were designed with these goals in mind 1. The core tools we
leveraged were as follows:

Segmentation Models PyTorch (SMP) [17]: a library
which builds on top of PyTorch, and eases the development
of DNN applications for computer vision problems related to
image segmentation. Since our case study is for industrial
visual defect detection, which is a sub-problem of image
segmentation, exploiting this library enabled us to produce a
range of solutions more quickly than if we had created our own
solution from scratch. Frameworks and libraries for specific
problem spaces, which build on top of lower level DNN
frameworks (e.g., PyTorch and TensorFlow [11]) are becoming
more popular, and researchers should be aware of them when
approaching a new problem domain, since they may provide
shortcuts to a solution, or at least provide a convenient set
of benchmarks to compare against. As well as SMP for
image segmentation, other examples of higher level DNN
libraries include the TensorFlow Object Detection API [18] for
object detection, and HuggingFace’s Transformers library [19]
for natural language processing and other tasks suited for
Transformer-based [20] architectures.

1More information on the Bonseyes suite of tools can be found in the
Bonseyes Platform documentation [16].

Fig. 2: Simplified representation of the features provided
by the Bonseyes AI Asset template system, adapted (with
permission) from the AI Asset Generator documentation [21].

PyTorch Lightning [13]: a wrapper library for PyTorch
which reduces the amount of boilerplate code for defining
model training. In addition, it also provides utilities for pruning
and quantization, which are designed to be simpler to use
than those provided by normal PyTorch alone. It also boasts
the feature of enabling training across on multiple-GPUs,
TPUs (Tensor Processing Units), CPUs, and IPUs (Intelligence
Processing Units) without requiring changes in the code.

Bonseyes Datatools: a codebase template that allows de-
velopers to produce tools which convert raw data into a
user-defined standard dataset format, including utilities for
exploratory data analysis, visualization, and dataset tagging
and versioning. As well as ensuring that dataset preparation
is more reproducible, a secondary purpose of a datatool is
to separate initial dataset preparation from the model training
code, which aids re-usability for future projects.

Bonseyes AI Assets: a codebase template that aids devel-
opers in producing a tool for both training and deployment
of DNNs. An AI Asset encapsulates all code and depen-
dencies required for their solution, with an overview of its
features shown in Figure 2. Datasets generated from user-
defined Bonseyes datatools can be easily mounted on the
AI Asset, simplifying the data loading process. Code for
common activities such as benchmarking, report generation,
and model conversion and inference using PyTorch, ONNX
Runtime [22], and TensorRT [23] is provided, with support for
more inference engines in development. The design philosophy
is to provide as much boilerplate code as possible without
forcing developers to make design choices they do not want to.
Developers can use their deep learning framework of choice,
and include any software dependencies they require. The
motivation for having all of the tools in a single environment is
so that it is easier to investigate performance degradation over
the whole pipeline, even when deploying on other platforms.
The trade-off here is increased disk storage for libraries.



Bonseyes AI Asset CI/CD pipeline: Continuous Inte-
gration (CI) and Continuous Deployment (CD) are software
engineering principles whereby code is regularly subjected
to automated testing, with CD being particularly focused
on ensuring that code works in a deployment environment.
Although valuable, setting up these pipelines can be a very
time consuming task and may not be a high priority for
researchers who are focused on validating their ideas rather
than producing production ready systems. However, the Bon-
seyes AI Asset includes a predefined CI/CD pipeline, which
means that developers can reap the benefits of having their
development and deployment environments be independently
tested with each code commit without requiring the high initial
set-up costs. Users must provide an x86-based server featuring
an NVidia GPU and run a setup script which allows the server
to receive and test new code commits, automatically testing
for four platforms (x86+CUDA, x86-only, Nvidia Jetson, and
Raspberry Pi, as seen in Figure 2). QEMU [24] emulation is
used to test the Arm-based Jetson and Raspberry Pi platforms
on the server, with Docker containers for each platform being
generated and available for immediate deployment at the
end of the process. The testing process is automatic, with
developers being sent an email if their pipeline fails.

III. CASE STUDY

As discussed in Section I, our goal was to produce an
end-to-end AI application for the problem of industrial visual
defect detection. In essence, the task is to take visual input
(e.g., from a camera) of some industrial product (e.g., textiles,
rolled steel, printed circuit boards, etc) and identify if there
are any defects on the product (e.g., scratches, blemishes,
smudges, etc). This information can then be used to improve
product quality, and reduce waste. An example of this can
be seen in Figure 3, where in Figure 3a we can see a
photograph from some industrial product, and in Figure 3b
we have a human annotated label of where in the image a
defect is, shown in red. To solve this problem effectively
we were required to have our data in a consistent format
(Section III-A), have models which can efficiently process said
data (Section III-B), and have other parts of our development
and deployment workflow be as supportive as possible for our
workflow (Section III-C).

A. Datasets and data processing

For our case study, we used three publicly available datasets
to train and evaluate our system: DAGM2007 [25], Kolek-
torSDD [26], and KolektorSDD2 [27]. Below is a brief
overview of the three datasets:

• DAGM2007 contains grayscale images for 10 classes of
artificially generated patterns, with around 8% of them
containing defects. The classes were designed to mirror
real world problems, with 1150 images per class, and
images of size 512× 512.

• KolektorSDD is a small dataset of grayscale images
collected from a real industrial environment. There are
only 399 images, with around 8% of them containing

(a) Image data (b) Defect label

Fig. 3: Sample element from the KolektorSDD dataset [26],
with the image data (a), and pixel-wise mask of defective
regions highlighted in red (b).

defects, and the standard size of images for the dataset
being 512 × 1408. A sample image from KolektorSDD
is shown in Figure 3.

• KolektorSDD2 is a larger dataset of color images of size
230×630. There are 3335 images with around 9% of the
images containing defects.

The raw data of the three datasets are stored in different
directory hierarchies, and represent their annotations in vary-
ing formats. Thus, we standardize our datasets to a common
format, which simplifies our training and evaluation code later
in the project. This is the purpose of the Bonseyes Data-
tool template, which provides utilities to create a conversion
pipeline for raw data. We created three datatools, one for each
of our datasets, which all converged on a common format. We
represent a given dataset element with in the following format:

• Path to image data.
• Compressed matrix representing the defect annotation.
• The classification: defective or non-defective.
The datatool represents all of this data in a standardized

JSON format, with raw image data stored in a simple directory
hierarchy. Once the datatools have converted their respective
datasets, we can then develop our training and evaluation
pipeline. To achieve this, we leverage the Bonseyes AI Asset
system, which as discussed in Section II provides a set of util-
ities and packages for developing AI applications. To ensure
a consistent software environment we develop our solution
in a Docker container provided by the AI Asset, adding any
dependencies we require to the AI Asset’s dependency file.

B. Model architectures and training

Bonseyes AI Assets do not enforce any strict require-
ments on how models are developed, simply providing a
template to follow. Thus, for our models we leverage the
SMP library [3], which provides model architectures for image
segmentation. We can formulate surface defect detection as an
image segmentation problem by representing the annotations
(e.g., the ones seen in Figure 3b) as a mask matrix of 1s and
0s for defective and non-defective pixels respectively. Then
when training we attempt to produce an output matrix which
has maximum similarity with this matrix. To measure this
similarity, we use the common metric of intersection-over-
union (IoU), as shown in Figure 4, with an IoU-score of 0.0



Fig. 4: Overview of the IoU-score which we optimize when
training our DNN models.

meaning that we predicted no defective pixels correctly, and
1.0 meaning that we predicted every defective pixel correctly.
We leverage the fact that our three datasets are in the same
format (as described in Section III-A) to simplify the definition
of our models, since we only need to support one data format.

Using the SMP library, DNN model architectures are de-
fined with two main components: an encoder model which
processes raw image data, and a model which takes the
output of the encoder to produce the image segmentation,
which we refer to as the detector. Thus in this paper we call
this an encoder-detector architecture, as shown in Figure 5.
An advantage of this architecture is that for the encoder
we can leverage pretrained ImageNet [28] models, such as
ResNet50 [1], MobileNetV2 [29], and EfficientNet [30]. This
can significantly reduce our training costs and the amount of
training data we require, since our models do not need to
learn from scratch how to identify low-level image features
(e.g., edges, corners, textures, etc). The encoder model skips
its final ImageNet classification layers, passing intermediate
activations to the detector model. This means that data passed
to the detector is easier to process than raw image data. SMP
provides a number of state-of-the-art architectures we can
choose for the detector, including Unet++ [31], MAnet [32],
LinkNet [33], PAN [34], and more. In total, SMP can provide
over 1000 unique encoder-detector pairs, and in our evaluation
in Section IV we train a subset (62 models) and report on our
best performing models.

Using a higher level library such as SMP rather than build-
ing our own architecture from scratch, or using a single model
implementation published alongside a research paper (e.g.,
LinkNet, MANet) significantly increased our productivity,
since we did not know ahead of time which architecture would
provide the best performance, and having a tool such as SMP
which allowed us to easily switch architectures meant we only
had to integrate one codebase rather than several. In addition,
for training our models we leveraged the PyTorch Lightning
library [13], which further reduced the amount of boilerplate
code we had to write for configuring the training procedures
for our models. For future work, PyTorch Lightning will also
reduce the effort required to further compress our models using
techniques such as pruning and quantization, which in our
experience can be more difficult to do when only using the
utilities provided by the base PyTorch library.

Our DNN models only provide a mask matrix, hence to
provide a final classification we apply a post-processing step

Fig. 5: Simplified example of an Encoder-Detector DNN
architecture.

integrated into the Bonseyes AI Asset algorithm class (which
helps ensure that pre- and post-processing steps are performed
consistently across frameworks). The post-processing step
takes a user-defined threshold (e.g., 1%) and classifies the
image as being defective if the proportion of pixels marked as
defective by the model is greater than or equal to the threshold.
Thus, we can measure the quality of our solution using both
classification accuracy and IoU score, however it is sufficient
to train our models using the IoU score alone.

C. Deployment, and complementary components

Generally DNNs are trained on HPC servers featuring
GPUs, however when they are deployed they may also run
on more constrained edge devices such as IoT devices, smart-
phones, drones, VR headsets, etc. When deploying on a new
platform, tasks such as managing package dependencies and
setting up the new environment can be very time consuming.
Fortunately, as discussed in Section II, Bonseyes AI Assets
contain a CI/CD pipeline to ease this deployment. Developers
specify the versions of packages they are using for devel-
opment purposes, and whenever they push a code commit
the CI/CD pipeline builds the whole project for x86, Nvidia
Jetson, and Raspberry Pi platforms. Occasionally, a package
version for the x86 platform may not be available for another
platform. In this case, developers will be sent an email about
the issue and be able to specify a different package version
for the platform, on in extreme cases a process to build
the correct version of the package. When the developer is
ready to test deployment on their target device, they need
only to download the latest version of the Docker image for
their target platform. Running CI/CD on a server with ISA
emulation reduces the time required to setup a new platform,
especially when steps like building packages can be more time
consuming when compiling natively on constrained platforms
such as the Raspberry Pi. This is especially valuable for
machine learning researchers for whom testing on constrained
edge devices may be considered merely supplementary results:
not worth a large amount of effort, but whose inclusion will
improve any evaluation they provide.

When running inference, deep learning frameworks such as
PyTorch may not be the most optimal for running inference
(since they are focused on training). Thus, Bonseyes AI
Assets also include support for ONNX Runtime and TensorRT
inference, with support for more backends in development.

https://github.com/e-lab/LinkNet
https://github.com/zengqunzhao/MA-Net


IV. RESULTS

In this section, we discuss our results from training a range
of models separately on our 3 datasets: DAGM2007, Kolek-
torSDD, and KolektorSDD2. In total we trained 62 models,
and we include our tables of our 5 top performing models
in terms of accuracy and inference time. For all models, we
evaluate them using a validation dataset, and for DAGM2007
and KolektorSDD2 we use the officially provided held-out
test datasets. For KolektorSDD, the dataset is too small for
a held out test set (with only 52 examples of defects in the
whole dataset). Therefore, we evaluate it using the test set of
KolektorSDD2, from which we expect to see a performance
degradation due to the images having different characteristics.

We report the inference times in three settings: 1) PyTorch
running on an NVidia A100 GPU, 2) ONNX Runtime on
a cloud-based Intel Broadwell series x86 CPU featuring 22
cores, and 3) ONNX Runtime on the CPU of a Rapsberry Pi
4 Model B. Note that we were unable to run models using
EfficientNet-based encoders in the version of ONNX Runtime
we tested due its lack of support for the models’ “Swish”
function. Hence we represent the inference time for those
models in this setting with a ‘-’.

Tables I, II, and III show our top 5 models in terms of test
set accuracy, as well as their inference time across our three
settings. Across every model we trained, our median test set
classification accuracies were 99.8%, 89.0%, and 97.55% for
DAGM2007, KolektorSDD, and KolektorSDD2 respectively.
The lower accuracy for KolektorSDD is expected, given that
1) our evaluation methodology tests on a completely different
dataset (KolektorSDD2), and 2) how few examples are in the
dataset relative to the other models. We observe that across all
of our DNN models, the mean validation set accuracy for our
KolektorSDD models is 98.8% (and was 99.7% and 97.4% for
DAGM2007 and KolektorSDD2 respectively) which suggests
that the models do learn well, however using KolektorSDD2
as a test set is unfair as the dataset is too different. Comparing
against other published approaches for our 3 datasets, as
ranked by Papers with Code [35]–[37], we observe that our
best models get accuracies matching other highly ranked
solutions. We note that models using EfficientNetB4 as the
encoder architecture appear disproportionately in the top-5
models in terms of accuracy for the 3 datasets, and there is
no clear winner for detector architectures, suggesting that the
choice of encoder architecture has the greatest influence on
final accuracy.

Tables IV, V, and VI show our top 5 models in terms of
inference time on the NVidia A100 GPU, along with their
accuracies, and inference time on other devices. On the A100,
our models vary in inference time between 5.9ms and 34.0ms
running on an NVidia A100 with PyTorch. We note that
models with MobileNetV2 and ResNet34 as their encoder
architectures are the only models that are in the top 5 in
terms of inference time on the A100 across our three datasets,
suggesting that as well as accuracy the encoder is the most
important feature to consider for inference time. We note that

our fastest models see accuracy penalties when compared to
their counterparts in Tables I, II, and III. However, several
of our fast models also get high accuracies. For example,
in Table IV, MobileNetV2-Unet (Rank 2) and MobileNetV2-
Pan (Rank 5) get nearly perfect accuracy on the test set, and
for Table VI ResNet34-LinkNet (Rank 1) and MobileNetV2-
Unet (Rank 2) get accuracies within 0.1% of the fifth best
performing model in Table III.

We observe that the relative inference times of models
and their scaling does not necessarily stay the same between
settings (i.e., PyTorch on the A100 GPU, ONNX Runtime
the x86 CPU, ONNX Runtime on the Raspberry Pi 4). For
example in Table IV MobileNetV2-Pan (Rank 5) is almost
3.3× faster than ResNet34-Unet (Rank 4) on x86+ONNX
Runtime, whereas the models have almost identical inference
times on the A100 using PyTorch, with a similar discrepancy
seen on the Raspberry Pi 4. This tells us that relative inference
time performance is not necessarily consistent between frame-
works and devices. In future work, we will explore in greater
detail these performance trade-offs and variances, how to make
the best choice of model for a given hardware platform,
and investigate further across-stack DNN optimizations [38]
such as grouped convolutions [39] and quantization. Deep
learning compilers such as TVM [40] and IREE [41] provide
another dimension of DNN optimization, with approaches such
as auto-tuning [42], auto-scheduling [43], and related sys-
tems [44] potentially bringing further performance improve-
ments. Integration of these systems within an AI Asset could
provide a more straightforward way to reap their benefits.

V. CONCLUSION

In conclusion, there are a wide range of tools available
to increase the productivity of both deep learning engineers
and researchers. Our paper highlighted that features such a
continuous integration and deployment, which are rarely a
priority for researchers, can bring a number of benefits and
require little effort to set up if researchers embrace predefined
workflows such as the open source tools provided by the
Bonseyes Marketplace [14]. In addition, there are emerging
higher level deep learning libraries (such as SMP [17]) that
can improve productivity for specific domains, that should
be exploited where possible. We discussed our experience
using the latest tools to produce a solution for the problem
of industrial defect detection, presenting results on an HPC
server and a Raspberry Pi 4. For future work, we will seek
to continue to use these tools and principles to improve the
quality of our own research artifacts, and explore the utilities
provided by both PyTorch Lightning and Bonseyes AI Assets
for model compression such as pruning and quantization.
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TABLE I: Top 5 models ranked by accuracy for DAGM2007 along with their inference times.

Rank Test Validation Arch (Encoder-Detector) Inf. time (ms)
Acc (%) IoU Acc (%) IoU A100 x86 RPi4

1 100.0 0.941 100 0.976 EfficientNetB4-LinkNet 18.9 - -
2 100.0 0.939 100 0.975 EfficientNetB4-Pan 21 - -
3 100.0 0.937 99.9 0.977 EfficientNetB4-MANet 23.5 - -
4 100.0 0.917 100 0.971 MobileNetV2-Unet++ 8.2 116 3351
5 100.0 0.914 99.9 0.967 MobileNetV2-Pan 6.9 36.6 853

TABLE II: Top 5 models ranked by accuracy for KolektorSDD along with their inference times.

Rank Test Validation Arch (Encoder-Detector) Inf. time (ms)
Acc (%) IoU Acc (%) IoU A100 x86 RPi4

1 90.2 0.892 100 0.931 InceptionV4-Unet++ 34 1427.6 73372
2 90 0.363 98.8 0.926 MobileNetV2-Pan 8.6 58.9 2119
3 89.8 0.79 98.8 0.93 ResNet34-Unet++ 11.6 608.0 30656
4 89.7 0.841 100 0.944 EfficientNetB4-MANet 29 - -
5 89.6 0.892 98.8 0.895 EfficientNetB4-Unet 25.1 - -

TABLE III: Top 5 models ranked by accuracy for KolektorSDD2 along with their inference times.

Rank Test Validation Arch (Encoder-Detector) Inf. time (ms)
Acc (%) IoU Acc (%) IoU A100 x86 RPi4

1 98.1 0.842 98.7 0.857 InceptionV4-Unet 23.7 152.3 5462
2 98 0.952 98.1 0.947 EfficientNetB4-Unet++ 25 - -
3 98 0.948 97.2 0.944 EfficientNetB4-Pan 21.8 - -
4 97.9 0.882 97.9 0.879 EfficientNetB4-Unet 20.2 - -
5 97.8 0.94 97.9 0.939 EfficientNetB4-LinkNet 21 - -

TABLE IV: Top 5 models ranked by inference time on the NVidia A100 for DAGM2007 along with their accuracies, and
inference times on other platforms.

Rank Test Validation Arch (Encoder-Detector) Inf. time (ms)
Acc (%) IoU Acc (%) IoU A100 x86 RPi4

1 94.1 0.848 97.4 0.941 MobileNetV2-LinkNet 5.9 43.3 766
2 99.9 0.908 99.9 0.968 MobileNetV2-Unet 6.4 73.4 2514
3 94.9 0.856 97.2 0.941 ResNet34-Pan 6.6 102.1 4459
4 94.5 0.844 97.1 0.939 ResNet34-Unet 6.8 120.2 4948
5 100 0.914 99.9 0.967 MobileNetV2-Pan 6.9 36.6 852

TABLE V: Top 5 models ranked by inference time on the NVidia A100 for KolektorSDD along with their accuracies, and
inference times on other platforms.

Rank Test Validation Arch (Encoder-Detector) Inf. time (ms)
Acc (%) IoU Acc (%) IoU A100 x86 RPi4

1 89 0.696 100 0.899 MobileNetV2-LinkNet 7.9 80.2 1914
2 89 0.154 96.2 0.918 ResNet34-LinkNet 8 258.1 8757
3 64.4 0.002 98.8 0.924 ResNet34-Unet 8 256.8 12431
4 89 0.89 98.8 0.903 ResNet34-DeepLabV3 8.1 642.0 40772
5 89 0.89 98.8 0.925 ResNet34-Pan 8.2 227.1 12221

TABLE VI: Top 5 models ranked by inference time on the NVidia A100 for KolektorSDD2 along with their accuracies, and
inference times on other platforms.

Rank Test Validation Arch (Encoder-Detector) Inf. time (ms)
Acc (%) IoU Acc (%) IoU A100 x86 RPi4

1 97.7 0.819 97.4 0.817 ResNet34-LinkNet 6 71.4 1908
2 97.7 0.94 97.6 0.937 MobileNetV2-Unet 6.1 60.0 1539
3 95.2 0.887 93.1 0.863 MobileNetV2-LinkNet 6.2 32.1 441
4 96.1 0.924 95.5 0.907 ResNet34-Unet 6.4 76.7 2927
5 97.4 0.937 97.9 0.939 MobileNetV2-DeepLabV3 6.6 106.8 4552
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