
Mathematical
Memory Management

	

Jeremy.Singer@glasgow.ac.uk	
@jsinger_compsci	

•  dynamic memory allocation
requires a runtime heap

•  use malloc and free to allocate
and deallocate heap space

• Problems with explicit
deallocation

– forgotten free()

– double free()

Automatic Memory Management

•  a.k.a. Garbage Collection (GC)

•  Automatically deallocate a block of
memory when it is no longer reachable

•  Reachability is conservative approximation
for liveness

When are objects unreachable?

•  use reference counting

•  use tracing

GC varieties

•  generational vs non-generational

•  moving vs non-moving

•  copying vs compacting

•  stop-the-world vs concurrent

Live demo

Lots of possibilities

•  How do you find the best settings for
your system? … for your application?

1.  domain expertise
2.  exhaustive searching
3.  machine learning

1. Domain Expertise

2. Exhaustive Search

• around 300 GC parameters
• search parameter space for 4 hours
• select optimal configuration

3. Machine Learning

•  if we can characterise application
workloads in a general way, we can
correlate these with appropriate GC
configurations

•  my ISMM 2007 paper “Intelligent
Selection of Application-Specific Garbage
Collectors”

[ISMM 2007]

Feature vector

•  characterizes a single Java application

•  static (e.g. CK metrics, source code
metrics)

•  dynamic (e.g. object demographics)
•  VM (e.g. #GCs in reference collector)

Training Phase

•  Build a predictor based on performance
of known benchmarks

•  Tournament predictor, a forest of decision
trees

Single Decision Tree

Results

•  Mean application speedup of 5% over set
of 20 Java benchmarks.

•  Oracle predictor suggested 17% speedup
was possible.

We have characterized a GC/
application interaction using
statistics

 – now –

Can we understand the interaction
using an analogy?

[ISMM 2010]

economic demand curve

GC allocation curve

Effect of taxation

•  product tax shifts demand curve up price
axis

Analogy

•  price is like heap size
– cost incurred

•  consumer demand is like GC overhead
– direct impact on actual consumer

•  tax is like object header size
– hidden overhead on every allocation

Why are analogies helpful?

•  you help me!

We have characterized a GC/
application interaction using
statistics

and understood the interaction
using an analogy
 – now –

Can we control the interaction
using a mathematical model?

[ISMM 2013]

•  process: application running in JVM
•  controlled variable: GC overhead [0,1]
•  reference: target GC overhead
– set by user / sysadmin

•  error: difference between observed
overhead and target overhead

•  control: heap size
–  increase heap size => reduce GC overhead

Mathematical Model: PID

Tune to determine parameters

Examples of controlled systems

Conclusions

Garbage Collectors are
Complex Software Systems

•  Possible to characterize them and
control them, using standard techniques
•  statistical (machine learning, ISMM

2007)
•  mathematical analogy (economics,

ISMM 2010)
•  differential equations (control theory,

ISMM 2013)

Concluding Challenge

•  I have looked at Garbage Collection

•  For the complex software systems you
study, which mathematical abstractions
would be appropriate for characterization
and control?

