
Other Languages on the JVM

Jeremy Singer and Wing Hang Li

A brief history of Java

Why is Java boring?

Why is Java boring?

1.  it’s verbose
2.  it’s uncool
3.  it’s non-functional

1.  it’s verbose

 ; Clojure

 (println “hello”)

1.  it’s verbose

 // Java

System.out.println(“hello”);

1.  it’s verbose

 // Java

public static void main(String[] args) {
 System.out.println(“hello”);
}

1.  it’s verbose

 // Java
public class Hello {
public static void main(String[] args) {
 System.out.println(“hello”);
}
}

1.  it’s verbose

Why is Java boring?

2. it’s uncool

Why is Java boring?

2. it’s uncool

Why is Java boring?

3. it’s non-functional

Context
This presentation is based on our recent research paper:

“JVM-Hosted Languages: They Talk the Talk but do
they Walk the Walk?”

Available at: http://bit.ly/19JsrKf

Background – the JVM
}  One reason for Java’s success is the Java Virtual Machine
}  The JVM provides:
}  “Write once, run anywhere” capability

(WORA)
}  Security
}  Automatic memory management
}  Adaptive optimisation

}  New Trend – WOIALRA
}  write once in any language run anywhere

Other JVM Programming Languages
}  Clojure, JRuby, Jython and Scala are popular JVM languages
}  Language features:

}  Clojure and JRuby are dynamically typed
}  JRuby and Jython are scripting languages
}  Clojure is functional language
}  Scala is multi-paradigm

Growing Popularity of JVM languages
}  Top reasons are:

}  Access new features
}  Interoperability allows existing Java libraries to be used
}  Use existing frameworks on the JVM (JRuby on Rails for

instance)

}  Twitter uses Scala:
}  Flexibility
}  Concurrency

JVM Languages in the Real World

Clojure

JRuby

Jython

Scala

What’s the Catch?
}  JVM was designed to run Java code
}  Other JVM languages have:

}  Poor performance
}  Use more memory

How much slower each language performs compared to the fastest time.
Figures from the Computer Languages Benchmark Game

Fortran
Intel

Java Scala Clojure JRuby

1.01 1.92 2.30 4.10 50.23

Why are Non-Java Languages Slower?
}  What are the differences between Java and the other JVM

languages?
}  Work on improving performance has usually been on the

programming language side
}  The new INVOKEDYNAMIC instruction in Java 7 is one

example
}  Is it possible to modify a JVM to improve performance for

non-Java languages?

Truffle/Graal Approach
}  Oracle Labs

} “One VM to rule them all”

Aim of our Study
}  This study is the first stage of a project to improve the

performance of non-Java JVM languages.
}  We do this by profiling benchmarks written in a Java,

Clojure, JRuby, Jython and Scala.
}  We found differences in their characteristics that may be

exploitable for optimisations.

Data Gathering and Analysis

	

Method	 Level	

JVM	

Garbage	
Collection	
Traces	

Dynamic	
Bytecode	
Traces	

Object	 Creation	
and	 Deaths	

Call/Ret	 Events	

Instruction	 Mix	

Instruction	 Level	

Object	 Level	

Object	
Demographics	

N-‐Gram	
Models	

Principal	
Components	
Analysis	

Data	 Gathering	 Exploratory	 Data	
Analysis	

Benchmarks	

Java	

Clojure	

JRuby	

Jython	

Scala	

Profiling Tools
}  JP21 profiler:

}  Proportion of Java and non-Java bytecode
}  Frequency of different instructions
}  Method and basic block frequencies and sizes
}  N-grams

}  Elephant Tracks2 heap profiler:
}  Object allocations and deaths
}  Object size
}  Pointer updates
}  Stack depth at method entry and exit for each thread

1 http://code.google.com/p/jp2/
2 http://www.cs.tufts.edu/research/redline/elephantTracks/

Benchmarks
}  Obtained from the Computer Languages Benchmarks

Game*

}  The same algorithm is implemented in each programming
language

}  Well known problems like N-body, Mandelbrot and Meteor
puzzle

}  Benchmarks available in Java, Clojure, JRuby, Python and Scala

*http://shootout.alioth.debian.org/

Benchmarks
}  Java

}  DaCapo benchmark suite
}  Clojure

}  Noir – web application framework
}  Leiningen – project automation
}  Incanter – R like statistical calculation and graphs

}  JRuby
}  Ruby on Rails – web application framework
}  Warbler – converts Ruby applications into a Java jar or war
}  Lingo – automatic indexing of scientific texts

}  Scala
}  Scala Benchmark Suite

Problems Encountered
}  Non-Java programming languages use Java

}  Java library
}  JRuby and Jython are implemented in Java

}  Can be mitigated by filtering out methods and objects
using source file metadata

}  We examine the amount of non-Java code in each non-
Java language library

Non-Java Code in JVM Language Libraries

Language Classes Methods Instructions

Scala 97% 99% 97%

Clojure 76% 67% 76%

JRuby 35% 13% 2%

Jython 32% 14% 4%

Analysis tools
}  Principal components analysis using MATLAB

}  Can be used for dimension reduction
}  Spot patterns or features when projected to fewer dimensions

}  Object Demographics
}  Memory behaviour of objects
}  Size and lifetime of objects

}  Exploratory Data Analysis1

}  Spot patterns or features using various graphical techniques
}  Principal components analysis and boxplots

1 Exploratory Data Analysis with MATLAB by W.L. Martinez, A. Martinex and J.
Solka.

Instruction Level Results
}  Variety of n-grams used

Language Filtered 1-gram 2-gram 3-gram 4-gram

Java No 192 5772 31864 73033

Clojure
No 177 4002 19474 40165

Yes 118 1217 3930 7813

JRuby
No 179 4482 26373 64399

Yes 54 391 1212 2585

Jython
No 178 3427 14887 27852

Yes 48 422 1055 1964

Scala
No 187 3995 19515 45951

Yes 163 2624 11979 30164

Instruction Level Results
}  N-grams not used by Java

Language Filtered 1-gram 2-gram 3-gram 4-gram

Clojure
No 2 348 (5%) 4578 (23%) 15824 (43%)

Yes 2 193 (11%) 1957 (46%) 6264 (77%)

JRuby
No 1 512 (1%) 7659 (8%) 30574 (26%)

Yes 1 44 (2%) 399 (14%) 1681 (42%)

Jython
No 1 161 (1%) 2413 (6%) 8628 (19%)

Yes 1 38 (7%) 412 (19%) 1491 (56%)

Scala
No 0 335 (2%) 4863 (23%) 21106 (59%)

Yes 0 288 (3%) 4168 (27%) 18676 (69%)

Instruction Level Results

}  Principal components analysis (1-gram, filtered)

Instruction Level Results

}  Principal components analysis (2-gram, filtered)

Instruction Level Results

}  Principal components analysis (2-gram, filtered)

We observe that, after filtering,
JRuby and Jython use a different
mix of 1 and 2-grams compared to

the other JVM languages

Instruction Level Results

}  Principal components analysis (1-gram, unfiltered)

Instruction Level Results

}  Principal components analysis (2-gram, unfiltered)

Instruction Level Results

}  Principal components analysis (2-gram, unfiltered)

Without filtering there is no distinct
clustering observed

Method Level Results
}  Results for the distribution of method sizes

Method Level Results
}  Results for the distribution of method sizes (filtered)

Method Level Results
}  Results for the distribution of method sizes (filtered)

We observe that Scala
methods are generally

smaller than Java
methods

Method Level Results

}  Results for the distribution of method stack depths

Method Level Results

}  Results for the distribution of method stack depths

We observe that stack
depths are generally greater

for Scala applications
compared to Java

applications

Object Level Results

}  Object lifetime

Object Level Results

}  Object lifetime (filtered)

Object Level Results

}  Object lifetime (filtered)

We observed that more Scala
objects have a short lifetime

compared to Java

Object Sizes

}  Results for the distribution of object sizes (filtered)

Object Sizes

}  Results for the distribution of object sizes (filtered)

Object Sizes

}  Results for the distribution of object sizes (filtered)

We observed that Clojure generally
uses objects that are smaller than

Java objects

Other Results

}  All benchmarks showed a high level of method and basic
block hotness. There were no significant differences
between JVM-hosted languages.

}  Non-Java JVM languages are more likely to use boxed
primitives.

Future Work
}  Examine the programming language characteristics to find

opportunities for:
}  Tuning existing optimisations
}  Proposing new optimisations

}  Implement these in a JVM to see if performance has
improved

Conclusions
}  Aim of study is to investigate the reasons for the poor

performance of JVM languages
}  Benchmarks in 5 JVM languages were profiled
}  JVM languages do have distinctive characteristics related

to their features
}  Next step is to optimise performance using the observed

characteristics

Our research paper, experimental scripts and results are
available at: http://bit.ly/19JsrKf

Questions?

More Method Size Graphs

}  Results for the distribution of method sizes (filtered)

More Method Size Graphs

}  Results for the distribution of method sizes (unfiltered)

More Method Stack Depth Results

More Object Lifetime Graphs

More Object Lifetime Graphs

More Object Size Graphs

}  Results for the distribution of object sizes (filtered)

More Object Size Graphs

}  Results for the distribution of object sizes (unfiltered)

