
Andrews Dinn and Haley1

Porting JavaPorting Java™™ to AArch64 to AArch64™™
Bits of History, Words of AdviceBits of History, Words of Advice

Andrews Dinn and Haley
Red Hat Open Source Java Team

January 2014

Andrews Dinn and Haley2

In the beginning...

● In October 2011, AArch64, the 64-bit version of the
ARM architecture, was announced

● The potential for high-density 64-bit ARM-based
servers is very interesting to every company in the
market

● There wasn't any public plan for Java, and there was a
very real risk that the only implementation would be
proprietary

Andrews Dinn and Haley3

In the beginning...

● It is extremely hard to find engineers with HotSpot
porting experience, so

● we took the decision to do the port ourselves, with no
experience of porting Java or HotSpot

● In hindsight this looks either brave or foolhardy,
depending on your point of view

Andrews Dinn and Haley4

In the beginning...

● How were we going to estimate the size of the work?

● aph had once heard from someone whose name he
has forgotten that two top-class engineers at Sun could
port HotSpot in a year: one doing C2, the other doing
the assembler, template interpreter, and C1

● So we guessed we could do it in the same time plus
50%

● even though we had no idea what we were doing

● In hindsight this looks either brave or foolhardy,
depending on your point of view

Andrews Dinn and Haley5

In the beginning...

● In fact, we weren't quite as ignorant as that might
suggest. We had considerable Java implementation
experience: adinn with JikesRVM, and aph with GCJ.

● The 18 months “guesstimate” has turned out to be
about right: it's taken slightly longer than that in
elapsed time, but neither of us has been able to work
on the task full time

Andrews Dinn and Haley6

In the beginning...

● We started on April Fools' day, more or less:

changeset: 0:2b6985c6a732
user: "Andrew Dinn <adinn@redhat.com>"
date: Mon Apr 02 12:31:21 2012 +0100
summary: start at implementing simulator for ARM64

mailto:adinn@redhat.com

Andrews Dinn and Haley7

...which brings us to the simulator

● We decided to write our own AArch64 simulator

● This would be a simple behavioural simulator that
would only be used to execute code generated by the
JIT compiler(s) and the template interpreter

● We would be independent of the OS-porting team, the
GCC team, and ARM's proprietary simulators

Andrews Dinn and Haley8

The simulator

● This approach only works because AArch64 is
architecturally compatible with AMD64

● Same endiannness
● Same word size
● Similar alignment rules

Andrews Dinn and Haley9

AArch64Sim state
(per thread)

Two stacks per thread

x86 VM frame

java call stub frame

simulator stack (altstack)

x86 thread stack

AArch64Sim.stp

AArch64Sim.dex

AArch64Sim.run

aarch64_prolog
trampoline

fp
sp pc

r0

trampoline (x86)

JITted
AArch64

code

mixed mode execution

Andrews Dinn and Haley10

AArch64Sim state
(per thread)

Two stacks per thread

x86 VM frame

java call stub frame

jvm frame

x86 VM frame

simulator stack (altstack)

x86 thread stack

AArch64Sim.brx86

AArch64Sim.dex

AArch64Sim.run

aarch64_prolog
trampoline

fp
sp pc

r0

mixed mode execution (2)

Andrews Dinn and Haley11

AArch64Sim state
(per thread)

Two stacks per thread

x86 VM frame

java call stub frame

jvm frame

x86 VM frame

java call stub frame

jvm frame

jvm frame

simulator stack (altstack)

x86 thread stack

AArch64Sim.brx86

AArch64Sim.dex

AArch64Sim.run

aarch64_prolog
trampoline

trampoline

fp
sp

AArch64Sim.add

AArch64Sim.dex

AArch64Sim.run

aarch64_prolog

pc

r0

mixed mode execution (3)

Andrews Dinn and Haley12

The simulator

● Was this decision correct? Discuss...

● aph thought it was a bit self-indulgent, but that it could
be defended

● adinn's experience porting JikesRVM to simulated
hardware led him to expect many of the actual benefits

● It's turned out to have been an excellent decision,
despite the work involved

Andrews Dinn and Haley13

The simulator

● The simulator is tightly integrated with both GDB and
HotSpot

● You can set symbolic breakpoints on JIT-generated
code and bytecode

● The simulator itself is very easy to change to add
specific conditions and traces

● It can be recompiled in less than 2 seconds

● The debugging environment is the best that we have
ever seen

● So, in hindsight:

Andrews Dinn and Haley14

The simulator

● The decision to write our own simulator turns out to
have been one of the best decisions we have ever
made

● We estimate that it's saved months of effort and
considerable frustration

Andrews Dinn and Haley15

Verifying the simulator and assembler

● There is a real risk from being totally independent of
other tools: you might end up creating an entirely self-
consistent world of your own that is different from the
real hardware when it arrives!

● We had GNU binutils, so we wrote a Python program
that generates assembly source for every instruction,
runs GNU assembler, and saves the binary. It also
generates source for the same instructions for
HotSpot's assembler

● We do a bit-for-bit comparison whenever HotSpot
starts in debug mode

● This is a really good idea. We found lots of errors.

Andrews Dinn and Haley16

Verifying the simulator and assembler

● When, much later, we wanted to run on other
simulators – and indeed real hardware – we
discovered only one major bug:

● The carry flag was the wrong way up: ARM subtract
clears the carry on an overflow

● Who would have guessed that? The simulator and the
template interpreter were in complete agreement

● It didn't take long to fix

Andrews Dinn and Haley17

Working in parallel

● It's very hard to share the work of porting HotSpot

● You have to alternate between writing the template
interpreter and the runtime

● We don't think it's possible to have more than two
people doing this, and even then it's difficult

Andrews Dinn and Haley18

Template Interpreter

● HotSpot's template interpreter is a hand-coded
assembly language bytecode interpreter

● It's used at startup time to gather profile data that
drives the JIT compilers

● There is also the C++ interpreter, which is slower, but it
means that you don't have to spend development time
writing a template interpreter

Andrews Dinn and Haley19

A template

void TemplateTable::dup()
{
 transition(vtos, vtos);
 __ ldr(r0, Address(esp, 0));
 __ push(r0);
 // stack: ..., a, a
}

Andrews Dinn and Haley20

Template Interpreter

● Writing the Template Interpreter got us used to the
architecture

● Java startup for “Hello, World!” executes 750k
bytecodes

● Was it really a good idea to write a template interpreter
for AArch64? Should we have used the C++
interpreter? Not sure; discuss...

Andrews Dinn and Haley21

Template Interpreter

● Arguments in favour:
● Performance matters because a lot of code is

interpreted
● It's a great learning exercise before you cut your teeth

on the compilers

Andrews Dinn and Haley22

Mistakes we made

● Stack alignment:
● We didn't realize that SP has to be 16-aligned or it will

trigger a bus error. This means that you can't use SP for
the interpreter's expression stack pointer. We had to
rewrite a chunk of code to use another register for ESP.
This restriction also means that the machine SP has to
be adjusted whenever we enter or leave the interpreter,
to make room for the interpreter's expression stack.

Andrews Dinn and Haley23

Mistakes we made

● Patching:
● ARM has tight rules about which instructions can be

patched while threads are operating concurrently. aph
didn't realize, and wasted some time writing the C1
compiler's patching code. We now deoptimize whenever
it's necessary to patch.

Andrews Dinn and Haley24

C1 and C2 compilers

● C1 is a quick 'n dirty JIT compiler that generates code
from simple patterns

● The code it generates isn't pretty to look at, but it can
be generated rapidly at startup time

● 64-bit HotSpot targets don't usually run C1

● Should we have written C1? We did, in order to get
something working quickly and test the shared runtime
code

● Was this really a good idea? Discuss...

Andrews Dinn and Haley25

C1 and C2 compilers

● Arguments in favour of writing C1:
● It's a great learning exercise before you cut your teeth

on C2
● In particular, the SharedRuntime code, which is used by

both compilers, is a lot easier to write and, more
significantly, test when you

● can easily understand how the compiler works and
● are able easily to engineer code that will be compiled to a

desired native sequence

● It's useful as the first level of tiered compilation – for
javac, etc.

Andrews Dinn and Haley26

C1 and C2 compilers

● Arguments against writing C1:
● HotSpot, by default, doesn't even bother to build C1 for

x86-64, even though it does work
● We don't know why this is ... maybe it's not worth it?

Andrews Dinn and Haley27

C1 and C2 compilers

● C2 is the server JIT: a heavyweight optimizing
compiler that uses the profile data produced by C1 and
the template interpreter to compile and recompile code

● There is no choice: you must have C2 for a high-
performance Java implementation

● We were scared by rumours of how difficult C2 was
going to be

● In hindsight, it wasn't so bad. It was a lot of work,
though.

Andrews Dinn and Haley28

A C2 pattern

Java:

result = (n >>> 12) & 7;

● This is the equivalent of C's bitfield extraction

Andrews Dinn and Haley29

A C2 pattern: bitfield extract

instruct ubfxwI(iRegINoSp dst, iRegI src,
 immI rshift, immI_bitmask mask)
%{
 match(Set dst (AndI (URShiftI src rshift) mask));
 ins_cost(DEFAULT_COST);
 format %{ "ubfxw $dst, $src, $mask" %}
 ins_encode %{
 int rshift = $rshift$$constant;
 long mask = $mask$$constant;
 int width = exact_log2(mask+1);
 __ ubfxw(as_Register($dst$$reg),
 as_Register($src$$reg), rshift, width);
 %}
 ins_pipe(pipe_class_default);
%}

Andrews Dinn and Haley30

C2 patterns

● If you're going to generate high-quality code you're
going to have to write a lot of patterns

● Some of them can be automatically generated by
means of evil m4 scripts

● For all of the gory details, the source is online

Andrews Dinn and Haley31

Here come the cavalry

● Linaro's governing board decided that they wanted to
help us

● They weren't quite sure how, and to begin with we
resisted

● In the end they, and in particular Ed Nevill, have been
very helpful

● They tested on ARM's own simulators and on ...

Andrews Dinn and Haley32

Welcome to the real world

● It turned out that our simulator was very accurate

● Whether by luck or good judgment, Linaro found only a
very few discrepancies when running in a real
AArch64/Linux environment

Andrews Dinn and Haley33

Where are we now?

● Interpreter, C1, C2, and runtime code are all done

● We are ready to make a Beta release at the same time
as JDK8 general availability

● There is performance tuning to be done when AArch64
hardware is more generally available

Andrews Dinn and Haley34

Where are we now?

● To-do list:
● We don't use the Advanced SIMD unit at all. There are

some significant optimization opportunities to be had
● We haven't created a pipeline model – this means that

C2 doesn't do any instruction scheduling. The reasons
that you might want to schedule are complex, and
depend on the microarchitecture of the CPU.

● We don't have any C2 peepholes at all. We're not sure
that there would be any point.

Andrews Dinn and Haley35

Where are we now?

● To-do list:
● The C2 patterns could be tuned to optimize

performance on real hardware
● We've run JDK7, and it's fine. We have now pushed it to

the public repo and will be releasing it along with JDK8.
We're not sure how much use JDK7 will be.

Andrews Dinn and Haley36

To-do list:

● This is free software – you all know the situation

● We don't bite

● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

