
Andrew Dinn1

OpenJDK ArchitectureOpenJDK Architecture

Andrew Dinn
Red Hat Open Source Java Team

March 2014

Andrew Dinn2

Architecure & Design through the Code Base

● Up Front Health Warning

● This talk is very code-oriented
● Will include mention of

● locations in the code base
● functions/methods and classes/types

● Point is to kill 3 birds with one stone
● Why is OpenJDK built the way it is?
● How is OpenJDK built the way it is?
● Where is OpenJDK built the way it is?
● i.e. Familiarization for the purpose of hacking

Andrew Dinn3

OpenJDK = JDK + JVM

● JDK Class Library
● Java code & native C/C++ libraries

● jre classes
● deployed in jre/lib/rt.jar + ...

● sdk classes
● deployed in lib/tools.jar + ...

● Hotspot JVM
● Compiled C++ code

● Bootstrap into Java execution
● Virtualize underlying OS/cpu

● threads, memory, io, JIT, etc
● deployed in jre/lib/<arch>/libjvm.so

Andrew Dinn4

JDK CLass LibraryJDK CLass Library

Andrew Dinn5

OpenJDK = lots of JDK code + JVM

● JDK Class Library
● big and still growing

● 5 sub-repos of Java code & native libraries
● jdk

● mostly jre classes (bootstrap, system, libraries)
● a few sdk classes (e.g. jvmti support)
● OS-specific subclasses – e.g. awt, Process, FileSystem etc

● langtools
● only sdk classes (javac, javadoc, etc)

● corba, jaxp, jaxws
● wt??? really Java EE not SE

Andrew Dinn6

JDK <--> Hotspot InterfaceJDK <--> Hotspot Interface

Andrew Dinn7

jdk <-> hotspot interface

● API mostly functions declared as JVM_ENTRY
● conventionally named JVM_Xxx

● e.g. JVM_StartThread
● can be called from JDK native method implementation
● but . . .

● jnienv method RegisterNatives
● native method fastpath to JVM_ENTRY function
● called by class static init . . .

● Thread, Compiler, Object, Class, System, ClassLoader etc

Andrew Dinn8

jdk launcher <-> hotspot interface

● launcher provided by jdk
● in src/share/bin/java.[h/c]
● used by java, javac etc

● small bootstrap API provided by libjvm
● in src/share/vm/prims/jni.[h/cpp]

● JNI_CreateJavaVM
● . . .

● launcher also accesses VM functions via callbacks in
● struct JavaVM
● struct JNIEnv

Andrew Dinn9

HotspotHotspot

Andrew Dinn10

OpenJDK = mostly hotspot (most interestingly)

● just single hotspot sub-repo
● almost entirely C++ code

● ~90% generic (arch-neutral)
● src/share/vm/<function>

● each functional subdir is a src tree and include root

● src/share/tools/<tool>
● not part of JVM per se

● libhsdis.so uses binutils to disassemble code

Andrew Dinn11

hotspot = many OS and cpu combinations

● code factored by os and/or cpu
● src/os/<os>/vm,
● src/cpu/<cpu>/vm,
● src/os_cpu/<os>_<cpu>/vm

● all are both src trees and include roots

● os includes
● Windows, Linux, Solaris, AIX, BSD, OSX

● cpu includes
● x86(_32/64), AArch64, PPC, Sparc, zero**

● os_cpu inlcudes a sparse cross--product

Andrew Dinn12

Hotspot: shared codeHotspot: shared code

Andrew Dinn13

hotspot: utility code

● many utility classes
● general purpose in separate dirs – libadt, utilities
● more specialized with client code – runtime/timer

● n.b. src/share/vm/utilities/debug.[hpp/cpp]
● call these functions from gdb

● find method for pc
● print stack
● dump threads, etc

Andrew Dinn14

hotspot: oops – Java data & metadata

● see src/share/vm/oops/oops.* oopsHierarchy.*
● oopDesc == C++ overlay for any Java object

class oopDesc {

 markOop _mark;
 Klass* _klass;

}

● oop == [C++ accessor for] Java reference
● typedef class oopDesc* oop

● debug builds override operations via methods
class oop {
 oopDesc *o;

 bool operator == (void *) . . .

 operator oopDesc*() . . .

}

Andrew Dinn15

hotspot: oops hierarchy

● oop & oopDesc have a hierarchy of subclasses

oop

instanceOop

arrayOop

 objArrayOop

 typeArrayOop

typedef xxxOopDesc* xxxOop

● also a couple of related types

markOop
● header element overlay for GC and lock operations

narrowOop
● special for when -XX:+UseCompressedOops
● expands 32 bit oop into 64 bit object address

Andrew Dinn16

hotspot: oops – metadata Klass hierarchy

● Klass -- models Java class as C++ type

Klass

 InstanceKlass

 InstanceClassLoaderKlass

 InstanceMirrorKlass
● (for java.lang.Class instances)

 InstanceRefKlass

 ArrayKlass

 ObjArrayKlass

 TypeArrayKlass

narrowKlass

Andrew Dinn17

hotspot: runtime support layer

● in src/share/vm/runtime

● global configuration
● i.e. -XX:[+/-]GlobalConfigVar[=value]

● in globals.hpp

● execution support functions/types
● locks, Java/VM threads, stack frames
● handles (== GC-visible oop slot)
● generic management of JITted stubs

● see esp. sharedruntime.[hpp/cpp]
● Java -> C++, Java --> Java link routines
● C++ ineffables (e.g. cache flush)

Andrew Dinn18

hotspot: memory management

● utility classes and API definitions
● in src/share/vm/memory & gc_interface
● regions, chunks, free lists, barriers, card tables
● reference processing

● specific implementations
● under src/share/vm/gc_implementation
● shared subdir

● spaces & buffers, timers & counters, GC threads/policies

● CMS, G1, Parallel, ParNew

Andrew Dinn19

hotspot : GC implementations CMS

● Concurrent Mark Sweep
● Genarational GC

● ParNew Young Gen
● Eden + Pair of Survivor Spaces

● Mark Sweep Old Gen
● mostly concurrent
● sweep to free lists

● Fragmentation a problem
● falls back to stop-the world serial compaction

● Card Table a Problem
● tracks Old -> Young Gen references
● card mark can introduce cache contention

Andrew Dinn20

hotspot : GC implementations G1

● Garbage First
● Generational

● ParNew Young Gen

● Region Based Old Gen Management
● evacuate from most empty regions
● compacts as it relocates

● Large objects an issue
● need to evacuate contiguous regions

● Remembered sets a problem
● remembered sets track inter-region refs
● can be very large and can introduce cache contention

Andrew Dinn21

hotspot: interpreter(s)

● in src/share/vm/interpreter

● C++ Interpreter
● conventional inner loop case switch interpreter
● slow but easy to port

● Template Interpreter
● dispatch table of 'per-bytecode' generated asm

● Java stack <== machine stack
● generated asm manipulates stack and/or VM state
● dedicated machine registers for method & bytecode pointer
● asm epilog increments bytecode and dispatches

● '10x' faster than C++ interpreter

Andrew Dinn22

hotspot: runtime machine code generation

● in src/share/vm/asm & code
● generic register & assembler classes

● Register
● cpu-dependent code defines actual register set

● AbstractAssembler
● cpu-dependent subclasses, Assembler, MacroAssembler etc

● instruction patching
● needed for dynamic call resolution & deopt

● code management
● buffers, blobs,
● relocs, debug info
● stub methods, compiled methods

Andrew Dinn23

hotspot: compiler interface

● in src/share/vm/compiler
● compilation driver

● API to queue requests
● dedicated compiler threads

● in src/share/vm/ci
● compiler <--> vm abstraction layer

● limits compiler's knowledge of vm

Andrew Dinn24

hotspot: compilers C1

● client compiler
● traditional optimizing compiler

● good code
● fast compilation

● good for desktop client apps
● hardcore optimizing JIT would be JTL (Just Too Late)

● also used for -XX:+TieredCompilation
● interpret (gather profile info) ==>
● c1 compile (gather profile info) ==>
● c2 compile

Andrew Dinn25

hotspot: compilers C2

● in src/share/vm/opto

● server compiler
● highly performant code
● slower but still o(n log(n)) time for n bytecodes

● parses bytecode to ideal graph
● most optimization at ideal level

● main optimization scheme based on GCM/GVN (Click 95)
● GVN provides highly efficient SSA data representation
● combines control, dataflow, io and memory dependencies
● type lattice supports very aggressive optimizations

● some ad hoc graph rewriting

Andrew Dinn26

hotspot: compilers C2 back end

● in src/share/vm/adlc

● architecture description language compiler
● lowering, scheduling,

code generation, peephole optimization

● each per cpu back end provides ad file
● register model

● drives generic register allocator

● lowering rules
● matcher translates ideal node/subgraph --> insn (sequence)

● insns linked to cost & pipeline model
● scheduler tries to minimise cost & delays

Andrew Dinn27

C2 Compiler Algorithms

● Global Code Motion / Global Value Numbering, Cliff
Click. ACM PLDI 95

● A Fast Algorithm for Finding Dominators in a
Flowgraph, Thomas Lengauer and Robert Tarjan,
TOPLAS 79

● Register Allocation & Spilling via Graph Coloring, G J
Chaitin, SIGPLAN 82

● Escape Analysis for Java, Jong Deok-Choi, Manish
Gupta et al, OOPSLA 99

Andrew Dinn28

Hotspot: os- &Hotspot: os- &
os_cpu-dependentos_cpu-dependent

Andrew Dinn29

hotspot os-dependent: examples

● os-specific global configuration
● e.g. -XX:+UseTransparentHugePages

● signal handling

● mutexes & threads

● scheduling

● page & stack management

● timers & clocks

Andrew Dinn30

hotspot os_cpu-dependent: examples

● thread_local storage

● atomic load/store/xchg

● byte swap & copy

● thread stack management

● some signal handling (register 'fixing')

Andrew Dinn31

Hotspot: cpu-dependentHotspot: cpu-dependent

Andrew Dinn32

hotspot cpu-dependent: register model

● n.b. all cpu-dependent code in src/cpu/<arch>/vm

● register model
● register_definitions_<arch>.*, register_<arch>.*

● generic register declarations/definitions

● vmreg_<arch>.*
● cpu-specific register implementation

Andrew Dinn33

hotspot cpu-dependent: code assembly

● assembler_<arch>.*
● encode cpu instruction set

● macroassembler_<arch>.*
● encode logical ops as insn sequence

● interp_masm_<arch>.*
● extend masm with extra ops for interpreter only

● nativeInst_<arch>.*
● implement insn patching

Andrew Dinn34

hotspot cpu-dependent: runtime

● sharedRuntime_<arch>.*
● generate Java --> C++ transition stubs

● argument marshalling
● register save/restore
● native wrapper code

● generate Java -> Java transition stubs
● i2c/c2i stubs
● exception_blob & handler_blob
● deopt_blob & uncommon_path_blob
● resolve_blob

Andrew Dinn35

hotspot cpu-dependent: runtime

● stubGenerator_<arch>.*
● generates . . .

● call stub (C++ --> Java)
● catch unhandled excpn (C++ <-- Java)
● forward_exception (Java <-- C++)
● housekeeping stubs

● atomic_xchg, atomic_cmpxchg, atomic_add
● fences & memory barriers
● stack walking
● special case math code
● inline copy

Andrew Dinn36

hotspot cpu-dependent: template interpreter

● templateTable_<arch>.*
● methods to generate templates

● one method per bytecode insn

void TemplateTable::dup() {

 // stack ... a

 _masm.load_ptr(0, rax); // plant stack load
 _masp.push_ptr(rax); // plant stack push

} // stack: ..., a, a
● methods to generate inline auxiliary code

● e.g. resolve class or member, initialize classpool constant
● prepare_invoke()
● load_field_cp_cache_entry

Andrew Dinn37

hotspot cpu-dependent: template interpreter

● templateInterpreterGenerator_<arch>.*
● methods to generate interpreter-specific stubs

● normal call frame setup
● native call frame setup
● exception handling
● exception throwing

● including special exception throw cases
● array bounds
● class cast . . .

● used where templates require special case handling
● plant load and jump to stub

Andrew Dinn38

hotspot cpu-dependent: c1 implementation

● whole host of c1_Xxx files including
● global config

● c1_globals_<arch>.hpp

● its own LIR and LIR optimizer
● c1_LIRGenerator_<arch>.cpp
● c1_LIRAssembler_<arch>.cpp

● register allocator
● c1_LinearScan_<arch>.cpp

● assembler and runtime support
● c1_MacroAssembler_<arch>.cpp
● c1_Runtime_<arch>.cpp
● c1_CodeStubs_<arch>.cpp

Andrew Dinn39

hotspot cpu-dependent: c2 implementation

● very few files – code mostly generated by adlc
● global config

● c2_globals_<arch>.hpp

● declarative architecture description (very large)
● <arch>.ad

● registers & register classes
● encodings
● frame layout & calling convention
● processor pipeline model
● operand and instruction matching rules
● peephole optimization matching rules
● inline code

● useful docn in ad files – helps to compare across ports

Andrew Dinn40

Questions?Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

