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Architecure & Design through the Code Base

● Up Front Health Warning

● This talk is very code-oriented
● Will include mention of

● locations in the code base
● functions/methods and classes/types

● Point is to kill 3 birds with one stone
● Why is OpenJDK built the way it is?
● How is OpenJDK built the way it is?
● Where is OpenJDK built the way it is?
● i.e. Familiarization for the purpose of hacking
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OpenJDK = JDK + JVM

● JDK Class Library
● Java code & native C/C++ libraries

● jre classes
● deployed in jre/lib/rt.jar + ...

● sdk classes
● deployed in lib/tools.jar + ...

● Hotspot JVM
● Compiled C++ code

● Bootstrap into Java execution
● Virtualize underlying OS/cpu

● threads, memory, io, JIT, etc
● deployed in jre/lib/<arch>/libjvm.so
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JDK CLass LibraryJDK CLass Library
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OpenJDK = lots of JDK code + JVM

● JDK Class Library
● big and still growing

● 5 sub-repos of Java code & native libraries 
● jdk

● mostly jre classes (bootstrap, system, libraries)
● a few sdk classes (e.g. jvmti support)
● OS-specific subclasses – e.g. awt, Process, FileSystem etc

● langtools
● only sdk classes (javac, javadoc, etc)

● corba, jaxp, jaxws
● wt??? really Java EE not SE
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JDK <--> Hotspot InterfaceJDK <--> Hotspot Interface
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jdk <-> hotspot interface

● API mostly functions declared as JVM_ENTRY
● conventionally named JVM_Xxx

● e.g. JVM_StartThread
● can be called from JDK native method implementation
● but . . .

● jnienv method RegisterNatives
● native method fastpath to JVM_ENTRY function
● called by class static init . . .

● Thread, Compiler, Object, Class, System, ClassLoader etc
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jdk launcher <-> hotspot interface

● launcher provided by jdk
● in src/share/bin/java.[h/c]
● used by java, javac etc

● small bootstrap API provided by libjvm
● in src/share/vm/prims/jni.[h/cpp]

● JNI_CreateJavaVM
● . . .

● launcher also accesses VM functions via callbacks in
● struct JavaVM
● struct JNIEnv
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HotspotHotspot
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OpenJDK = mostly hotspot (most interestingly)

● just single hotspot sub-repo
● almost entirely C++ code

● ~90% generic (arch-neutral)
● src/share/vm/<function>

● each functional subdir is a src tree and include root

● src/share/tools/<tool>
● not part of JVM per se

● libhsdis.so uses binutils to disassemble code
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hotspot = many OS and cpu combinations

● code factored by os and/or cpu
● src/os/<os>/vm,
● src/cpu/<cpu>/vm,
● src/os_cpu/<os>_<cpu>/vm

● all are both src trees and include roots

● os includes
● Windows, Linux, Solaris, AIX, BSD, OSX

● cpu includes
● x86(_32/64), AArch64, PPC, Sparc, zero**

● os_cpu inlcudes a sparse cross--product



Andrew Dinn12

Hotspot: shared codeHotspot: shared code
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hotspot: utility code

● many utility classes
● general purpose in separate dirs – libadt, utilities
● more specialized with client code – runtime/timer

● n.b. src/share/vm/utilities/debug.[hpp/cpp]
● call these functions from gdb

● find method for pc
● print stack
● dump threads, etc
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hotspot: oops – Java data & metadata

● see src/share/vm/oops/oops.* oopsHierarchy.*
● oopDesc == C++ overlay for any Java object

class oopDesc {

 markOop _mark;
 Klass* _klass;

}

● oop == [C++ accessor for] Java reference
● typedef class oopDesc* oop

● debug builds override operations via methods
class oop {
 oopDesc *o;

 bool operator == (void *) . . .

 operator oopDesc*() . . .

}
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hotspot: oops hierarchy

● oop & oopDesc have a hierarchy of subclasses

oop

instanceOop

arrayOop

     objArrayOop

  typeArrayOop

typedef xxxOopDesc* xxxOop

● also a couple of related types

markOop
● header element overlay for GC and lock operations

narrowOop
● special for when -XX:+UseCompressedOops
● expands 32 bit oop into 64 bit object address



Andrew Dinn16

hotspot: oops – metadata Klass hierarchy

● Klass -- models Java class as C++ type

Klass

   InstanceKlass

 InstanceClassLoaderKlass

 InstanceMirrorKlass
● (for java.lang.Class instances)

          InstanceRefKlass

 ArrayKlass

 ObjArrayKlass

 TypeArrayKlass

narrowKlass
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hotspot: runtime support layer

● in src/share/vm/runtime

● global configuration
● i.e. -XX:[+/-]GlobalConfigVar[=value]

● in globals.hpp

● execution support functions/types
● locks, Java/VM threads, stack frames
● handles (== GC-visible oop slot)
● generic management of JITted stubs

● see esp. sharedruntime.[hpp/cpp]
● Java -> C++, Java --> Java link routines
● C++ ineffables (e.g. cache flush)
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hotspot: memory management

● utility classes and API definitions
● in src/share/vm/memory & gc_interface
● regions, chunks, free lists, barriers, card tables
● reference processing

● specific implementations
● under src/share/vm/gc_implementation
● shared subdir

● spaces & buffers, timers & counters, GC threads/policies

● CMS, G1, Parallel, ParNew
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hotspot : GC implementations CMS

● Concurrent Mark Sweep
● Genarational GC

● ParNew Young Gen
● Eden + Pair of Survivor Spaces

● Mark Sweep Old Gen
● mostly concurrent
● sweep to free lists

● Fragmentation a problem
● falls back to stop-the world serial compaction

● Card Table a Problem
● tracks Old -> Young Gen references
● card mark can introduce cache contention
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hotspot : GC implementations G1

● Garbage First
● Generational

● ParNew Young Gen

● Region Based Old Gen Management
● evacuate from most empty regions
● compacts as it relocates

● Large objects an issue
● need to evacuate contiguous regions

● Remembered sets a problem
● remembered sets track inter-region refs
● can be very large and can introduce cache contention
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hotspot: interpreter(s)

● in src/share/vm/interpreter

● C++ Interpreter
● conventional inner loop case switch interpreter
● slow but easy to port

● Template Interpreter
● dispatch table of 'per-bytecode' generated asm

● Java stack <== machine stack
● generated asm manipulates stack and/or VM state
● dedicated machine registers for method & bytecode pointer
● asm epilog increments bytecode and dispatches

● '10x' faster than C++ interpreter
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hotspot: runtime machine code generation

● in src/share/vm/asm & code
● generic register & assembler classes

● Register
● cpu-dependent code defines actual register set

● AbstractAssembler
● cpu-dependent subclasses, Assembler, MacroAssembler etc

● instruction patching
● needed for dynamic call resolution & deopt

● code management
● buffers, blobs,
● relocs, debug info
● stub methods, compiled methods
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hotspot: compiler interface

● in src/share/vm/compiler
● compilation driver

● API to queue requests
● dedicated compiler threads

● in src/share/vm/ci
● compiler <--> vm abstraction layer

● limits compiler's knowledge of vm
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hotspot: compilers C1

● client compiler
● traditional optimizing compiler

● good code
● fast compilation

● good for desktop client apps
● hardcore optimizing JIT would be JTL (Just Too Late)

● also used for -XX:+TieredCompilation
● interpret (gather profile info) ==>
● c1 compile (gather profile info) ==>
● c2 compile
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hotspot: compilers C2

● in src/share/vm/opto

● server compiler
● highly performant code
● slower but still o(n log(n)) time for n bytecodes

● parses bytecode to ideal graph
● most optimization at ideal level

● main optimization scheme based on GCM/GVN (Click 95)
● GVN provides highly efficient SSA data representation
● combines control, dataflow, io and memory dependencies
● type lattice supports very aggressive optimizations

● some ad hoc graph rewriting
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hotspot: compilers C2 back end

● in src/share/vm/adlc

● architecture description language compiler
● lowering, scheduling,

code generation, peephole optimization

● each per cpu back end provides ad file
● register model

● drives generic register allocator

● lowering rules
● matcher translates ideal node/subgraph --> insn (sequence)

● insns linked to cost & pipeline model
● scheduler tries to minimise cost & delays
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C2 Compiler Algorithms

● Global Code Motion / Global Value Numbering, Cliff 
Click. ACM PLDI 95

● A Fast Algorithm for Finding Dominators in a 
Flowgraph, Thomas Lengauer and Robert Tarjan, 
TOPLAS 79 

● Register Allocation & Spilling via Graph Coloring, G J 
Chaitin, SIGPLAN 82

● Escape Analysis for Java, Jong Deok-Choi, Manish 
Gupta et al, OOPSLA 99
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Hotspot: os- &Hotspot: os- &
os_cpu-dependentos_cpu-dependent
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hotspot os-dependent: examples

● os-specific global configuration
● e.g. -XX:+UseTransparentHugePages

● signal handling

● mutexes & threads

● scheduling

● page & stack management

● timers & clocks
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hotspot os_cpu-dependent: examples

● thread_local storage

● atomic load/store/xchg

● byte swap & copy

● thread stack management

● some signal handling (register 'fixing')
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Hotspot: cpu-dependentHotspot: cpu-dependent
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hotspot cpu-dependent: register model

● n.b. all cpu-dependent code in src/cpu/<arch>/vm

● register model
● register_definitions_<arch>.*, register_<arch>.*

● generic register declarations/definitions

● vmreg_<arch>.*
● cpu-specific register implementation
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hotspot cpu-dependent: code assembly

● assembler_<arch>.*
● encode cpu instruction set

● macroassembler_<arch>.*
● encode logical ops as insn sequence

● interp_masm_<arch>.*
● extend masm with extra ops for interpreter only

● nativeInst_<arch>.*
● implement insn patching
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hotspot cpu-dependent: runtime

● sharedRuntime_<arch>.*
● generate Java --> C++ transition stubs

● argument marshalling
● register save/restore
● native wrapper code

● generate Java -> Java transition stubs
● i2c/c2i stubs
● exception_blob & handler_blob
● deopt_blob & uncommon_path_blob
● resolve_blob
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hotspot cpu-dependent: runtime

● stubGenerator_<arch>.*
● generates . . .

● call stub (C++ --> Java)
● catch unhandled excpn (C++ <-- Java)
● forward_exception (Java <-- C++)
● housekeeping stubs

● atomic_xchg, atomic_cmpxchg, atomic_add
● fences & memory barriers
● stack walking
● special case math code
● inline copy
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hotspot cpu-dependent: template interpreter

● templateTable_<arch>.*
● methods to generate templates

● one method per bytecode insn

void TemplateTable::dup() {

 // stack ... a

  _masm.load_ptr(0, rax); // plant stack load
  _masp.push_ptr(rax); // plant stack push

} // stack: ..., a, a
● methods to generate inline auxiliary code

● e.g. resolve class or member, initialize classpool constant
● prepare_invoke()
● load_field_cp_cache_entry
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hotspot cpu-dependent: template interpreter

● templateInterpreterGenerator_<arch>.*
● methods to generate interpreter-specific stubs

● normal call frame setup
● native call frame setup
● exception handling
● exception throwing

● including special exception throw cases
● array bounds
● class cast . . .

● used where templates require special case handling
● plant load and jump to stub
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hotspot cpu-dependent: c1 implementation

● whole host of c1_Xxx files including
● global config

● c1_globals_<arch>.hpp

● its own LIR and LIR optimizer
● c1_LIRGenerator_<arch>.cpp
● c1_LIRAssembler_<arch>.cpp

● register allocator
● c1_LinearScan_<arch>.cpp

● assembler and runtime support
● c1_MacroAssembler_<arch>.cpp
● c1_Runtime_<arch>.cpp
● c1_CodeStubs_<arch>.cpp
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hotspot cpu-dependent: c2 implementation

● very few files – code mostly generated by adlc
● global config

● c2_globals_<arch>.hpp

● declarative architecture description (very large)
● <arch>.ad

● registers & register classes
● encodings
● frame layout & calling convention
● processor pipeline model
● operand and instruction matching rules
● peephole optimization matching rules
● inline code

● useful docn in ad files  – helps to compare across ports
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Questions?Questions?
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