
1

Shenandoah
An ultra-low pause time Garbage Collector for

OpenJDK

Christine H. Flood
Roman Kennke

2

What does ultra-low pause time
mean?

● It means that the pause time is proportional to
the size of the root set, not the size of the heap.

● Our goal is to have < 10ms pause times for
100gb+ heaps.

3

Why not pause-less?

● Our long term goal is to have an entirely
pause-less collector.

● Shenandoah is a giant step in the right
direction.

4

Shenandoah Features

● Pauses only long enough to scan root set.
● Concurrent and parallel marking.
● Concurrent and parallel evacuation.
● No card tables or remembered sets.

5

Shenandoah

Parallel GC

Compaction

Sequential GC

Concurrent Mark and Sweep

No compaction

6

Why is Compaction Important?

● Allocation by pointer bumping is much faster
than scanning a free list.

● Mark and Sweep eventually leads to
fragmentation which results in an inefficient
VM.

7

How do we get there?

● We need to have a compacting GC do the
evacuation work as well as marking work while
the Java threads are running.

● All the existing OpenJDK GC algorithms stop
the Java threads during compaction.

8

Why is it hard?

● What if the GC moves an object that the Java
threads are modifying?

● We can't have two active copies of an object.
● There may be multiple heap locations that

refer to a single object. When that object
moves they all have to start using the new
copy of the object.

9

How do we do that?

● There are options:
– We could have memory protection traps on

objects which are scheduled to be moved.

– We could add a level of indirection. Accesses to
objects go through a forwarding pointer which
allows us to update all references to an object with
a single atomic instruction.

10

We chose forwarding pointers.

● No more remembered sets.
– Can be concurrency bottleneck.

– Can grow large.

– In fact some claim that the benefit of generational collectors is
smaller remembered sets, not better modeling of object lifetimes.

● No assumptions about object lifetimes.
– Not all applications obey the generational hypothesis that most

objects die young.

● No dependence on user or kernel level traps.
– Software only solution.

● No read storms to update references.

11

Digression on remembered Sets

● Remembered sets allow you to collect part of
your heap without collecting all of your heap.

● Generational garbage collectors usually use
card tables.

● G1 uses into remembered sets.

12

From

To

Old Card Table

Card table keeps
track of old to young
references so you can GC
the young generation
independently.

The old generation is
broken into cards, and
each card is represented
by a single bit in the card
table. If that bit is set then
the whole card must be
scanned at young
generation gc time.

Generational GC

13

Why is this a problem?

● Large multi-threaded applications which are
carefully crafted to scale with padded data
structures actually end up thrashing over the
cache lines making up the card table.

14

Original G1
Remembered
Sets

G1 can independently
collect whichever regions
have the least live data.

Unfortunately into
remembered sets can
grow large.

This was made better by
generational G1. They
no longer needed to keep
track of into pointers from
young regions since they
were guaranteed to be
a part of the next collection.
Unfortunately that forced G1
into a generational paradigm.

Region 1

Region 2

Region 3

Region 4

Region 5

Pointers into R1

Pointers into R2

Pointers into R3

Pointers into R4

Pointers into R5

20k

100k

500k

10k

70k

Regions Live Data

15

Shenandoah

Forwarding pointers enable
Shenandoah to collect
each region independently
without remembered sets.

We truly are “garbage first”

Region 1

Region 2

Region 3

Region 4

Region 5

20k

100k

500k

10k

70k

Regions Live Data

16

Forwarding pointers based on
Brooks Pointers

● Rodney A. Brooks “Trading Data Space for
Reduced Time and Code Space in Real-Time
Garbage Collection on Stock Hardware”

1984 Symposium on Lisp and Functional
Programing

17

Forwarding Pointer in an Indirection
Object

● Object Format inside the
JVM remains the same.

● Third party tools can still
walk the heap.

● Can choose GC algorithm
at run time.

● We hope to one day be
able to take advantage of
unused space in double
word aligned objects when
possible.

Foo

Foo Indirection Object

18

Adapted Brooks Pointers for
regions.Regions targeted

for evacuation

Free regions
Foo

Bar'Bar

Foo'

GC work is not tied to allocation work, instead dedicated GC threads evacuate regions.

19

Forwarding Pointers

Any reads or writes of A will now be
redirected to A'

A

B

From-Region To-Region

A'

20

Forwarding Pointers

Reading an object in a From-region doesn't
trigger an evacuation.

A

B

From-Region To-Region

Note: If reads were to cause copying we might have a “read storm” where every operation
required copying an object. Our intention is that since we are only copying on writes we
will have less bursty behavior.

21

Forwarding Pointers

Writing an object in a From-Region will trigger
an evacuation of that object to a To-Region
and the write will occur in there.

From-Region To-Region

A

B

A'

22

Shenandoah Algorithm

● Heap divided into regions.
● Concurrent marking keeps track of live data in each region.
● GC threads pick the regions with the most garbage to join

the collection set.
● GC threads evacuate live objects in those regions.
● Subsequent concurrent marking updates all references to

evacuated regions.
● Evacuated regions reclaimed.

23

Updating References

● References through evacuated regions are
updated at the next mark phase

From-Region

A

To-Region

A'

Before

B

Thread Stack

Field

24

Updating references

● A from-region can only be reused once no
reference links pass through it

From-Region

A

To-Region

A'

After

B

Thread Stack

Field

25

How does the GC interact with the
Java Threads

● Reading is
straightforward you
simply indirect
through the
forwarding pointer. If
the GC moved the
object you see the
new copy.

● Writing requires the
Java thread to move
the object. We need
to ensure that writes
only occur in to
regions.

26

Problem with writes in from-regions.

● GC thread copies Foo
● Java Thread updates Foo
● GC thread updates forwarding pointer to now

obsolete copy of Foo.

All writes must occur in to-regions.

27

What if a Java Thread was writing
an object when the GC moved it?

Forwarding PTRForwarding PTR

Forwarding PTRForwarding PTR

Forwarding PTRForwarding PTR GC thread makes a copy

Java thread makes a copy

The GC thread and the Java thread both
attempt to CAS the Forwarding pointer to
point to their copy of the object. Only one
can succeed. The other thread must
rollback their allocation.

28

What if a Java Thread was reading
that object when the GC moved it?

● The Java thread either sees the old A or the
new A' depending on whether the read barrier
is executed before or after the move.

29

What could go wrong?
Race windows get larger

● Before
– Thread 1

● read(a)

– Thread 2
● write(a).

● After
– Thread 1

● Resolve(a)
● Read a

– Thread 2
● ResolveAndMaybeCopy(a)
● Write(a)

30

Read Barriers

Y

X'X

● Read (x)
– Read X's forwarding

pointer to get the
current address for X.

● X has moved

● Y has not moved

31

Write Barriers

● Is X in the collection set?
– Copy X to a new location.

– CAS new address of X in X's Forwarding Pointer.
● The CAS is to protect against other threads (Java or

GC) attempting to move the object.

– If the CAS fails, rollback the copy, and use the
new value of the Forwarding Pointer as the
address.

● Do the write!

32

OK, Write barriers a little more
complicated...

● We use Snapshot at the Beginning, so write
barriers also need to keep track of previous
values on writes to make sure everything that
was live at the beginning of GC is still live.

33

Issue with SATB

X

W

Z

Y

X

Start of Concurrent Marking

Sometime during marking

When an object write occurs
we keep track of the value to
ensure that it gets marked.

Y

Y is placed into an already
marked object then the
reference from X is
overwritten and lost!

34

Compare and Swap Object
is complicated too.

From Space

Foo

BAR

● Compare and swap object is both a
read and a write so it presents a
special problem.

● If we want to CAS BAR to BAZ we first
need to ensure that both FOO and BAR
are in a to-region.

● If BAR is in a from-region than the CAS
could fail because the GC updated
BAR which isn't what we want.

35

Why is Shenandoah worth it?

● Concurrent Evacuation
– Greatly reduced pause times

● No more remembered sets
– Card table marking can be a concurrency bottleneck.

– Into remembered sets as in G1 can grow large and
cumbersome

● Truly adaptive
– If your application doesn't behave generationally you

aren't saddled with a generational collector.

36

What we aren't telling you.

● There's a time overhead. Read and write
barriers aren't free.

● There's a space overhead, especially when
we are allocating an entire object (4 words) for
our forwarding pointers.

● We are only just now at a point where we can
start measuring those overheads.

37

What's left to do?

● Compiler support
● Humongous object support

– If an object is larger than a heap region we need to be able to
coalesce enough free space to allocate it.

● Performance heuristics (when do we start a concurrent
mark?)

● Round robin thread stopping instead of stop the world
root scanning.

● Moving forwarding pointers into unused slots in the
previous object if possible.

38

More information

● Blogs
– http://rkennke.wordpress.com/

– http://christineflood.wordpress.com/

● Email
– chf@redhat.com

– rkennke@redhat.com

http://rkennke.wordpress.com/
http://christineflood.wordpress.com/
mailto:chf@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

