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Abstract. The thread-level speculation paradigm parallelizes sequential
applications at run-time, via optimistic execution of potentially inde-
pendent threads. This enables unmodified sequential applications to ex-
ploit thread-level parallelism on modern multicore architectures. How-
ever a high frequency of data dependence violations between speculative
threads can severely degrade the performance of thread-level speculation.
Thus it is crucial to be able to schedule speculations to avoid excessive
data dependence violations. Previous work in this area relies mainly on
program profiling or simple heuristics to avoid thread squashes. In this
paper, we investigate the use of machine learning to construct squash
predictors based on static program features. On a set of standard Java
benchmarks, with leave-one-out cross-validation, our approach signifi-
cantly improves speculation performance for two benchmarks, but unfor-
tunately degrades it for another two, in relation to a spawn-everywhere
policy. We discuss how to advance research on squash prediction, directed
by machine learning.

1 Introduction

With the emergence of multi-core architectures, it is inevitable that parallel pro-
grams are favored as they are able to take advantage of the available computing
resource. However there is a huge amount of legacy sequential code. Additionally,
parallel programs are difficult to write as they require advanced programming
skills. Some state-of-the-art compilers can automatically parallelize sequential
code in order to run on a multi-core system. However such compilers conserva-
tively refuse to parallelize code where data dependencies are ambiguous. Thread-
Level Speculation (TLS) has received a lot of attention in recent years as a means
of facilitating aggressive auto-parallelization [1] [2] [3] [4] [5] [6] [7] [8]. TLS ne-
glects any ambiguities in terms of dependencies and proceeds in parallel with
future computation in a separate speculative state as if those dependencies were
absent. The results are then checked for correctness. If they are correct, the
speculative state can safely write its side effects back to memory (i.e. commit).
If the results are wrong, all speculative state is discarded and the computation
is re-executed serially. (i.e. squash).

A high number of squashes results in performance degradation as:



1. There is a relatively high overhead associated with thread-management (roll-
back and re-execute).

2. Squashed threads waste processor cycles that could usefully be allocated to
other non-violating parallel threads.

An optimal situation would be one that no cross-thread violation occurs and
therefore all speculative threads can commit their state. The spawning policy
(the speculation level) employed by a TLS system is an important factor here.
However spawning policy alone cannot guarantee the absence of data dependence
violations. Ideally we would like to have a mechanism that can detect conflicts
ahead-of-time and thus ultimately decide whether to spawn a thread or not.
In this paper we simulate method-level speculation or Speculative Method-level
Parallelism (SMLP) in order to collect data about speculative threads that com-
mit or squash. We then mine static characteristics of these Java methods using
Machine Learning in order to relate general method properties to TLS behavior.

The main contributions of this paper are:

– a description of static program characteristics that may provide useful fea-
tures for learning about Java methods (Section 3).

– a comparative evaluation of profile-based and learning-based policies for
squash prediction, in the context of method-level speculation for Java pro-
grams (Section 4).

– an outline of future directions for investigation into learning-based squash
prediction (Section 6).

2 Speculation Model

2.1 Speculative Method-Level Parallelism

Since the Java programming language is object-oriented, the natural unit of
abstract behavior is the method. Thus we assume that distinct methods are
likely to have independent behavior, so methods are suitable code segments for
scheduling as parallel threads of execution [9] [10] [11] [12].

Figure 1 presents a graphical overview of how SMLP operates, given a method
f that calls a method g. A speculative thread is spawned at the method call to g.
The original non-speculative thread continues to execute the body of g, without
any change in its speculative status. The new thread skips over the method call
and starts execution at the point where g returns to the continuation of f . This
new child thread is in a more speculative state than its parent spawner thread.

During the subsequent parallel execution of these two threads, if the parent
writes to a memory location that has been read by the child, then we have a data
dependence violation. The child speculation must be squashed, and the method
continuation re-executed. On the other hand, if the parent thread completes the
method call without causing any data dependence violations, then the spawnee
can be committed. This means that its speculative actions can be confirmed to
the whole system, and the spawnee is joined to the spawner. Execution resumes
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Fig. 1. Speculative execution model

from where the spawnee was at the join point, in the less speculative state of
the spawner.

The SMLP model permits in-order nested speculation, which means that
spawned threads can in turn spawn further threads at more speculative levels.
However if a spawner thread itself has to be squashed, all its spawned threads
must also be squashed.

Note that there are overheads for spawning new threads, committing spec-
ulative threads and squashing mis-speculations. Speculation must be carefully
controlled to avoid excessive mis-speculation and the corresponding performance
penalty. This motivates our interest in accurate squash prediction techniques.

In our architectural model, we make two idealized assumptions:
Write buffering: A speculative thread keeps its memory write actions pri-

vate until the speculation is committed. This requires buffering of speculative
state until the commit event. We assume buffers have infinite size. Return
value prediction: If a method continuation (executing as a speculative thread)
depends on the value of a method call (executing concurrently as a less spec-
ulative thread), then we assume that the return value may be predicted with
perfect accuracy.

2.2 Benchmarks

This investigation uses Java applications from the SpecJVM98 [13] and DaCapo
[14] benchmark suites, which are widely used in the research domain. Programs
from different suites and genres are helpful to assess how our predictions general-



ize, for previously unseen data. An overview of the selected benchmarks is shown
in Figure 2. We use s1 inputs for SpecJVM98 and small inputs for DaCapo.

benchmark description

202 jess AI problem solver
205 raytrace raytracing graphics

213 javac Java compiler
222 mpegaudio audio decoding

228 jack parser generator
antlr parser generator
fop PDF graphics renderer

pmd Java bytecode analyser

Fig. 2. Benchmarks.

2.3 Trace-driven Simulation

All speculative execution is simulated using trace-driven simulation. Each se-
quential, single-threaded Java benchmark application executes with Jikes RVM
v2.9.3 [15] in the Simics v3.0.31 full-system simulation environment [16]. Sim-
ics is configured for IA-32 Linux, using the supplied tango machine description,
with a perfect memory model. The Jikes RVM compiler is instrumented to en-
able call-backs into Simics to record significant runtime events. These include
method entry and exit, heap read and write, exception throw, etc. Each event is
recorded with appropriate metadata, such as method identifier, memory address,
and processor cycle count.

Thus we produce a sequential execution trace of events that may affect spec-
ulative execution. We feed the trace file to a custom TLS simulator. It uses
method call information to drive speculative thread spawns, and heap memory
access information to drive thread squashes based on data dependence viola-
tions. The timing information in the sequential trace enables the TLS simulator
to determine method runlengths, in order to estimate an execution time based
on parallel execution once it has determined which spawned threads commit or
squash.

For the sake of simplicity, the TLS simulator only has two processors. Only
two methods can execute in parallel. Methods are considered as candidates for
spawning if their total sequential runlength is between 1000 and 10,000 cycles.
If both available cores are occupied, then new speculations cannot be scheduled,
i.e. the speculation is in-order. We impose a small, fixed 10 cycle overhead for
each TLS spawn, squash and commit event during program execution.

All performance improvements in our simulated TLS system are due to ex-
ecution time overlap. We do not model any secondary effects due to warming
up caches and other architectural units. Other researchers quantify the benefit



of this helper-thread effect of speculative execution, and find it to be a large
component of the overall performance improvement [5] [17].

3 Intelligent Squash Prediction in TLS

3.1 Squash Prediction

Once we have fixed our TLS model so that spawns are only allowed to occur
at method calls, the next task is to determine which potential spawn points
we should ignore. Obviously we could spawn a new speculative thread at each
method call; however many of these spawns will not lead to performance gain,
either because the spawned method is too short for the parallelism to outweigh
the overhead of thread creation, or because the spawned thread is guaranteed to
cause a data dependence violation resulting in a squash.

It is sometimes possible to eliminate certain useless spawn points via static
analysis. Other spawns are eliminated as a result of dynamic profiling that stud-
ies their behavior over a program run. In general, proposed TLS systems employ
either or both of these techniques to eliminate poor spawn points. We aim to
create a hybrid scheme, that can generate advice about spawn points based on
features of program code (like static analysis) given prior knowledge of runtime
behavior of that same, or similar, code (like dynamic analysis).

The relationship between static code features and dynamic squashing be-
havior is constructed using machine learning algorithms. Thus we are able to
create general squash predictors that can provide advice for any code, whether
previously seen or unseen. This is a key strength of learning-based techniques,
which has not been exploited previously in the TLS domain.

Note that use of learning-based predictors does not prevent further runtime
profiling to fine-tune spawn point advice dynamically. At present, we envisage
offline learning for ahead-of-time predictions, as a drop-in replacement for static
spawn point elimination. Previously such static elimination was based on ad-
hoc compiler heuristics, whereas now we are proposing to apply well-understood
learning techniques to enable more intelligent squash prediction.

3.2 Feature Collection

This study focuses entirely on static features, i.e. information about a program
that can be gained from an inspection of its source or object code, without ac-
tually executing the program. We characterize each Java method by 45 features.
22 features are fundamental nano-patterns, described in [18] and [19]. These are
binary properties of Java methods that can be easily extracted by trivial static
analysis of the bytecode. The patterns denote a summary of the behavior and
characteristics a method exhibits (such as array accesses and method calling
relationships). Figure 3 outlines the patterns we collect.

We collect a further 23 integer-valued characteristics for each method, derived
from the MILEPOST feature set [20]. These measurements are taken on the



Feature Meaning

NoParams (N) takes no arguments

NoReturn (V) returns void

Recursive (R) calls itself recursively

SameName (S) calls another method with the same name

AbstractCaller (A) issues calls via abstract methods

Leaf (L) does not issue any method calls

ObjectCreator (OC) creates new objects

ThisInstanceFieldReader (TFR) reads field values from this object

ThisInstanceFieldWriter (TFW) writes values to field of this object

OtherInstanceFieldReader (IFR) reads field values from some object

OtherInstanceFieldWriter (IFW) writes values to field of some object

StaticFieldReader (SFR) reads static field values from a class

StaticFieldWriter (SFW) writes values to static field of a class

TypeManipulator (TM) uses type casts or instanceof operations

StraightLine (SL) no branches in method body

Looping (LO) one or more control flow loops in method body

Exceptions (E) may throw an unhandled exception

LocalReader (LR) reads values of local variables on stack frame

LocalWriter (LW) writes values of local variables on stack frame

ArrayCreator (AC) creates a new array

ArrayReader (AR) reads values from an array

ArrayWriter (AW) writes values to an array

Fig. 3. Java method-level features, based on fundamental nano-patterns

compiler intermediate form (in our case, Jikes RVM HIR code). They relate to
the size and shape of the control flow graph, and the mixture of instruction
kinds. Figure 4 outlines these features.

3.3 Learning Problem

We treat each method call in a dynamic execution trace as a potential TLS spawn
point. At each spawn, two methods are involved: the caller and the callee. We
characterize the spawn by a vector of 90 features: 45 from each method involved.
The class to predict is a binary summary of the outcome of this speculation:
commit or squash. We employ supervised learning, which means that we have a
set of labeled samples to create the classification model. We use the C5.0 [21]
algorithm to construct a rules-based classifier.

4 Evaluation

We use leave-one-out cross-validation (LOOCV) to evaluate our squash predic-
tion classifiers. When we want to evaluate the squash predictor for benchmark
b, we gather training data from the other benchmarks (excluding b) to generate



Feature Meaning

bbNum Number of basic blocks

bbOneSuc Number of basic blocks with one successor

bbTwoSuc Number of basic blocks with two successors

bbMtTwoSuc Number of basic blocks with more than two successors

bbOnePred Number of basic blocks with a single predecessor

bbTwoPred Number of basic blocks with two predecessors

bbMtTwoPred Number of basic blocks with more than two predecessors

bbOnePredOneSuc Number of basic blocks with a single predecessor and a single successor

bbOnePredTwoSuc Number of basic blocks with a single predecessor and two successors

bbTwoPredOneSuc Number of basic blocks with two predecessors and a single successor

bbTwoPredTwoSuc Number of basic blocks with two predecessors and two successors

bbMtTwoPredMtTwoSuc Number of basic blocks with more than two predecessors and more than two successors

bbInstrLt15 Number of basic blocks with number of instructions less than 15

bbInstr15and500 Number of basic blocks with number of instructions in the interval [15,500]

bbInstrMt500 Number of basic blocks with number of instructions greater than 500

directCallNum Number of direct calls in the method

cndBrnchNum Number of conditional branches in the method

uncndBrnchNum Number of unconditional branches in the method

methodInstrNum Number of instructions in the method

bbInstrNum Average number of instructions in basic blocks

loadNum Number of memory load instructions in the method

storeNum Number of memory store instructions in the method

allocNum Number of memory-allocating instructions in the method

Fig. 4. Java method-level features obtained from the compiler intermediate form, based
on the MILEPOST feature set

the classifier, which will then be applied to b. In this way, we test the generality
of the squash prediction rules since they are always applied to previously unseen
data.

The C5.0 algorithm generates a set of rules for predicting squashes and com-
mits. Each rule has an associated confidence based on its accuracy in the training
set. We select rules that predict squashes with a confidence above 90%, to apply
in our testing rule set. Rules are incorporated directly into our TLS simulator
via C header files. At each method call in the simulated execution, the rules are
applied to check method properties and predict whether this potential spawn
would result in a squash. If no squash is predicted and a free core is available,
then the TLS spawn event occurs in the simulator. In an actual TLS system, such
static rules would probably be encoded as static hints at compile time. A small
amount of runtime support might be required for some dynamically dispatched
methods.

Figure 5 compares three squash prediction policies for method-level specula-
tion on a 2-core TLS system. For each benchmark, the left-most bar shows the
speedup (over sequential execution) for no squash prediction. The middle bar



shows the speedup for profile-based prediction, which involves determining the
overall proportion of squashes at each callsite in the program, during a profiling
run. Then during the test run, squashes are predicted for call sites that had
more than 90% squashes on the profiling run. This is not machine learning—it
is simple statistical analysis, training and testing on the same data. Finally, the
right bar shows the speedup with learning-based prediction, using the squash
prediction rules with at least 90% confidence, generated by C5.0 with LOOCV.

Note from Figure 5 that in the majority of cases, learning-based prediction
is almost as good as, or better than, profile-based. However, for 205 raytrace
and pmd, learning-based prediction is significantly worse. This may be because
these benchmarks are unlike the others, e.g. 205 raytrace is significantly smaller
than all the other execution traces. Perhaps a greater diversity in the training
set would result in more generally applicable squash prediction rules.
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Fig. 5. TLS speedup for various squash prediction schemes

Figure 6 shows the frequencies of TLS spawn and squash events for each
benchmark, with each squash prediction policy. For each benchmark, there are
three bars: no prediction, profile-based squash prediction and rules-based squash
prediction. For each prediction policy, the lower solid bar gives the number of
squashes for a benchmark execution, and the upper shaded bar gives the number
of thread spawns for a benchmark execution.

The desired impact of squash prediction is to reduce the number of squashes,
thus eliminating wasted work. At the same time, the predictor must not have
a high false positive rate, since this would suppress genuinely data-independent
threads and decrease the parallel performance. Figure 6 shows that rules-based



squash prediction reduces the number of squash events in relation to no pre-
diction, in all cases. In the majority of cases, fewest squash events occur with
profile-based prediction.

The detrimental effect of a high false positive rate can be seen with the
pmd benchmark. The aggressive rules-based squash prediction suppresses many
thread spawns, so much so that the number of spawned threads is around 50%
of that for the other policies. This reduces the amount of available parallelism
in the program execution, this reducing the speedup over the sequential version.
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5 Related Work

Whaley [4] presents a set of seven heuristics for controlling spawns in SMLP ex-
ecution. His heuristics are manually generated from expert domain knowledge.
The heuristics require dynamic information such as method runlengths and pro-
file information. Thus programs require ahead-of-time profiling before heuristics
can be applied. Our machine-learning based approach has the advantage that
it can train on a set of programs, then be applied to a previously unseen pro-
gram. Whaley gives oracle predictor speedup figures of around 1.5 on a set of
Java benchmarks. His heuristics are able to achieve around 80% of this optimal
speedup.

The POSH TLS compiler [5] uses program structure (loops and method calls)
to identify potential spawn points. These spawn points are then refined by means



of runtime profiling to eliminate useless spawns. The authors report a mean
1.3 speedup on standard benchmarks. They attribute 26% of the speedup to
prefetching effects, which we do not consider.

Other researchers use similar profile feedback information to drive the com-
piler’s decisions on spawn point insertion [22, 10]. In contrast, Dou and Cintra
[23] present an entirely static cost model of TLS, which allows the compiler to
estimate speedups in loop-level speculation with fairly high accuracy, and thus
refine spawn insertions. They claim the framework gives a 25% speedup over
a naive ‘spawn everywhere’ approach. There are also entirely dynamic squash
prediction techniques. For instance, Cintra and Torrellas [24] present a hard-
ware lookup table approach that learns which data dependencies are likely to
cause thread squashes as the TLS program executes. Thus it is able to adapt
dynamically the spawning policy for threads that eliminate many squashes. Our
machine-learning based approach is currently intended as a static squash pre-
diction technique, although we are investigating using learning at runtime for
dynamic squash prediction.

Warg and Stenstrom [25] present another heuristic approach to improving
SMLP. They observe that short methods should not be parallelized since the
speculative overhead outweighs the benefit of parallel execution. They use a
dynamic runlength predictor to identify short methods, and suppress spawns at
these method calls. They use several different method runlength thresholds for
spawn suppression, varying between 0 and 500 cycles. We use a small TLS event
overhead of 10 cycles, which means the overhead is generally negligible in relation
to the speculative runlength. (Other researchers adopt 10 cycles as a realistic
cost - cites.) In fact, Warg and Stenstrom’s problem is largely orthogonal to the
squash prediction problem. We could apply similar learning techniques in both
cases.

6 Conclusions

This paper has investigated the use of static Java program features for TLS
squash prediction, using leave-one-out cross-validation to generate results for
previously unseen programs. On the whole, the performance generated from
rules-based squash prediction is not overly impressive. In several cases for our
benchmarks, it would be better to spawn everywhere, rather than use the squash
predictions. One possible inference is that our current set of static features may
not characterize the problem sufficiently to enable accurate predictions. Alterna-
tively, perhaps we have not selected enough programs to provide good coverage
in the training set for LOOCV.

There are numerous parameters to tune in our TLS simulator. For instance,
we have fixed overhead costs for squashes and thread sizes for consideration as
spawn candidates. Additionally, there are parameters in our machine learning
setup. We can vary the confidence threshold for selection of rules. We can select
rules for both commit and squash events, and vote between them in the event of a
disagreement. The irony is that our initial justification for machine learning was



to avoid manually generated heuristics. However now we are intending to tune
parameters for our customized learning algorithm, instead of for the underlying
TLS squash prediction problem.

In future work, we should consider loop-level speculation too. We may be able
to use features from existing machine learning studies on loop optimizations,
e.g. [26]. We may also progress to consider dynamic features, such as read- and
write-set sizes for speculative threads. This may tie in with the theme of online
learning, integrated into the runtime system with low-overhead profiling and
learning costs.
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