Capability Boehm: Challenges and Opportunities for
Garbage Collection with Capability Hardware

Dejice Jacob
dejice.jacob@glasgow.ac.uk
University of Glasgow
Glasgow, UK

Abstract

The Boehm-Demers-Weiser Garbage Collector (BDWGC)
is a widely used, production-quality memory management
framework for C and C++ applications. In this work, we
describe our experiences in adapting BDWGC for modern
capability hardware, in particular the CHERI system, which
provides guarantees about memory safety due to runtime
enforcement of fine-grained pointer bounds and permissions.
Although many libraries and applications have been ported
to CHERI already, to the best of our knowledge this is the first
analysis of the complexities of transferring a garbage collec-
tor to CHERI. We describe various challenges presented by
the CHERI micro-architectural constraints, along with some
significant opportunities for runtime optimization. Since we
do not yet have access to capability hardware, we present a
limited study of software event counts on emulated micro-
benchmarks. This experience report should be helpful to
other systems implementors as they attempt to support the
ongoing CHERI initiative.

CCS Concepts: « Software and its engineering — Runtime
environments; Garbage collection.

Keywords: CHERI, early experience, memory management

ACM Reference Format:

Dejice Jacob and Jeremy Singer. 2022. Capability Boehm: Chal-
lenges and Opportunities for Garbage Collection with Capability
Hardware. In Proceedings of the 18th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments (VEE ’22),
March 1, 2022, Virtual, Switzerland. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3516807.3516823

1 Introduction

Automatic memory management is practically ubiquitous
for high-level languages that execute on managed runtime
systems like JVMs and JavaScript engines. Although manual
memory management with malloc and free remains the de-
fault for software developed in C/C++, it is possible for such

VEE 22, March 1, 2022, Virtual, Switzerland

© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 18th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE 22), March 1, 2022, Virtual, Switzerland,
https://doi.org/10.1145/3516807.3516823.

Jeremy Singer
jeremy.singer@glasgow.ac.uk
University of Glasgow
Glasgow, UK

applications to use automatic memory management—for
example with the Boehm-Demers-Weiser garbage collector
(BDWGC) [5] which is a drop-in library replacement for the
system memory allocator. Boehm’s seminal work in this area
was cited as one of the reasons for his recent (2020) SIGPLAN
Programming Languages Achievement award [1].

Implicit memory management ‘just happens’ from an ap-
plication perspective, with no need for software developers
to concentrate on memory allocation if it is not core ap-
plication functionality. Naturally, there are two underlying
assumptions for such clients of a garbage collection (GC)
runtime service:

1. that the memory management is correct, i.e. no pro-
gram runtime errors are induced by the GC; and,

2. that the memory management is performant, i.e. the
code runs sufficiently fast and the GC does not incur
noticeable overhead.

Many end-user applications depend on BDWGC for ef-
fective automatic memory management; these include the
Inkscape vector graphics editor, the Guile interpreter for
Scheme and the W3m text-based web browser.

In this paper, we investigate the redeployment of BDWGC
to CHERIBSD on RISC-V and Morello platforms [16] which
provide micro-architectural support for hardware capabil-
ities. CHERI-style capabilities are a new hardware innova-
tion, supporting fine-grained dynamic memory protection
through direct hardware checking and enforcement of ex-
plicit pointer bounds and permissions.

A single capability value specifies a base address, an offset
and an upper bound address limit, along with access per-
missions for read, write and execute behaviour. Capabilities
include far richer metadata than traditional raw pointer val-
ues, which simply specify a single address, admit pointer
arithmetic, and have access permissions set at the coarse
granularity of pages. Once a user process acquires a capabil-
ity value from the OS, the CHERI monotonicity property [9]
ensures the capability’s bounds cannot be widened and its
permissions cannot be upgraded.

The principal motivation of the CHERI framework is to
eliminate whole classes of memory-based system exploits;
examples include out-of-bounds writes, out-of-bounds reads,
and use-after-free accesses. Respectively these are ranked
first, third, and seventh in the the 2021 Common Weakness

https://orcid.org/0000-0002-4137-0353
https://orcid.org/0000-0001-9462-6802
https://doi.org/10.1145/3516807.3516823
https://doi.org/10.1145/3516807.3516823

VEE ’22, March 1, 2022, Virtual, Switzerland

Enumeration (CWE) top 25 most dangerous software weak-
nesses [8]. Although these problematic memory accesses
result in undefined behaviour according to the C language
specification, nevertheless such operations are tolerated by
many current compilers and runtimes, with the potential
to lead to security compromises. Many catalogued common
vulnerabilities and exposures (CVE) instances are caused
by such memory-based exploits. However, in CHERI-based
systems this insecure behaviour immediately causes runtime
errors in the form of untrappable signals, forcing a faulting
application to be terminated at once.

Although CHERI systems provide robust security guaran-
tees, our experience is that they require careful programming.
This is particularly the case for low-level systems code, which
needs significant adaptation including the use of dedicated
CHERI intrinsics for managing capabilities, modifications
to pointer-based algorithms and data structures, and a new
application binary interface [6].

Retargeting a memory management subsystem for CHERI
throws up a host of challenges for systems software imple-
mentation. In this paper we explore some of these challenges
in pragmatic detail. We also demonstrate that a richer aware-
ness of memory structure and hardware-supported metadata
provide meaningful opportunities for optimization of mem-
ory management algorithms.

We report an evaluation of BDWGC on the CHERIBSD
platform running on RISC-V and Morello processor archi-
tectures, emulated using QEMU. We use two representative
allocation-intensive microbenchmarks integrated with BD-
WGC. We measure the number of GCs and system calls that
occur during benchmark execution. We compare our results
against a baseline non-CHERI AArch64 FreeBSD platform.
In general, there is some runtime overhead associated with
architectural capabilities but this is not prohibitive.

The key contributions of this work are:

e the first technical analysis of a port of an industrial-
strength memory management tool to the CHERI plat-
form;

o a discussion of the potential pitfalls and opportuni-
ties that become apparent due to the discrepancies
between typical assumptions in memory management
implementations and the novel CHERI feature set; and,

e a detailed empirical evaluation of the performance
implications of our design decisions for BDWGC on
the CHERI platform.

The target audience for this paper includes systems soft-
ware developers who intend to target the CHERI platform,
particularly when this involves transferring legacy code from
traditional, non-capability platforms. However, we also ex-
pect the work will be of general interest to a broader commu-
nity of programming language virtual machine researchers
and implementors.

Dejice Jacob and Jeremy Singer

2 Background
2.1 Garbage Collection

Garbage collection has a long history [7]. It is now widely
deployed in the majority of high-level language runtimes.

BDWGC [5] often known as Boehm GC, is an industrial
strength automatic memory management framework for C
and C++ applications. It is highly tuned for runtime perfor-
mance, with a range of heuristics [3]. It is a conservative col-
lector, since it can operate without runtime time information
and infer probable pointer values from typeless bit-patterns.
However, BDWGC can leverage available type information—
for instance when it is deployed in a Java application context
with GCJ.

In BDWGC, a block is a contiguous buffer of one or more
pages. A block stores a single large object (at least half a page
in size) or multiple small objects of the same size. There are
size-segregated freelists for small objects. Per-block metadata
is retained in a separate data structure. This metadata is
associated with blocks via a hashing lookup structure where
the hash value is derived from the block address, for efficient
indexing. Blocks can be coalesced into larger blocks or split
into smaller blocks according to runtime demand.

2.2 Capability Hardware

The CHERI initiative [13, 16] involves adding certain micro-
architectural features to conventional RISC processors to
support fat pointers, with hardware enforcement of bounds
and permissions. This is a long-running project that contin-
ues to gather momentum.

At present, CHERI software is executed via emulation with
a well-supported package that uses QEMU, with RISC-V (64-
bit) and Morello targets. Morello [2] is an AArch64 processor
currently under development by Arm, which instantiates the
CHERI principles. Physical boards should be available for
evaluation in 2022, as part of the Digital Security by Design
programme [11].

A capability-aware variant of the FreeBSD OS, known as
CHERIBSD, runs on the emulated systems. There is also ex-
cellent LLVM toolchain support [14]. However, to the best of
our knowledge, no automatic memory management frame-
works have been ported to CHERI prior to our work.

3 Motivation

We work in the pure-capability (purecap) context, rather
than a hybrid execution mode. This means addresses (in OS
kernel interactions, the memory management framework
and the client code) are consistently represented as capability
values with explicit bounds and permissions. BDWGC and
client applications are compiled using pure-capability C and
executed in a CheriABI process environment. This gives the
typical CHERI assurances of spatial, referential, and (non-
stack) temporal memory safety [6].

Capability Boehm: Challenges and Opportunities for Garbage Collection with Capability Hardware

We incorporate fine-grained capability support in BDWGC
library code directly. Although this GC framework has been
operational since the 1980s, we believe it has no formal cor-
rectness proofs. In that sense, it is a best-effort, heuristic-
based, conservative GC that is still under active development
[4]. Capabilities can serve to make the codebase more robust
and resilient in terms of memory safety. In particular, the
deployment of capabilities will add a layer of protection to
GC metadata which is often the target of code exploits.

We support capabilities in client code to provide the typical
CHERI set of memory safety guarantees. If BDWGC is to be
used as a drop-in replacement for the CHERIBSD platform
malloc then we must have behavioural equivalence for client
applications, particularly with respect to memory accesses.

In this work, we assume the standard CHERI operating
threat model [13]. This involves attacks on code in execution,
usually to subvert legitimate code or inject malicious code.
Exploits are generally attempted using improper memory
accesses that violate language semantics but are tolerated in
compiler toolchains and runtimes.

4 Challenges

In this section, we explore a number of challenges we encoun-
tered while adapting the BDWGC codebase for the CHERI
architecture. Typically, each challenge arises from a tacit
assumption about the underlying platform: such assump-
tions hold for all previous ‘traditional’ BDWGC targets but
the new CHERI ecosystem presents radical differences. We
highlight these differences and explain the workarounds
employed to ensure the code executes properly.

Although this the first detailed presentation of CHERI
constraints in an automatic memory management context,
the problems we identify have been previously noted in
earlier CHERI literature. We use the CheriABI classification
[6] in this section.

4.1 Word Size

From the early days of systems programming when BCPL
had a solitary word datatype [10] there has been a conven-
tion that machine word size is equal to pointer size. Con-
temporary systems implementation languages maintain this
constraint: for example, consider the usize type in Rust.
However all pointers are ‘fat’ in CHER]I, so systems with
64-bit machine words like Morello actually embed 64-bit
addresses within 128-bit capability values.

BDWGC conflates the machine word and pointer size. This
is the CheriABI pointer shape (PS) issue. To overcome this
issue, we set the existing compile-time constant CPP_WORDSZ
on CHERI platforms to 128 bits, then define a supplemen-
tary INTEGER_WORDSZ constant which is 64 bits. Further, we
ensure all capability values are 16-byte aligned in memory.
This means that when we are scanning memory buffers to

VEE 22, March 1, 2022, Virtual, Switzerland

identify capabilities during GC, we will scan in word-sized
units with appropriate alignment.

The word size affects the minimum allocatable unit in
BDWGC, known as the granule size. We set this to one (128-
bit) word on CHERI platforms. This minimum size is required
for freelist management, since any unused granule needs to
become a cell in a linked list, containing a pointer to the next
cell.

We might expect a relative degradation in BDWGC perfor-
mance on CHER]I, given the increase in memory usage and
the corresponding drop in cache occupancy. One mitigat-
ing factor might be that the original BDWGC configuration
specifies the granule size as two words, as a compromise
between fragmentation overhead and space usage for mark
bits, so our CHERI granule size is same as on traditional
64-bit platforms.

4.2 Pointer Synthesis

C programmers often convert implicitly between integer
word values and pointers. This might include casts from int
to int*, or complex pointer arithmetic. Unfortunately, these
operations do not preserve the validity of capability metadata.
This is the CheriABI integer provenance (IP) issue, when
pointers are cast via integer types other than uintptr_t.

An instance of this problem crops up when BDWGC tra-
verses all blocks it manages, in the GC_apply_to_all_blocks
(f, data) higher-order function, which maps f over all
blocks. There is a hash-based data structure to associate
each block address with its corresponding metadata: BD-
WGC maintains a metadata header object for each block.

The current algorithm uses pointer arithmetic to gener-
ate addresses of successive blocks to be traversed. Bitfields
(known as bottom indices) from these synthetic addresses are
used as lookup values in the hashing structure, to fetch the
metadata header. Subsequently, BDWGC uses the synthe-
sized address to operate on the block, applying the mapping
function as appropriate. The problem is that the synthesized
address is not a valid capability so cannot be used in a mem-
ory access. The solution is straightforward: the out-of-band
metadata header stores the appropriate block capability value
as a field (hb_block) that can be accessed directly from the
header pointer. Although this memory load will be slower
than the integer arithmetic it replaces, it ensures we use a
valid capability to access the block.

An alternative workaround involves the use of a superca-
pability: this would be a capability with sufficient bounds
and permissions to access any part of memory owned by BD-
WGC. This means we could then derive valid capabilities as
offsets from the supercapability base address. However, we
decided against this approach since the notion of an ‘access-
all-areas’” supercapability reduces the effectiveness of CHERI
in securing systems software like BDWGC, for example if
the supercapability is leaked to user code or if a buggy GC
memory access accidentally trashes some metadata.

VEE ’22, March 1, 2022, Virtual, Switzerland

4.3 Block Coalescing

BDWGC handles memory in conceptual units known as
blocks. Each block is sized at an integer multiple of the page
size, with the minimum block size being one page. For small
objects (less than 0.5 pages) each block stores a set of objects
with the same size. For large objects (at least 0.5 pages) each
block stores a single large object. Blocks are requested on-
demand by BDWGC during execution, via mmap calls.

The process of block coalescing merges empty contiguous
blocks into a single larger block. This simplifies BDWGC
metadata management and allows for larger objects to be
accommodated in the existing heap rather than requiring
fresh mmap calls. It is possible subsequently to decompose a
large block into smaller blocks, if necessary.

This coalescing operation is common in memory manage-
ment systems in general. Unfortunately, the tight bounds
enforced by CHERI capabilities means such coalescing is not
possible using capabilities derived from OS calls to mmap. A
capability cannot ‘grow’ its bounds, only reduce them. There-
fore, merging contiguous blocks into a single block,with a
single capability spanning that block, is not supported. This
relates to the CheriABl issue known as Monotonicity (M). The
problem becomes apparent when executing code attempts to
reach outside capability bounds or increase memory access
permissions.

In our CHERI adaption of BDWGC, bounds enforcement
means coalescing is not possible unless we are coalescing
something that had previously been split, but was originally
part of a single capability returned by one mmap call. We add
CHERI bounds checks on block capabilities and only perform
coalescing where the capability of the lower block would
span the full range of the coalesced pair of blocks.

We note that a supercapability (as already discussed in
Section 4.2 above) would mitigate this problem but it brings
other disadvantages.

4.4 Bounds Precision

Strictly speaking, this is not a legacy C problem; rather this
is a challenge intrinsic to all CHERI platforms. A capability
value encodes a base pointer, a limit and an offset. Each of
these three fields is a distinct pointer, in theory requiring a
machine word of storage. There are additional bits required
for metadata including access permissions. An uncompressed
CHERI capability conceptually occupies 256 bits.

CHERI Concentrate [15] is an elegant capability compres-
sion scheme that reduces the footprint of a capability value
to 128 bits. However this shrinkage comes at the cost of some
loss of precision in terms of representable base addresses
and bounds. For capabilities with small bounds, there is no
precision problem. However the problem becomes apparent
as capability bounds grow.

The most pragmatic way to handle this issue is to over-
approximate capability bounds so they become precisely

Dejice Jacob and Jeremy Singer

1 if (cheri_gettag(limit) == @) {
. limit -= ALIGNMENT;
3 yelse { // ...

Figure 1. Testing for capability tag during a memory scan-
ning loop in the BDWGC mark phase

representable. A memory allocator would pad buffers with
unused memory to maintain capability integrity. While we
have not encountered this issue in our small-scale testing
of BDWGC, we remain aware of the problem and are writ-
ing code, including runtime checks, in a precision-aware
manner.

5 Opportunities

After reading Section 4, one might be forgiven for think-
ing memory manager implementation on CHERI is fraught
with difficulty and has many negative performance implica-
tions. On the other hand, in this section we sketch out two
optimization opportunities afforded by CHERI. We demon-
strate that capabilities not only make memory management
more secure but they also have the potential for improved
efficiency.

5.1 Tagged Capabilities

CHERI architectures have out-of-band metadata, with a sin-
gle bit per 16-byte aligned memory location used to indicate
whether a valid capability is stored at the corresponding lo-
cation. In principle, checking such a capability tag bit should
be a fast operation.

Since BDWGC is a conservative collector, in the absence
of runtime type information it needs to scan all values in
user memory with the assumption that any bit-pattern could
represent an address. In practice, BDWGC uses sophisticated
heuristics to eliminate the majority of non-pointer values.
However, when BDWGC is deployed in contexts with rich
runtime type information (e.g. GCJ) then it can take advan-
tage of this information to reduce scanning overhead during
the performance-critical mark phase of GC.

Similarly on CHERI, we can use the capability tags to
direct the scanning of data to exclude non-capability values,
with a consequent reduction in the marking phase overhead.
The code in Figure 1 illustrates how this efficient scanning
loop jumps over non-capability values in a memory region.

While it is possible to derive capabilities from integer
offsets to other capabilities, this is a highly controlled opera-
tion in CHERI and the derived capability cannot exceed the
bounds of the original capability. This means that we never
need to trace non-capability values in BDWGC on CHERI,
since any reachable data will always have at least one valid
capability value in user memory space.

Capability Boehm: Challenges and Opportunities for Garbage Collection with Capability Hardware

More generally, CHERI’s explicit tagging for pointers will
enable significant GC optimizations for C code. This might
include support for a copying collector: where pointers can
always be identified, it should be possible to safely update
them when moving objects.

5.2 Unmapped Areas

BDWGC identifies unused blocks of memory with the GC_unmap

call, for instance for a page that is part of the runtime
heap but does not contain any live data. On BSD systems,
GC_unmap is a mmap system call applying PROT_NONE to the
relevant page(s) which makes them subsequently inaccessi-
ble.

If this unmapped block is required in future, perhaps if
the live data size increases, the GC_remap call undoes the
unmapping. On BSD systems, GC_remap is a mprotect sys-
tem call increasing the permissions of the relevant page(s)
so they become accessible again.

Unmapping serves two purposes:

e to prevent wild memory accesses to unused blocks in
the heap—effectively the unmapped pages are guard
pages; and,

e to hint to the OS that such pages may be swapped out
since they are not in active use.

In our capability-aware BDWGC, wild memory accesses
are no longer possible due to the strict bounds enforcement
of CHERI. Therefore we decided to eliminate the mmap and
mprotect system calls, effectively making GC_unmap and
GC_remap into null operations. This reduction in system call
overhead may improve performance. Further, the mprotect
call which increases permissions may not be permitted under
CHERI monotonicity constraints unless a supercapability
value is available.

Note the Emscripten port of BDWGC for WebAssembly
also eliminates the same pair of system calls since this OS-
level memory management is not available in the WebAssem-
bly runtime. Unmapping is intended to provide hints to the
OS about page residence requirements, however modern OSs
have robust heuristics to handle memory over-commitment.

6 Evaluation

This section gives a preliminary empirical evaluation of our
BDWGC adaption for CHERI platforms. After reviewing our
methodology (Section 6.1), we consider the runtime perfor-
mance of memory management with capabilities (Section
6.2), the developer effort involved in the port (Section 6.3)
and a brief discussion of threats to validity (Section 6.4).

6.1 Methodology

Platforms. Of necessity, our performance evaluation is only
indicative since we do not yet have access to physical hard-
ware for full-system experimentation. Instead we rely on run-
ning software emulations of CHERIBSD sessions in QEMU;

VEE 22, March 1, 2022, Virtual, Switzerland

these are configured for the 64-bit RISC-V and Morello plat-
forms, which use 128-bit capability values. QEMU is a func-
tional full-system emulator. As such, it does not have a cycle-
accurate processor model so we cannot obtain end-to-end
timing results.

As a baseline comparison, we also use an Amazon Web Ser-
vices (AWS) t4g.micro Graviton2 instance, running FreeBSD
12. This platform features an AArch64 Neoverse N1 CPU,
which shares the same base Arm processor specification as
the Morello system. Since the Graviton2 system does not
support capabilities, we use raw pointers in the benchmarks.
We also report Graviton2 padded results, where each 64-bit
pointer field is padded to 128 bits—this is intended to achieve
a fairer comparison in terms of data structure size and heap
occupancy.

Benchmarks. We select two simple C benchmarks as rep-
resentative memory-intensive workloads:

o the binarytrees program from the Computer Language
Benchmarks Game (CLBG), which allocates one long-
lived binary tree then a number of short-lived trees of
various depths in a tight loop (we set the max_depth
parameter to 6); and,

e a random mixed allocation program, which allocates
32,000 short-lived objects in a tight loop, where each
object has a pseudo-randomly chosen size, uniformly
distributed between 16 bytes and 16KB.

Each benchmark is compiled and executed with our fork of
BDWGC configured for Debug mode, with all of GCJ, parallel
mark, multi-threading and dynamic loading all switched off.

Metrics. Since our evaluation platforms are either emulated
(QEMU) or virtualized (AWS), we do not report any wall-
clock time results. Instead we measure runtime event counts,
such as number of GCs or system calls during benchmark
execution. In principle, these should be relatively platform-
independent metrics that provide indications of GC perfor-
mance.

6.2 Performance Impact

In a first evaluation study, we profile the number of GC
events for each fixed workload on each platform. This will
inform us about the impact of heap fragmentation on CHERI
platforms (RISC-V and Morello) due to the lack of block
coalescing. Note that coalescing is enabled on the Graviton
platform. We are also interested in the memory overhead
of using 128-bit capabilities (RISC-V, Morello and Graviton-
padded) as opposed to raw 64-bit pointers (Graviton).

The results in Figure 2 indicate that the larger capabil-
ity size does have a significant impact on GC overhead for
allocation-intensive workloads; the Graviton results are no-
ticeably lower in both benchmarks. However we do not ob-
serve significant inefficiency due to lack of coalescing; the
Graviton-padded results are not lower than the RISC-V or

VEE ’22, March 1, 2022, Virtual, Switzerland

rnd-mixed
6000
0
Q@
o
? 4000
o
4 2000
0
riscv64-purecap morello-purecap graviton graviton-padded
binarytrees
4
0
Q3
[%)
9
O 2
)
1
0
riscv64-purecap morello-purecap graviton graviton-padded

Figure 2. Number of GCs during micro-benchmark execu-
tion on various platforms

rnd-mixed

{1111

riscv64-purecap morello-purecap graviton graviton-padded

N
o

N
o

syscalls

binarytrees

60J . .
0

riscv64-purecap morello-purecap graviton graviton-padded

syscalls
Ey
o

N
o

Figure 3. Number of mmap and mprotect system calls during
micro-benchmark execution on various platforms

CHERI results. We realise that more complex benchmarks
with irregular allocation patterns might be more likely to
exercise the coalescing behaviour; we reserve this for future
work.

In a second study, we use the truss tool to count the to-
tal number of mmap and mprotect system calls during each
benchmark run on each platform. Recall from Section 5.2 that
we have eliminated system calls for BDWGC unmapping
operations, which may reduce runtime overhead.

The results in Figure 3 indicate a slight reduction in system
call counts on the two CHERI platforms, because of the
increased efficiency in the GC block mapping behaviour.

Dejice Jacob and Jeremy Singer

6.3 Developer Effort

Our port of BDWGC to CHERI is ongoing. So far we have
spent around four person months of full-time developer effort,
although most of this initial work involved understanding
the sophisticated internals of BDWGC and the complexities
of CHERI. We are now at the stage where we can run simple
benchmarks and integration tests.

To date we have only modified around 100 lines of code
(LoC) in a total codebase size of 60k LoC. We expect to make
further changes, but our work should be commensurate with
the 0.026% LoC change rate in approximately 6 million lines
of C and C++ code that introduces CHERI memory safety
for a Unix desktop system [12].

6.4 Threats to Validity

We have only considered a simplistic tracing GC algorithm,
which is stop-the-world, single-threaded and non-moving.
However the issues identified in this paper will arise in more
complex memory managers on CHERI systems. Our per-
formance evaluation is high-level, involving only software
event counts on emulated platforms running basic allocation
workloads. When Morello physical systems become avail-
able, we intend to conduct full stack performance evaluations
on a wider range of workloads.

7 Conclusions

We have presented an in-depth technical discussion of the
challenges and opportunities arising when transferring a
legacy C automatic memory management framework to the
CHERI ecosystem. We have indicated pragmatic workarounds
for the challenges we faced in the porting endeavour.

Our initial empirical evaluation shows that there may
be some performance hit to be expected with capability-
based memory management, but this does not appear to be
excessive. We eagerly await the physical Morello system
in order to carry out a larger-scale, in-depth performance
evaluation. In particular, we are presently unable to assess
the micro-architectural impact of our changes in terms of
caching behaviour.

In this research project, we encountered many similar
issues to those identified by the CheriABI team. We hope
that our anecdotal experience of memory management for
CHERI will be valuable to other systems implementors as
they attempt to support the ongoing CHERI initiative with a
wide variety of software ports.

Acknowledgments

This work was supported by the Engineering and Physical
Sciences Research Council grant number EP/V000349/1 as
part of the Digital Security by Design (DSbD) programme.

References
[1] ACM SIGPLAN. 2020. Programming Languages Achievement Award.

Capability Boehm: Challenges and Opportunities for Garbage Collection with Capability Hardware

https://www.sigplan.org/Awards/Achievement/

Arm. 2021. Arm Architecture Reference Manual Supplement — Morello
for A-profile Architecture. https://developer.arm.com/documentation/
ddi0o606/aj/?lang=en.

Hans-Juergen Boehm. 1993. Space Efficient Conservative Garbage
Collection. In Proceedings of the ACM SIGPLAN 1993 Conference on
Programming Language Design and Implementation. 197-206. https:
//doi.org/10.1145/155090.155109

Hans-J Boehm et al. 2021. Boehm-Demers-Weiser Garbage Collector.
https://github.com/ivmai/bdwgc/

Hans-Juergen Boehm and Mark Weiser. 1988. Garbage collection in
an uncooperative environment. Software: Practice and Experience 18, 9
(1988), 807-820. https://doi.org/10.1002/spe.4380180902

Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G.
Neumann, Simon W. Moore, John Baldwin, David Chisnall, Jessica
Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joan-
nou, Ben Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo
Mazzinghi, Edward Tomasz Napierala, Robert M. Norton, Michael
Roe, Peter Sewell, Stacey Son, and Jonathan Woodruff. 2019. Cheri-
ABI: Enforcing Valid Pointer Provenance and Minimizing Pointer
Privilege in the POSIX C Run-Time Environment. In Proceedings
of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. 379-393.
https://doi.org/10.1145/3297858.3304042

Richard Jones, Antony Hosking, and Eliot Moss. 2016. The garbage
collection handbook: the art of automatic memory management. CRC
Press.

MITRE Corporation. 2021. 2021 CWE Top 25 Most Dangerous Software
Weaknesses. https://cwe.mitre.org/top25/archive/2021/2021_cwe_
top25.html

Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony
Fox, Michael Roe, Brian Campbell, Matthew Naylor, Robert M. Norton,
Simon W. Moore, Peter G. Neumann, Ian Stark, Robert N. M. Watson,
and Peter Sewell. 2020. Rigorous engineering for hardware security:
Formal modelling and proof in the CHERI design and implementation

[10]

(1]

[12]

[13]

[14]

[15]

[16]

VEE 22, March 1, 2022, Virtual, Switzerland

process. In 2020 IEEE Symposium on Security and Privacy (SP). 1003—
1020. https://doi.org/10.1109/SP40000.2020.00055

Martin Richards. 1971. The portability of the BCPL compiler. Software:
Practice and Experience 1, 2 (1971), 135-146. https://doi.org/10.1002/
spe.4380010204

UKRL [n.d.]. Digital Security by Design: Securing The Future of the
Digital Economy. https://www.dsbd.tech.

Robert N. M. Watson, Ben Laurie, and Alex Richardson. 2021. As-
sessing the Viability of an Open-Source CHERI Desktop Software
Ecosystem. https://www.capabilitieslimited.co.uk/pdfs/20210917-
capltd-cheri-desktop-report-version1-FINAL.pdf.

Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Jonathan
Anderson, David Chisnall, Brooks Davis, Ben Laurie, Simon W. Moore,
Steven J. Murdoch, and Michael Roe. 2014. Capability Hardware En-
hanced RISC Instructions: CHERI Instruction-set architecture. Technical
Report UCAM-CL-TR-850. University of Cambridge, Computer Labo-
ratory. https://doi.org/10.48456/tr-850

Robert N. M. Watson, Alexander Richardson, Brooks Davis, John
Baldwin, David Chisnall, Jessica Clarke, Nathaniel Filardo, Simon W.
Moore, Edward Napierala, Peter Sewell, and Peter G. Neumann. 2020.
CHERI C/C++ Programming Guide. Technical Report UCAM-CL-
TR-947. University of Cambridge, Computer Laboratory. https:
//doi.org/10.48456/tr-947

Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox,
Robert M. Norton, David Chisnall, Brooks Davis, Khilan Gudka,
Nathaniel W. Filardo, A. Theodore Markettos, Michael Roe, Peter G.
Neumann, Robert N. M. Watson, and Simon W. Moore. 2019. CHERI
Concentrate: Practical Compressed Capabilities. IEEE Trans. Comput.

68, 10 (2019), 1455-1469. https://doi.org/]O.T109/TC.2019.2914037
Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W.

Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI capabil-
ity model: Revisiting RISC in an age of risk. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA). 457-468.
https://doi.org/10.1109/ISCA.2014.6853201

https://www.sigplan.org/Awards/Achievement/
https://developer.arm.com/documentation/ddi0606/aj/?lang=en
https://developer.arm.com/documentation/ddi0606/aj/?lang=en
https://doi.org/10.1145/155090.155109
https://doi.org/10.1145/155090.155109
https://github.com/ivmai/bdwgc/
https://doi.org/10.1002/spe.4380180902
https://doi.org/10.1145/3297858.3304042
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://doi.org/10.1109/SP40000.2020.00055
https://doi.org/10.1002/spe.4380010204
https://doi.org/10.1002/spe.4380010204
https://www.dsbd.tech
https://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
https://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
https://doi.org/10.48456/tr-850
https://doi.org/10.48456/tr-947
https://doi.org/10.48456/tr-947
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1109/ISCA.2014.6853201

	Abstract
	1 Introduction
	2 Background
	2.1 Garbage Collection
	2.2 Capability Hardware

	3 Motivation
	4 Challenges
	4.1 Word Size
	4.2 Pointer Synthesis
	4.3 Block Coalescing
	4.4 Bounds Precision

	5 Opportunities
	5.1 Tagged Capabilities
	5.2 Unmapped Areas

	6 Evaluation
	6.1 Methodology
	6.2 Performance Impact
	6.3 Developer Effort
	6.4 Threats to Validity

	7 Conclusions
	Acknowledgments
	References

