
A Hardware Relaxation Paradigm
for Solving NP-Hard Problems

Paul Cockshott, Andreas Koltes, John O’Donnell, Patrick Prosser, Wim Vanderbauwhede
Department of Computing Science, University of Glasgow

Abstract

Digital circuits with feedback loops can solve some instanc es of NP-hard problems
by relaxation: the circuit will either oscillate or settle d own to a stable state that
represents a solution to the problem instance. This approac h differs from using
hardware accelerators to speed up the execution of determin istic algorithms, as it
exploits stabilisation properties of circuits with feedba ck, and it allows a variety of
hardware techniques that do not have counterparts in softwa re. A feedback circuit
that solves many instances of Boolean satisfiability proble ms is described, with
experimental results from a preliminary simulation using a hardware accelerator.

Keywords: NP-hard problem, Boolean satisfiability, digital circuit with feedback, relaxation, simulated annealing

1. INTRODUCTION

NP-complete problems lie on the boundary of what is economically computable. They are effectively
computable on a Turing Machine, but their worst-case run times are believed to grow exponentially with
problem size. This can make large instances of NP-complete problems too expensive for us to obtain
solutions. It is suspected, but not proven, that no polynomial time algorithm exists for NP-complete problems,
and that if a deterministic algorithm rather than an oracle is used to obtain the solution, then in the worst
case the algorithm must perform an exhaustive search through a solution space whose size is an exponential
function of the input size.

There have been numerous recent proposals to overcome the barrier of effective computability in
computation, and proposals [5, 7, 12, 16] have been put forward for hypercomputers that could compute
functions which are uncomputable on a Turing machine. The feasibility of building such devices remains in
dispute [8, 26, 34, 9].

A related question concerns the time complexity of computable functions. Many models of computation are
mathematical state machines that are provably equivalent to a Turing Machine, but some physical systems
that can perform computation have not been proven to be Turing equivalent, either in terms of computability
or time complexity. Do there exist physical systems that can solve computable problems with a lower time
order than a Turing Machine?

We would be pleasantly surprised if such physical systems turn out to exist, but we are not holding our
breath. Instead, we are investigating a particular class of physical system, not reducible to an algorithmic
state machine, to determine its applicability to NP hard problem.

The particular type of physical computation system in question is a circuit comprising Boolean logic gates
and (possibly) flip flops. Such circuits are normally designed according to a strongly disciplined synchronous
style in order to keep their behaviour simple, digital, and predictable. Synchronous circuits behave like
mathematical state machines. However, unconstrained Boolean networks with feedback can exhibit a variety
of complex behaviours, including non-digital behaviour such as metastability [37]. Given constant inputs, a
circuit may stabilise, it may settle down into an oscillation among a set of states, or it may fluctuate chaotically.

Kauffman has shown [21] that random Boolean networks of size n have expected median state cycle lengths
of O(

√
n). Thus a system with a very large state space (e.g. 210000 ≈ 103000) may settle down and cycle

among a quite small number of states (e.g. 100).

In this paper we investigate the computational complexity of Boolean networks with feedback for solving
instances of Boolean Satisfiability (SAT), a standard NP-complete problem. We show how to compile (in
polynomial time) an instance of SAT into a circuit whose fixed point (where the signals remain stable)
represents a solution to that problem instance. The circuit may not reach a fixed point; oscillation among
a set of states constitutes a failure to solve the problem instance. Kauffman’s result suggests that there

A hardware relaxation paradigm for solving NP-hard problems

is a reasonable probability that such a circuit will indeed solve the instance. We have experimented with a
prototype of the system, using FPGA technology to simulate the general class of circuit we define. Preliminary
experimental results show that the approach does indeed solve many SAT problem instances quickly.

In Section 2 we consider the problem of Boolean satisfiability, and Section 3 reviews existing solvers.
Section 4 outlines an ASIC (application-specific integrated circuit) design that can solve problem instances
by relaxation, and we show how to compile an arbitrary instance of SAT in order to run on the circuit. Section
5 discusses initial results obtained by a hardware simulator, and Section 6 concludes.

2. THE PROBLEM DOMAIN: BOOLEAN SATISFIABILITY (SAT)

The problem domain we consider is Boolean satisfiability. Given an arbitrary Boolean expression over a set
of variables, the problem is to determine whether there exists a set of variable settings (to true or false)
that makes the entire expression true. A specific Boolean expression is called an instance of the general
problem. We restrict the Boolean expressions to a canonical form: the logical conjunction of clauses, where
each clause is the logical disjunction of one or more literals, and a literal is either a variable or the negation
of a variable. This restricted version of Boolean satisfiability is called SAT, and it is also NP-complete. For
example, the following expression is an instance of SAT:

(a ∨ ¬d ∨ e) ∧ (d ∨ e ∨ f) ∧ (b ∨ ¬c ∨ ¬d)

Although SAT is an NP complete problem, not all instances of it are hard to solve. Previous research has
shown that the set of SAT problems has an interesting structure, with a phase change from a subset of
problems with few solutions to a subset of problems with many solutions [20, 19, 38]. The instances of SAT
that are hard lie mostly near the phase change. This previous research is experimental: large sets of problem
instances are generated randomly and their solution times measured.

Cheeseman, Kanefsky and Taylor observed an abrupt phase transition from solubility to insolubility in graph
colouring problems as average degree was increased [4]. A complexity peak was observed at this transition,
and it was conjectured that this would be algorithm independent and common to all NP-complete problems.
Graph colouring problems were mapped to SAT and the same phenomenon was observed, i.e. an abrupt
phase transition with a corresponding complexity peak. Later studies showed that incomplete algorithms
also experience the complexity peak when applied to satisfiable instances: easy solvable instances are easy,
hard solvable instances are hard, and rare solvable instances found within the easy insolvable region are
also easy. Much research has been done to pin down the location of the SAT phase transition and to
develop theories about the location of this phase transition for problems that are NP-complete [14] or in
higher complexity classes (such as quantifies SAT (QSAT)). Research to date appears to confirm that the
complexity peak is indeed independent of the algorithm, and it is an open question whether physical systems
that do not implement mathematical state machines have the same properties.

3. RELATED WORK ON SAT SOLVERS

Because of its theoretical interest and its practical importance, there has been extensive work on solvers for
SAT.

3.1. Software solvers

There are two broad classes of SAT solvers: complete and incomplete. Complete solvers are guaranteed to
find a solution if one exists and to terminate on unsatisfiable instances. They typically use a backtracking
search based on the DPLL (Davis, Putnam, Logemann, and Loveland) algorithm. State of the art solvers,
such as Zchaff2004 [25], MiniSAT [11, 13, 35] and BerkMin [15] employ relevance bounded learning,
intelligent backjumping, and dynamic variable ordering heuristics along with smart data structures such as
watched literals.

Incomplete solvers typically use a neighbourhood search algorithm, and often operate as hill climbers (or
descenders). Given complete or partial setting of the variables, the settings are improved by making local
changes. Solvers such as WalkSat [22] (and its predecessor GSAT) have features that are similar to Tabu
search. Heuristics for optimisation strategies are discussed in [10], and runtime distributions of SAT solvers
are reviewed in [17]. The algorithms for WalkSat and GSAT are shown below:

procedure WalkSat

input f: array[1..c] of clauses {in CNF}

A hardware relaxation paradigm for solving NP-hard problems

output v:array[1..n] of boolean {a variable assignment that satisfies f}

begin

for a := 1 to MaxTries do

v := random truth assignment;

for b := 1 to MaxFlips do

if all f are true given v then return Success;

choose a random clause cl in f such that cl=false;

if random(0..1)<p then

j := a random variable that appears in cl

else

j:= the variable in cl that will produce the biggest

increase in satisfied clauses when flipped

v[j] := not v[j];

return Fail;

end;

procedure GSAT

input f: array[1..c] of clauses {in CNF}

output v:array[1..n] of boolean {a variable assignment that satisfies f}

begin

for a := 1 to MaxTries do

v := random truth assignment;

for b := 1 to MaxTries do

if all f are true given v then return Success;

else

PossFlips := set of vars which increase SAT most

j := a random element of PossFlips

v[j] := not v[j]

return Fail;

end;

State of the art SAT solvers are highly optimised pieces of code. Practical applications of SAT solvers include
scheduling problems, planning (for example, in interplanetary space within Deep Space 1), configuration
problems, hardware design and verification, and cryptanalysis of hash functions. SAT instances solved to
date contain some hundreds of thousands of variables and millions of clauses, typically taking a handful of
hours to solve.

3.2. Hardware acceleration of SAT solvers with FPGAs

There has also been extensive work on using FPGAs to accelerate satisfiability algorithms. Many of these
projects use FPGAs to accelerate components of the Davis-Putnam algorithm. Skliarova and Ferrari give a
survey [33]; specific projects include [3] [39] [28] [1] [40] [2] [27] [32] [29] [36] [30] [41] [31].

Our approach differs from previous work in several key respects. It has an efficient polynomial time
compilation of a problem instance onto the circuit; it uses relaxation rather than an algorithmic state
machine to attempt to solve the instance; it uses a parallel randomised approach rather than the Davis-
Putnam algorithm; it uses hardware techniques that have no counterpart in software, including pulse logic,
asynchronous timing, and the use of noise to generate random numbers.

4. A HARDWARE RELAXATION PARADIGM FOR A FAST INCOMPLETE SOLV ER

We now describe a new form of circuit that is capable of implementing an incomplete solver for an arbitrary
instance of SAT, provided that the instance is not too large to fit on the chip. The circuit is structured as a
programmable regular array of logic elements, related to but distinct from PLA, PAL, and FPGA logic, and it
is suitable for implementation on an ASIC (application specific integrated circuit). In addition to the generic
circuit, we describe a simple polynomial time method for compiling an arbitrary SAT instance to run on the
circuit.

The approach is similar to simulated annealing [23] with a local potential energy function for each variable
(Figure 1). The energy for the 0 or 1 states of a variable will be a function of the number of unsatisfied
Boolean clauses in which the variable participates. Since the number of unsatisfied clauses depends on the
states of other variables, the flipping of one variable will shift the energies of other variables.

A hardware relaxation paradigm for solving NP-hard problems

0 1

ground

gap

FIGURE 1: We can consider each variable to be subject to a local potential which varies according to whether the variable
is true or false. To transition between Boolean values the variable has to use thermal noise to overcome a potential barrier
separating the two states.

latches

or terms

n variables

t terms

FIGURE 2: The layout is a regular two dimensional array with t clauses (corresponding to the rows) and n variables
(corresponding to the columns)

A potential barrier separates the energies associated with the 0 and 1 states of a variable. At indeterminate
moments, thermal noise will cause variables to flip state, and the probability that a flip will occur is an inverse
function of the potential barrier. We can arrange the potentials so that the probability of a flip occurring to a
variable will be zero if all the clauses which contain that variable are satisfied. Once all clauses have been
satisfied, the system will be in a global energy minimum.

Our aim is to design an electronic circuit that can, in polynomial time, be configured to exhibit these dynamical
properties for any SAT instance (up to some given size). Since chips are two dimensional and since SAT
problems have two characteristic dimensions : t Boolean clauses and n variables, there is in principle a good
match between the two. An obvious approach is to arrange the chip as an array with each of the t clauses
constituting a row and each of the n variables a column (Figure 2). Each row must be able to represent an
arbitrary Boolean clause that has to be satisfied.

In order to configure a row as a particular Boolean clause we select which variables participate in the
clause, and also whether the variable is complemented. Therefore an arbitrary clause in n variables could
be encoded in 2n bits. Each of the t clauses is represented by a shift register of length 2n bits. A simple
option would be to concatenate these configuration shift registers into one long shift register of length 2nt.
Given a SAT problem instance in the form of a product of sums, then generating a two dimensional array of
configuration bits can be computed in polynomial time on a standard computer. The computer can then shift
the configuration array onto the chip, also in polynomial time.

The flip columns can be implemented as wired ORs, and ensure that the flip probability is an increasing
function of the number of unsatisfied clauses into which a variable enters. This models our original
requirement that the flip probability should be an inverse function of a potential barrier, which is itself an
inverse function of the number of unsatisfied clauses using a variable. A t input AND gate along one side of
the chip can detect when all clauses are satisfied. Judicious design of the thermal noise source can mimic
the effect of cooling as required by simulated annealing.

4.1. Structure of the programmable array circuit

Figure 3 gives an overview of the circuit. The current value of each of the Boolean variables is carried on
two vertical lines (one giving the variable’s value, the other its complement). There is a horizontal line that
calculates the value of each clause (these are the horizontal lines that have × at some of the intersections,
and which terminate at an or gate symbol). This line calculates the logical disjunction of the values carried
by vertical lines that have a × at the intersection; if its value is true, then the clause is satisfied by the current

A hardware relaxation paradigm for solving NP-hard problems

variable settings. That signal is inverted, producing a signal whose meaning is “this clause is not satisfied”,
which is then transmitted to the left on a second horizontal line. If the “not satisfied” signal is true, one or more
of the variables appearing in the clause must be wrong. The circuit labelled “?” controls the probability that
one of these variables will be changed, and the result is carried up to the top of the circuit on another vertical
signal. For example, the variable a is carried downwards on two signals (one for a, one for ¬a, and the “a may
be wrong” signal aW is carried back up. The circuit labelled fix takes the current variable value, and flips it if
the variable is “wrong”. The circuit is programmed to solve a specific instance of SAT by determining where
the × and “?” connections are made. Those connections are controlled by flip flops, enabling the circuit to be
reconfigured rapidly.

a

fix

aW b

fix

bW c

fix

cW d

fix

dW

S

×

×

×

×

?

×

?

×

?

×

?

×

?

×

?

×

?

×

?

×

?

FIGURE 3: A circuit with feedback that attempts to satisfy (a∨¬b∨ c)∧ (a∨ b∨¬c)∧ (b∨ c∨¬d). The circuit’s behaviour
is parameterised by three black box circuits, labeled fix, ×, and ?. The output S is 1 if the current values of the variables
satisfy the expression. If the expression is not satisfied, the feedback loop changes values and continues trying. The
behaviour of the circuit depends on the black box fix circuit.

Figure 4 shows in more detail a portion of a possible clause-line design, including the intersection between
the horizontal clause-line and two variables A and B on vertical lines. A 4 bit register (shown as 1) selects
whether each variable or its complement enters into the clause. This is organised as a shift register, so that
the settings can be loaded efficiently into the chip. Each variable is represented by true (2) and complement
(3) columns. Associated with each variable is a ‘flip’ column (5), which when activated will cause a set/reset
latch at the top of the column to flip, changing the current state of the variable. Three input and gates (4) act
to pull up the flip column if all of the following hold:

1. the clause (7) is currently unsatisfied;
2. the variable is selected as part of the clause by the shift register;
3. a thermal noise output (6) is true.

4.2. A tunable digital noise-based random generator

Rather than using traditional pseudo-random numbers, several hardware techniques are available to improve
the efficiency of the randomisation; true random nomber generation via hardware was used as early as the
1940s (see [6] pp. 173–174). A train of random pulses can be used instead of random integers to control the
toggling. The pulse train can be generated using noise, and probabilities can be combined using a logical
and-gate. The generator must produce a spike train with a random delay between subsequent spikes, and
the spikes must be wide enough to toggle a latch. The average delay between subsequent spikes (called the
”period”) must be controllable. Ideally, the period will grow exponentially longer over the duration of a 3SAT
search. We propose to vary the supply voltage of the circuit over time along a negative exponential:

VDD = VDDmin
+

(

VDDmax
− VDDmin

)

× e−
t

τ

A hardware relaxation paradigm for solving NP-hard problems

shift
reg
cell

shift
reg
cell

A ¬A

vdd vdd

noise
src

fli
p

 A

vdd vdd

shift
reg
cell

shift
reg
cellvdd vdd

noise
src

vdd vddB ¬B

flip
 B

shift

term out

1 1 1 1

2
2

3 3

4

5

5

6

7

FIGURE 4: This diagram shows the intersection between two variables (labeled A,B) and a Boolean clause.
Corresponding to each variable are two vertical lines for the true and complement values of the variable. Configuration
information in shift register cells records whether the true or complement of the variables or neither are to be included in
the clause. The clause is implemented by a wired OR. Noise anded with the value of the clause anded with the output of
the configuration bit determines whether a vertical wired-OR causes the value of each variable to flip.

FIGURE 5: Generating random numbers using noise

where τ is the time constant of the system. This behaviour is easily obtained as the response of a step
function to an RC filter. The actual random generator is based on a ring oscillator circuit. We exploit the
well-known high-jitter behaviour of this type of oscillator to create random pulses, simply by XOR-ing two
subsequent nets (Figure 5).

Because of the jitter, the XOR output will be a pulse of varying width, including zero-width. By low pass-
filtering this signal and then recovering it, we obtain a random pulse train. The frequency of a ring oscillator
is proportional to the VDD. An accurate model for the jitter of a ring oscillator is presented in [18]. Using this
model it is possible to design a circuit that will generate a pulse with a probability p at a frequency governed
by the VDD of the oscillator.

4.3. Algorithmic description of the hardware solver

The hardware solver can be executed in several modes: fully synchronous, asynchronous, or partially
synchronous.

A fully synchronous version of the circuit would use a flip flop to hold the value of each variable, the flip flops
would be clocked so that they change states simultaneously, and the clock would run slowly enough to allow
the long paths through the logic array to settle down completely. This would cause the circuit to act as a large
state machine, and its behaviour would correspond to an algorithm. However, it is costly to propagate a clock
through a large circuit, and this approach would use a lot of chip area (reducing the size of problem instance
that could be handled) and time (reducing the speed of the search).

A fully asynchronous version of the circuit would allow a variable to change any time a ‘wrong’ signal is
received. Different variables would change their values at different times, and the horizontal lines could be
calculating results based on variable values that are about to be toggled. The behaviour of the circuit may
depend on infinitesimal variations in timing; indeed the results of running the circuit may not be repeatable.

There are also intermediate approaches, where the variables are clocked but the circuit is not completely
synchronous.

A hardware relaxation paradigm for solving NP-hard problems

If the hardware solver were to run in synchronous mode, its behaviour would correspond to a highly parallel
randomised algorithm ProbSat:

procedure ProbSat;

input f: array[1..c] of clauses {in CNF}

output v: array[1..n] of boolean {a variable assignment that satisfies f}

begin

v:= random truth assignment;

while true do

if all f are true given v then return Success;

parfor i in [1..n] do

toggle v[i] with a probability proportional to the number of

unsatisfied clauses that contain the variable

end;

The hardware solver is an unbounded loop that performs a generate and test strategy. In practice, the circuit
is stopped after a fixed number of clock cycles if it has failed to find a solution.

The hardware algorithm differs from WalkSat and GSAT in several respects:

• WalkSat and GSAT toggle a single variable at a time, while the circuit toggles many.
• WalkSat chooses the variable to toggle randomly from a set of clauses where that variable appears,

while the circuit bases the decision to toggle a variable on the number of unsatisfied clauses it occurs
in. This has something in common with GSAT.

• The hardware solver is highly parallel, speeding up the evaluation of the formula and the selection of
variables to toggle.

• The hardware solver can be implemented asynchronously (the pseudo-algorithm shown above is
synchronous). An asynchronous circuit may be faster, and it may find a solution more quickly.

5. EXPERIMENTAL RESULTS

We have completed a successful simulation of the hardware SAT solver using FPGA technology, using an
Altera Cyclone chip [24]. An FPGA is a two-dimensional array of programmable components, which are
connected by a programmable interconnection network. The circuits used were fully synchronous, but made
essential use of randomisation (with a pseudo-random number generator, rather than truly random circuit
noise). Thus the FPGA simulation constitutes an intermediate point between conventional synchronous
circuits and fully asynchronous circuits. The FPGA simulation is highly parallel. As the circuit runs, it may
stabilise with a solution for the problem instance, or it may oscillate indefinitely. Thus the circuit corresponds
to an incomplete software solver, which may terminate or loop forever.

We developed a prototype compiler that reads an arbitrary instance of 3SAT, and then (in polynomial time)
outputs a VHDL specification that describes a circuit specialised to solve that 3SAT instance. The circuit
has the structure described above. Altera software tools compile the VHDL specification into the specific
machine language programming needed for the Cyclone FPGA. The compilation and control of the FPGA
are performed on a host PC.

After the circuit for a problem instance is loaded onto the FPGA, the chip is given a fixed interval of time to
run. If it attains a fixed point within this time, the problem instance has been solved, and the exact solution
time is measured by an accurate clocked counter on the FPGA. If the circuit does not reach a fixed point, the
attempt is abandoned as a failure.

We performed a number of experiments using the FPGA simulation, to assess the performance of the
system on solvable SAT instances. The experiments were carried out on a set of random satisfiable SAT
instances. Each 3SAT instance contains 100 variables, which keeps the resulting circuits small enough to
fit onto the Altera FPGA. The ratio of clauses to variables was chosen from 3.7 to 4.3 in steps of 0.1, with
100 instances for each ratio. These were generated as follows: (1) a set of random 3SAT instances was
generated with variables appearing according to a uniform probability distribution; (2) unsuitable instances
were removed from the set (i.e. instances where a variable appears several times in the same clause, or
where some variables do not appear in any clause, or where the instance is easily partitionable); (3) the
remaining instances were then checked using MiniSat, a complete SAT solver, and only solvable instances
were retained.

The performance of the hardware solver was measured on 50 random solvable problem instances. Each
instance was run 256 times, with different random seeds, in order to determine the distribution of run times

A hardware relaxation paradigm for solving NP-hard problems

TABLE 1: Count of clock cycles for solution of an instance run 256 times

min max mean std
instance 019

circuit 27 3,452 795 665
WalkSat 53,184 991,656 237,057 142,231
MiniSat 286,816

instance 007
circuit 1,542 5,553,701 1,567,975 1,596,822

WalkSat 77,392 9,926,096 1,452,258 1,444,226
MiniSat 4,623,352

mean over 50 instances
circuit 3,979 963,500 277,825

WalkSat 89,772 5,139,622 891,809
MiniSat 2,335,202

for a particular instance. This entire set of measurements was repeated for a variety of tuning factors.
The performance was also measured on WalkSat (an incomplete software solver) and MiniSat (a complete
software solver). Table 1 is an extract of the measurements (see Tables D.18 and D.23 in [24]).

The timing results are stated as the number of clock cycles executed. The circuit on the FPGA contains
a hardware cycle counter, and the software solvers used CPU cycle counters. However, the clock speed
is not the same on the FPGA chip and the CPU chip: the fastest FPGAs have slower clocks than CPUs,
and the FPGA we used is an older and slower model, while a recent fast CPU was used. Therefore these
measurements are only a guide to performance, and do not constitute real “wall clock time”. However, the
ASIC circuit discussed in this paper would be significantly faster than even the fastest FPGAs.

Table 1 shows the performance results for a problem instance that happened to be easy, one that happened
to be hard, and the mean over 50 instances. Each instance was run 256 times, with different initial random
seeds. For each of these cases, the results are shown for the circuit running on the FPGA, for WalkSat,
and for MiniSat. The most relevant comparisons are between the circuit and WalkSat; the MiniSat data are
provided to indicate the effect on performance of a complete solver.

• Easy problem: instance 019. The fastest solution was obtained by the circuit in 27 clock cycles, but
WalkSat needed 53,184 cycles for its fastest solution. The best case time for the circuit is 197 times
faster than the best case time for WalkSat; for the worst case the circuit is 287 times faster, and for the
mean over all 256 runs the circuit is 298 times faster.

• Hard problem: instance 007. For the best case the circuit was 50 times faster than WalkSat; for the
worst case it was 91 times faster, but for the average over 256 runs the circuit was 1.08 times slower.

• Averages over the complete set of 50 random solvable instances. The minimum number of clock
cycles required by the circuits, averaged over 50 instances, was 3,979; this is 22 times better than
the corresponding figure for WalkSat. Considering the worst case times, the advantage of the circuit
drops to a factor of 5.3, and for means over all 256 runs per instance, the circuit is 3.2 times faster.

These measurements indicate that the circuit is, in general, faster than WalkSat. It is much faster on problem
instances that turn out to be easy, and such cases are common.

Large variances were observed in the runtime required by the hardware solver: for most intances, some of
the runs finished after only a few hundred clock cycles, but some runs required a long time. The results
suggest that, if the circuit does not settle down with a solution in a reasonable time, it is better to restart it
with a new random seed rather than leaving it to continue.

The performance of the hardware solver depends strongly on the probability that a variable in an unsatisfied
clause is toggled. When the probability is too high, the solver is unable to stabilise on a solution. As
conjectured, the hardware solver demonstrates a phase change between easy and hard instances, as has
already been observed for software solvers.

6. CONCLUSION

We have presented a design paradigm that exploits some of the capabilities of physical systems comprising
networks of Boolean logic gates in order to solve instances of an NP-complete problem.

A hardware relaxation paradigm for solving NP-hard problems

The feasibility of this approach has been demonstrated by parallel hardware simulation using FPGA
technology. According to our preliminary results, the hardware solver gives good results on problem instances
that are not too close to the phase change boundary. To achieve this, the solution requires randomisation to
determine when variables are changed, and the performance is sensitive to the toggling probability. The best
toggling probability depends slightly on the ratio of clauses to variables; there is not one fixed probability that
is always best.

According to our preliminary results, the hardware solver produces more very short runs than WalkSat, so it
is often faster, but for hard instances the hardware solver is often slower than WalkSat. This is likely caused
by the ability of the hardware solver to toggle many variables in parallel during a single clock cycle, while
WalkSat only flips one variable in each iteration. For problem instances that are relatively easy (i.e. which
have a solution that is not near the phase boundary) the hardware solver is on average significantly faster,
and there are many such cases.

FPGAs cannot achieve the full performance inherent in our technique. Their general interconnection networks
and logic boxes require more area than the building block circuits outlined in this paper, yet they have
higher latency. The commercial software for compiling arbitary circuits onto FPGAs is not guaranteed to
be polynomial time, and in practice we have found it to be unacceptably slow. FPGAs do not offer the control
over clocking, and the flexibility with feedback, that our circuits require. FPGAs do not allow some useful VLSI
hardware techniques, such as true random number generation using noise. FPGAs are intended for general
circuits, but are not well suited for the class of circuit described in this paper. For these reasons, future
research will require the design of suitable programmable array circuits using ASIC (application-specific
integrated circuit) technology.

REFERENCES

[1] Miron Abramovici and José T. de Sousa. A virtual logic algorithm for solving satisfiability problems using
reconfigurable hardware. In FCCM, pages 306–307, 1999.

[2] Miron Abramovici and José T. de Sousa. A sat solver using reconfigurable hardware and virtual logic.
J. Autom. Reasoning, 24(1/2):5–36, 2000.

[3] Miron Abramovici and Daniel G. Saab. Satisfiability on reconfigurable hardware. In FPL, pages 448–
456, 1997.

[4] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the REALLY Hard Problems Are. In Twelfth
International Joint Conference on Artificial Intelligence (IJCAI-91), 1991.

[5] B. J. Copeland. Hypercomputation. Minds and Machines, 12:461–502, 2002.
[6] B. Jack Copeland. Colossus: The Secrets of Bletchley Park’s Codebreaking Computers. Oxford

University Press, 2006. ISBN 0-19-284055-X.
[7] J. Copeland and R. Sylvan. Beyond the universal Turing machine. Australasian Journal of Philosophy,

77(1):46..66, 1999.
[8] Paolo Cotogno. Hypercomputation and the physical church-turing thesis. Brit. J. Phil. Sci., 54:181–223,

2003.
[9] Martin Davis. The Church-Turing Thesis: Consensus and Opposition. In A. Beckmann, U. Berger,

B. Lowe, and J. V. Tucker, editors, Logical Approaches to Computational Barriers: Second Conference
on Computability in Europe, CiE 2006, Swansea, UK, number 3988 in LNCS, pages 125–132. Springer,
June/July 2006.

[10] Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A clause-based heuristic for sat solvers.
Technical report, School of Computer Science, Tel Aviv University, 2005.

[11] N. Een and N. Sorensson. An extensible SAT-solver. In SAT 2003 (LNCS 2919), pages 502–518, 2003.
[12] G. Etesi and I. Németi. Non-Turing Computations Via Malament–Hogarth Space-Times. International

Journal of Theoretical Physics, 41(2):341–370, 2002.
[13] Niklas En and Niklas Srensson. Translating pseudo-boolean constraints into sat. Journal on

Satisfiability, Boolean Modelling and Computation, 2:1–25, 2006.
[14] I.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search. In AAAI-96, pages

246–252, 1996.
[15] E. Goldberg and Y. Novikov. BerkMin: a Fast and Robust SAT-Solver. In Design Automation and Test

in Europe, pages 142–149, 2002.
[16] D.Q. Goldin, S.A. Smolka, P.C. Attie, and E.L. Sonderegger. Turing machines, transition systems, and

interaction. Information and Computation, 194(2):101–128, 2004.
[17] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phenomena in satisfiability

and constraint satisfaction problems. Journal of Automated Reasoning, 24:67–100, 2000.
[18] Ali Hajimiri, Sotirios Limotyrakis, and Thomas H. Lee. Jitter and phase noise in ring oscillators. IEEE

Journal of Solid-state Circuits, 34(6):790–804, June 1999.
[19] Brian Hayes. Can’t get no satisfaction. American Scientist, 85(2):108–112, March–April 1997.

A hardware relaxation paradigm for solving NP-hard problems

[20] Brian Hayes. On the threshold. American Scientist, 91(1):12–17, January–February 2003.
[21] Stuart A. Kauffman. The Origins of Order. Oxford University Press, 1993.
[22] H. Kautz and B. Selman. Pushing the envelope: planning, propositional logic, and stochastic search.

In Thirteenth National Conference on Artificial Intelligence (AAAI’96), pages 1194–1201, 1996.
[23] S. Kirkpatrick and CD Gelatt Jr. MP Vecchi Optimization by Simulated Annealing. Science,

220(4598):671680, 1983.
[24] Andreas Koltes. Solving NP-complete problems in hardware. Technical report, University of Glasgow,

2007. Available on www.dcs.gla.ac.uk/∼jtod/satcircuit/.
[25] Y.S. Mahajan, Z. Fu, and S. Malik. Zchaff2004: An Efficient SAT solver. In SAT 2004: Theory and

Applications of Satisfiability Testing (LNCS 3542), 2004.
[26] G. Michaelson and P. Cockshott. Constraints on Hypercomputation. In A. Beckmann, U. Berger,

B. Lowe, and J. V. Tucker, editors, Logical Approaches to Computational Barriers: Second Conference
on Computability in Europe, CiE 2006, Swansea, UK, number 3988 in LNCS, pages 378–387. Springer,
June/July 2006.

[27] Marco Platzner. Reconfigurable accelerators for combinatorial problems. IEEE Computer, 33(4):58–60,
2000.

[28] Marco Platzner and Giovanni De Micheli. Acceleration of satisfiability algorithms by reconfigurable
hardware. In FPL, pages 69–78, 1998.

[29] N. A. Reis and José T. de Sousa. On implementing a configware/software sat solver. In FCCM, pages
282–283, 2002.

[30] Mona Safar, M. Watheq El-Kharashi, and Ashraf Salem. Fpga based accelerator for 3-sat conflict
analysis in sat solvers. In CHARME, pages 384–387, 2005.

[31] Mona Safar, Mohamed Shalan, M. Watheq El-Kharashi, and Ashraf Salem. Interactive presentation: A
shift register based clause evaluator for reconfigurable sat solver. In DATE, pages 153–158, 2007.

[32] Iouliia Skliarova and António de Brito Ferrari. Design and implementation of reconfigurable processor
for problems of combinatorial computations. In DSD, pages 112–119, 2001.

[33] Iouliia Skliarova and António de Brito Ferrari. Reconfigurable hardware sat solvers: A survey of systems.
IEEE Trans. Computers, 53(11):1449–1461, 2004.

[34] Warren D. Smith. Three counterexamples refuting Kieu’s plan for “quantum adiabatic hypercomputation”
and some uncomputable quantum mechanical tasks. J.Applied Mathematics and Computation,
187(1):184–193, 2006.

[35] Niklas Srensson and Niklas En. Minisat v1.13 - a sat solver with conflict-clause minimization. Technical
report, Chalmers University of Technology, Sweden, 2005.

[36] C. J. Tavares, C. Bungardean, G. M. Matos, and José T. de Sousa. Solving sat with a context-switching
virtual clause pipeline and an fpga embedded processor. In FPL, pages 344–353, 2004.

[37] John F. Wakerly. Digital Design: Principles and Practices. Prentice Hall, 1990.
[38] Toby Walsh. 2+p-col. Technical report, Cork Constraint Computation Center, University College Cork,

2002.
[39] Peixin Zhong, Pranav Ashar, Sharad Malik, and Margaret Martonosi. Using reconfigurable computing

techniques to accelerate problems in the cad domain: A case study with boolean satisfiability. In DAC,
pages 194–199, 1998.

[40] Peixin Zhong, Margaret Martonosi, Pranav Ashar, and Sharad Malik. Using configurable computing to
accelerate boolean satisfiability. IEEE Trans. on CAD of Integrated Circuits and Systems, 18(6):861–
868, 1999.

[41] Romanelli Lodron Zuim, José T. de Sousa, and Claudionor José Nunes Coelho Jr. A fast sat solver
strategy based on negated clauses. In VLSI-SoC, pages 110–115, 2006.

