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Abstract
In [COP06], Paul Cockshott, John O’Donnell and Patrick Prosser proposed a new design for a
hardware based incomplete SAT solver based on highly parallelised circuitry running in eihter a
FPGA or a structured ASIC. The design is based on fundamental theories about self-stabilisation
of complex systems published in [Kau93]. This project aims at the exploration of the feasability of
the proposed basic design investigating different implementation strategies using synchronous as
well as asynchronous circuits. It is shown that the proposed design makes it possible to speed up
conventional incomplete SAT solver based on algortihms implemented in software by a full order
of magnitude. Behavioral properties of different hardware algorithms based on the basic design
are investigated and the foundations for future research on this topic layed out.
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1 Introduction

During the last century, many fundamental results in computability theory were discovered which
are based on mathematical state machines. The type of mathematical concept has been used,
for example, to prove the computational equivalence of a variety of mathematical computability
models, including Turing Machines, lambda calculus, and the Post Correspondence problem. The
Church-Turing Hypothesis even uses them to define the set of computable problems. Based on
these foundations a large construct of complexity theory has been constrcuted.

However, some computational models are based on natural phenomena in physics and chemistry,
being fundamentally different compared to the mentioned concepts, because they do not operate
by moving through a sequence of well-defined states. Examples for this type of model include
annealing, protein folding, combinational circuits with feedback as well as quantum computing.
Whether these systems are subject to the same comparatively well understood computability limi-
tations as state machines is still an open question. A strong form of the Church-Turing Hypothesis
assmues that physical systems are subject to the same computability limitations as state machine
models whereas weak forms of the Church-Turing Hypothesis leave room for these systems being
eventually able to break the limitations of traditional state machine like concepts.

One of the aims of this project is to perform an experiment designed to provide evidence that
will support or weaken the strong Church-Turing Hypothesis. The basic design behind the exper-
iment uses a class of combinational circuits with feedback in order to attempt to solve a problem,
3SAT, which is NP-complete on state machines. In parallel, it is also tried to construct efficient
synchronous circuits with feedback for comparision purposes and to eventually explore ways to
speed-up computation of SAT problems in hardware which would be of high practical value.

Combinational circuits with feedback do not necessarily behave like state machines: They may
settle down in a stable state, they may oscillate among a set of states, or they may vary chaotically,
in which case it is hard to predict whether they will ever settle down in the future. Because of this
chaotic nature, combinational circuits with feedback are a topic within computer science which
is still far away from being fully understood giving plenty of space for research activity. Because
of this complex behaviour, most practical digital hardware avoids combinational circuits with
feedback, and uses the synchronous model instead.

The computational problem investigated during this project is Boolean satisfiability with clauses
consisting of three terms; this is often called 3SAT, and is a standard NP-complete problem. An
arbitrary instance of 3SAT will be compiled (in polynomial time) into a corresponding combina-
tional circuit, and the execution of the circuit may solve the 3SAT problem instance. For simplicity
reasons, the SAT problems investigated during this project belong to the 3CNF-SAT type which
is among the easiest Boolean satisfiability problems still being NP-hard.

Preliminary experimentation with the SAT circuitry was carried out by Paul Cockshott, using
an older FPGA board. Initial results show that the circuit can solve some 3SAT problems quickly.
To continue the research, it is necessary to reimplement the circuit using a modern and larger scale
FPGA, to instrument the hardware so that its performance can be measured, and to experiment
with the hardware on a range of randomly chosen problems in an automated way allowing for the
collection of statistically meaningful data.

There are effective techniques for proving the correctness of synchronous digital circuits, such
as model checking [ECGP99] and equational reasoning [OR04], and a major research topic in
computer hardware is the methodology for designing reliable circuits to solve problems. These
proof techniques are based on state machine models, and they do not apply to combinational
circuits with feedback. Even if applied to synchronous circuits, the mentioned techniques have
limits regarding the size and complexity of the circuits practically analysable. This it is impossible

1



1 Introduction

to prove the correctness of the hardware 3SAT solver, or to analyse its time complexity precisely.
Instead, an experimental approach is needed to evaluate the approach, and to assess its implications
for the Strong Church-Turing Hypothesis as well as for new ways to efficiently solve SAT problems
in hardware. Thus the proposed research cannot give a definitive answer to the hypothesis, but it
will give an enlightening data point.

Previous research has shown that the set of 3SAT problems has an interesting structure, with
a phase change from a subset of problems with few solutions to a subset of problems with many
solutions [Hay03] [Hay97]. The instances of 3SAT that are hard lie mostly near the phase change.
This previous research is also experimental: Large sets of problem instances are generated randomly
and their solution times are measured. Investigation of these phase transition related phenomena
is carried out where it is applicable.
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2 Project description and hypothesis

2.1 Boolean satisfiability problems

The Boolean satisfiability problem (SAT) is the problem of determining whether the variables of
a given boolean term can be assigned in a way as to make the term evaluate to true. Equally
important for many applications is the inverse problem to determine that no truth assignment
exists satisfying the boolean formula. This implies, that the given term evaluates to false for any
given truth assignment. In the first case the formula is called satisfiable otherwise it is unsatisfiable.
The term ”boolean” satisfiability refers to the binary nature of the problem which is also known
as propositional satisfiability. Often the term ”SAT” is used as a shorthand to denote the boolean
satisfiability with the implicit understanding that the function as well as its variables are strictly
binary valued. A binary value of 1 is commonly used to denote a boolean value of true whereas
the value 0 is used to denote false. Abstracting from the fact whether a formula is given in a
boolean or a binary form, a specific boolean expression is also referred to as being an instance of
the boolean satisfiability problem.

2.1.1 Basic definitions and terminology

Formal definitions of SAT usually make use of the function to be expressed being in the so-
called conjunctive normal form (CNF). This means that the function consists of a conjunction of
disjunctions of literals. A disjunction of literals is a term consisting of an arbitrary number n ≥ 1
of literals, which are combined using the Boolean OR function. A literal is either a variable (called
a positive literal) or its complement (called a negative literal). The disjunctions contained in a
SAT instance are referred to as clauses and implicitly act as constraints on the possible values of its
variables allowing the instance evaluating to true. For example the clause (A ∨B ∨C) is satisfied
by all truth assignments of the variables A, B and C except A = true and B = C = false. All
clauses of an instance are combined using the Boolean AND function forming the full function
term. This requirement is not a restriction on the representable Boolean functions because every
Boolean function can be transformed into an equal Boolean function in CNF. A Boolean formula in
CNF can be viewed as a system of simultaneous constraints in the parameter space of the instance
consisting of all possible truth assignments of its variables. This is analogous to a system of linear
inequalities over real variables modelling the set of feasible assignments (also called the feasible
region) in a linear program. The feasible region of a CNF formula therefore contains precisely those
truth assignments which make the formula evaluating to true. It is very important to understand
that the Boolean AND as well as the OR functions are commutative, associative and idempotent.
Therefore reordering or duplicating clauses or literals respectively do not change the actual SAT
instance.

In complexity theory, the Boolean satisfiability problem is actually a decision problem, whose
instance is an arbitrary Boolean expression. The question is: Given the expression, is there a truth
assignment of the variables contained in the instance existing, which makes the entire expression
evaluating to true? The inverse problem, whether there is no such truth assignment is sometimes
referred to as the Boolean unsatisfiability problem (UNSAT). Both of these problems are NP-
complete.

Even if the SAT problem is significantly restricted to expressions being in 3CNF it remains
NP-complete. A Boolean expression is in 3CNF if it is in CNF with each clause containing at most
three different literals. The restriction of the SAT problem to 3CNF expressions is often referred

3



2 Project description and hypothesis

to as 3SAT, 3CNFSAT or 3-satisfiability. The proof of the 3SAT problem being NP-complete is
known as Cook’s theorem and in fact was the first decision problem proved to be NP-complete.

Only by restricting the problem even further, it can be brought below NP-completeness. If
the Boolean expression is required to be in 2CNF, the resulting problem, 2SAT, is NL-complete.
Alternately, if every clause is required to be a Horn clause, containing at most one positive literal,
the resulting problem, Horn-satisfiability, is P-complete.

There are also extensions to the basic SAT problem as for example the QSAT problem which
asks the question whether a Boolean expression containing quantifiers is satisfiable. However, all
of these problems are at least NP-complete and were not further investigated during this project.

2.2 Applications of SAT solvers

Despite looking like a rather theoretical problem without much practical significance, there are
many practical applications of SAT solvers able to decide the satisfiability of a given SAT instance.
Over the last decade many scalable algorithms were developed which can efficiently solve many
practically occurring instances of SAT even if they reach enormous sizes containing tens of thou-
sands of variables and millions of clauses. Practical applications of SAT solvers include amongst
many others:

• Routing in FPGAs

• Combinational equivalence checking

• Model checking

• Formal verification of circuits

• Logic synthesis

• Graph colouring

• Planning problems

• Scheduling problems

• Cryptanalysis of symmetric encryption schemes

In fact, a capable SAT solver is nowadays considered to be an essential component of Electronic
Design Automation (EDA) tools and all EDA vendors provide such capabilities (usually employed
behind the scenes of the software tools). SAT solvers currently also find their way into many other
application domains because more and more ways are developed to efficiently transform or reduce
respectively many other problems into SAT problems.

Despite the availability of efficient general purpose SAT solvers as well as SAT solvers specifi-
cally optimised for SAT problems originating from specific domains, the underlying SAT problem
remains a computationally hard problem. Therefore there are many SAT instances even highly
optimised algorithms take a long time to solve (if they are able to solve the instance in reasonable
time at all). Because of this fact for many applications it would be beneficial to have some sort
of hardware accelerated SAT solving engine available which is able to operate at far higher speeds
than a pure software implementation.

In practice, there are two large classes of high-performance algorithms for solving instances of
the SAT problem. The first class is known as the class of complete SAT solvers. This type of
algorithm guarantees termination after a finite amount of time returning either a truth assignment
modelling the investigated expression or guaranteeing the passed SAT instance being unsatisfiable.
The time required for this type of algorithm can of course be exponential in the number of variables
contained in the instance. Currently, the fastest general purpose SAT solvers belonging to this
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class implement variants of the DPLL algorithm (for example Zchaff2004, GRASP, BerkMin and
MiniSAT). The second class of SAT solvers is known as the class of incomplete SAT solvers. These
solvers either return a truth assignment modelling the passed expression or basically run forever
or until a certain timeout is reached (analogous to a semi-determinable problem). This implies
that this type of solver is not able to prove the unsatisfiability of a problem (but in fact, for many
practical applications, this is not necessary). Solvers belonging to this class usually implement
probability driven stochastic local search algorithms. Examples for solvers belonging to this class
are WalkSAT and its predecessor GSAT having features which are similar to Tabu search.

DPLL SAT solvers employ systematic backtracking search procedures to explore the (exponentially-
sized) parameter space of truth assignments looking for satisfying assignments. This type of solver
usually also employs some sort of branch-and-bound strategy to exclude truth assignments known
as definitely not satisfying the investigated instance. The basic search procedure was proposed
in two seminal papers in the earls 1960s and is now commonly referred to as the David-Putnam-
Logemann-Loveland (DPLL) algorithm. Modern SAT solvers extend the basic DPLL approach
by efficient conflict analysis, clause learning, non-chronological backtracking (also known as back-
jumping), “watched-literal” unit propagation, adaptive branching and random restarting to max-
imise the average speed or to optimise the algorithm for SAT instances originating of specific
application domains. These extensions to the basic systematic search strategy proved to be essen-
tial for handling very large SAT instances especially arising in EDA. Powerful solvers of this type
are readily available in the public domain and are remarkably easy to use. In particular, MiniSAT
(which was also used during the project to produce reference data and verify results) is a small
but yet highly efficient complete SAT solver which won the 2005 SAT competition. Despite this
achievement, the main solver engine of MiniSAT consists of only about 600 lines of C++ code.

Genetic algorithms and other general-purpose or specialised stochastic local search methods are
usually being employed by incomplete SAT solvers. These are especially useful when there is no or
limited knowledge of the specific structure of the investigated problem instance to be solved. The
hardware-based solvers developed during this project are belonging to this class of SAT solvers,
too.

2.3 Complexity related phenomena

In [CKT91] Cheeseman, Kanefsky and Taylor observed an abrupt phase transition from solubility
to insolubility in graph colouring problems as average degree was increased. In the area of this
phase transition a complexity peak was observed leading to a comparatively high computation
effort being required to solve problems lying in this area. It was conjectured that this kind of
phase transition phenomenon would be algorithm independent and eventually even common to all
NP-complete problems. The same phenomenon was observed regarding SAT problems originating
from transformed graph colouring problems. Later research showed that incomplete algorithms also
experienced this kind of phenomenon including the corresponding complexity peak when applied
to satisfiable instances. This means that easily soluable problem instances were easy to solve, hard
soluable instances were hard and rare soluable instances found in the easy insoluable region were
easy, too. Much research got carried out regarding the location of the 3SAT phase transition and to
develop theories about the location of this phase transition for other problems being NP-complete
or even belonging to higher complexity classes (e.g. QSAT being PSPACE-complete). Research
done to date appears to confirm the algorithm independence of the complexity peak, but this has
only been investigated with respect to complete and incomplete algorithms.

It was conjectured that there would be another phase transition, this time between complexity
classes. As mentioned above, the 2SAT problem lies below the NP complexity class, whereas
3SAT is NP-complete. Similarly 3COL is NP-complete whereas 2COL is in P. Experiments were
performed mixing clauses of lengths 2 and 3 giving an average clause length somewhere in the
interval [2, 3]. It was observed that SAT problems having an average clause length of 2.4 or
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above behave as if they were NP-complete, whereas polynomial complexity behaviour was observed
below this threshold. This has several implications for algorithm design, because if a process can
make decision that when propagated leave the majority of clauses to have a length of 2 then the
remaining sub problem becomes polynomial and easily soluable. The transition from P to NP was
also observed in a variety of problems by Walsh [Wal02b].

Beside the development of fast SAT solving circuitry another aim of this project was to perform
experiments regarding the behaviour of hardware SAT solvers regarding the presented phenomena.
The experiments carried out during the project covered a variety of synchronous circuits as well
as a few asynchronous circuit variants.

Previous research has shown that the set of 3SAT problems has an interesting structure, with
the mentioned phase change from a subset of problems with few solutions to a subset of problems
with many solutions [CKT91]. The 3SAT instances being hard lie mostly in the phase transition
area. This previous research is also experimental: Large sets of problem instances are generated
randomly and their solution times are measured.

During the project the behaviour of various circuit solvers was investigated by observing their
results and comparing them to the results obtained using a complete software solver. Problem
instances on both sides of the phase change area and at the phase change itself were of special
interest during the research.

2.4 Basic circuit architecture

A SAT expression E can be directly implemented as a combinational circuit which determines
whether the expression is satisfied, for a given set of inputs. Because of the fact that the Boolean
AND as well as the Boolean OR functions are commutative as well as associative the circuit can
be implemented forming some sort of tree structure evaluating very rapidly. The average evolution
time is roughly proportional to G log nE with G being a gate delay and nE being the number of
sum terms in the final product.

In order to find a solution to the given SAT problem, it is necessary to construct a feedback
circuit which alters the values of the truth assignment v until E is satisfied. Regarding a fully
combinational circuit this can be reposed as “construct a Boolean circuit over v whose only stable
states are those satisfying E”. This differs from an algorithm iterating in a state machine because
the alterations to the variable settings are made by an asynchronous circuit. In the case of a
synchronous circuit, the execution model is equal to a software execution of an algorithm as long
as there are no random components in the circuit (e.g. introduction of noise to a probability driven
strategy).

An execution of the synchronous variant of the circuit is equal to the execution of an incomplete
software SAT solver regarding its outcome. Regarding the asynchronous variant of the circuit,
the circuit may settle down representing a solution. It may also oscillate indefinitely, when there
is no solution (both circuit types will not prove the absence of a solution since they belong to
the class of incomplete SAT solvers). It may oscillate between several solutions, or it may just
oscillate without finding a solution even if one exists. It may continually change its variable settings
without oscillating. In this case it is unclear whether the circuit will eventually find a solution in
the future, given enough time (this is analogous to the Halting Problem and an inherent property
of all incomplete SAT solvers).

Figure 2.1 on page 7 shows a schematic layout of a combinational circuit evaluating whether a
particular clause of a 3SAT instance in the variables a, b and c is satisfied. Modules of this type
are cascadable so that, provided that all the prior modules in the chain are satisfied, then the
solved signal becomes true. To improve execution performance it is also possible to compute the
final solved signal by a tree-structured sub circuit combining individual solution state signals from
all term evaluator modules. If none of a, b and c are true the signals awrongout, bwrongout and
cwrongout are generated. These are propagated through all other modules that use the variables
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Figure 2.1: Basic term evaluator module

a, b or c.
The entire Boolean expression forming the SAT instance is represented by a collection of these

modules, one for each clause in E having the following inputs:

• A signal for each element of v representing the positive literals

• A signal for the complement of each element of v representing the negative literals

• A wrongin signal for the straight and complement versions of each element of v

The circuit representing the entire SAT instance also has a wrongout signal for the straight and
complement versions of each element of v. Modules of the basic structure shown in Figure 2.2 on
page 7 and Figure 2.3 on page 8 generate the actual values of v on the basis of the feedback from
the wrongout signals and optionally further information depending on the specific type of variable
source module. If either the straight or the complement version of the variable are found to be
wrong, a XOR gate is used to toggle its value.
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Figure 2.2: Basic combinational variable source module

The precise behaviour of the entire circuit depends of the fact whether the variable source mod-
ules are combinational or synchronous modules and their exact implementation. It is also possible
to add further logic to the term evaluator modules to improve the circuit’s overall performance.
In the case of an unclocked circuit it can be expected that the circuit ’oscillates’ until a truth as-
signment satisfying E is found. Simulations of small systems and preliminary experiments done in
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1995 using the Space Machine [BCMS92] [SCB96] indicated that such circuits stabilise on solutions
to the implemented problem instance.

Prior experiments carried out during other projects indicate that the stabilisation may be too
fast for the attached host computer to time so it is sensible to add a clocked on-chip timing circuit
to measure the time the circuit requires to stabilise on a solution. In the case of a synchronous
circuit this approach allows precise measurement of the number of clock cycles the circuit travels
through until a solution is found.

For verification purposes it is also required to be able to read the actual truth assignment of
the variables when a solution is found. In smaller experiments this can be achieved by letting the
variable signals to external pins so that they can be monitored and verified. To allow for larger
experiments and automated testing it is required to implement some sort of memory storage of the
variable values to be able to read them using software running on the host computer.

2.5 Introduction to FPGA technology

Because of the enormous amount of different circuits arising during the project and because of the
need for fully automated testing facilities, implementation of the circuits in application-specific
integrated circuits (ASIC) was not feasible. Instead all circuits investigated where implemented
using a field-programmable gate array (FPGA) chip. A FPGA is a semiconductor device contain-
ing programmable logic components and programmable interconnects. The programmable logic
elements (also called logic cells or logic blocks) can be programmed to mimic the functionality of
arbitrary small Boolean functions as for example AND, OR, XOR or NOT gates. More complex
combinational functions such as decoders or simple mathematical functions can be implemented
by cascading multiple logic cells. In most FPGAs, these logic cells also include memory elements,
which may be simple flip-flops or more complete blocks of memory. Additionally to these flexible
logic cells, many FPGAs also contain dedicated hardware multipliers, memory blocks, phase-locked
loops or even small microprocessors to provide high-speed space-saving building blocks for com-
monly recurring functionalities.

A hierarchical structure of almost freely programmable interconnects allows the logic cells of
a FPGA to be interconnected as needed to implement a specific circuit, similar to a one-chip
programmable breadboard. These logic cells and interconnects can be programmed after the
manufacturing process by the customer or designer (hence the term “field programmable”, i.e.
programmable in the field) allowing the FPGA to mimic an almost arbitrary ASIC (or in fact even
multiple ASICs since the programming can be changed as needed).

FPGAs are generally slower than their ASIC counterparts, cannot handle as complex a design
because the logic density is about ten times lower than that of a corresponding ASIC and draw
more power. However, they have several advantages such as a very short time to market, extremely
short development and design cycles, the ability to re-program in the field to fix bugs or to mimic
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different chips as needed, and significantly lower non-recurring engineering costs. Some vendors
also offer cheaper, less flexible versions of their FPGAs which cannot be modified after the design
is committed. The development of these designs is made on regular FPGAs and then migrated
into a fixed version which more resembles an ASIC (an example for this technique is the Stratix
HardCopy chip offered by Altera). Complex programmable logic devices (CPLD) are another
alternative.

Logic Array

PLL

IOEs

M4K Blocks

EP1C12 Device

Figure 2.4: Altera Cyclone device block diagram

During the project a development board containing a low-cost Altera Cyclone EP1C6 FPGA in
a 240-Pin PQFP package was used. Figure 2.4 on page 9 shows the overall structure of a Cyclone
series FPGA device (the only difference to the one used is, that its memory is contained in a single
column). This chip offers 5,980 logic cells each containing a 4-input lookup table producing a single
output signal which can optionally passed through a flip-flop. The lookup tables and interconnects
of the device are configured using SRAM based registers. All logic cells are grouped into clusters
of ten cells which are surrounded by a 80-channel interconnect routing matrix. In addition to the
logic cells, the device features 20 dedicated SRAM blocks each providing space for 4,608 bits of
data (or 4,096 bits respectively without parity) supporting true dual-port memory access. The
feature set is completed by two phase-locked loops supporting a wide variety of different frequency
multipliers. The chip supports a maximum of 185 pins for data transfer including clock pins.

The logic cells featured by the FPGA device are able to implement logic which is far more
complex than a single logic gate. In fact a single lookup table can implement an arbitrary Boolean
function in up to four variables. If the implemented functions produce more than one output signal
the implied lookup table has to be replicated forming one logic cell per output signal if necessary.
One signal input of the lookup table is optionally assignable to an output of the previous logic cell
in the same cluster (as displayed in Figure 2.6 on page 11) forming an efficient way for implementing
carry chains.
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Figure 2.5: Altera Cyclone device logic cell operating in normal mode

Regarding the basic modules proposed in the previous section this means that these modules
can be implemented in a very efficient way using the Cyclone FPGA device. The term evaluator
module is implementing a binary function of type (F2×F2×F2) → F2 fitting into a single logic cell.
Since the combinational variable source module is of type (F2×F2×F2) → (F2×F2) it requires two
logic cells for producing both output signals. The clocked version of the variable source module
requires three logic cells. Two of them contain the flip-flops storing the variable state and a third
one is required to produce the complemented variable value. These calculations are of course only
theoretical because the synthesis software will combine logic cells where possible. For example the
last logic cell implementing the single NOT gate will most likely be combined with the logic cells
implementing the connected term evaluator modules fitting the variable source in only two logic
cells.

As mentioned before, an automated test environment requires a way to automatically read the
resulting truth assignment, the timing information and eventually other data from the FPGA
device to the host computer. The easiest way to realise this is to write the data to one of the
dedicated memory blocks shown in Figure 2.7 on page 11 embedded in the FPGA device. These
memory blocks can be easily read using a standardised software interface (this is explained in detail
in section Section 3.2.5).
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3 Basic experiments and infrastructure

3.1 Basic manual experiments

The first step in the project was the manual implementation of the example 3CNF-SAT instance
given in [COP06] using the available FPGA hardware. The aim of this was the familiarisation with
the equipment and the development environment as well as the proof of the concept presented in
Section 2.4. To achieve this an asynchronous as well as a synchronous version of the example
was manually implemented and its behaviour investigated. After this the resulting circuits were
unitised to prepare future automated experiments.

The example instance presented in [COP06] is the following satisfiable 3CNF-SAT formula con-
taining four variables in four clauses (in fact all 4×4 3CNF-SAT instances are satisfiable as shown
by the application in Appendix A.1).

(A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (B ∨ C ∨D) ∧ (A ∨ C ∨D)

A synchronous simulation of the circuit assuming that the rows in the circuit array proceed
simultaneously showed the following behaviour: To begin, all values at the top of the circuit are
initialised to A = 0, B = 0, C = 0, D = 0. As these first guesses propagate downwards the first
row find the first term formula to be satisfied, so it passes the variable settings down unchanged.
The second row proceeds in the same manner. The third row finds the formula unsatisfied, so it
changes all the relevant variables, thus settings B, C and D to 1. The fourth row is satisfied.

The feedback now causes the new variable settings to flow through the system. Therefore the
whole evaluation process starts again with the variable assignments A = 0, B = 1, C = 1, D = 1.
The first row is satisfied, but the second fails so the variables A, B and C are flipped. The third
and fourth rows are satisfied. The third downward pass initialised by the feedback now starts
with the variable assignment A = 1, B = 0, C = 0, D = 1. With this assignment all four rows
of the circuit array (or all four terms of the instance, respectively) evaluate to true. Therefore
these values are sent back to the top of the circuit over and over again without changing the truth
assignment. The system has therefore settled down to a solution to the problem which can easily
be verified:

(false ∨ true ∨ true) ∧ (true ∨ true ∨ true) ∧ (false ∨ false ∨ true) ∧ (false ∨ true ∨ false)
= true ∧ true ∧ true ∧ true

= true

3.1.1 Overview over the laboratory equipment used during the
experiments

All experiments described in this report were run on an Altera EP1C6Q240 device in combination
with an EPCS1 configuration device. These devices were installed on a UP3-1C6 education board.
This is a low-cost experimentation board designed for University and small-scale development
projects. The board supports multiple on-board clocks with the base clock running at 14.318
MHz. Programming of the FPGA and data access to the on-chip memory are done using a JTAG
or an Active Serial interface, respectively which is connected to the parallel port of a host computer
(a standard off-the-shelf Pentium IV based Windows XP PC in this case). During all experiments
the JTAG based interface was used as described in Section 3.2.4. In addition to these features the
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board supports several push button switches, a switch block, LEDs and a total of 74 pin headers
for directly influencing or investigating signals used or produced by the chip respectively.

Figure 3.1: SLS UP3-1C6 Cyclone FPGA development board

The employed FPGA provides a total amount of 5980 programmable logic elements amended
by 92160 bits of on-chip SRAM divided into 20 memory blocks. It also contains two phase-locked
loops for adjusting operation frequencies but these were not used during the experiments.

The 74 directly accessable pin headers are arranged in a standard-footprint called Santa Cruz
long expansion headers. All 74 I/O pins directly conect to user I/O pins on the Cyclone FPGA
device. The output logic level on the expansion prototype connector pins is 5 Volts. This makes it
easy to investigate signals produced by the FPGA in real-time using an oscilloscope. During the
manual experiments a digital 500 MHz oscilloscope of type Hewlett & Packard 54616C was used
which allowed for a peak detect resolution of 1 ns. It supports optionally trigger based voltage and
time measurement features on two distinct input channels.
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Figure 3.2: Altera Cyclone series EP1C6Q240 FPGA chip

Figure 3.3: Santa Cruz long expansion headers
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3.1.2 Synchronous circuit

The first circuit investigated was a synchronous straight-forward implementation of the example
instance shown in Section 3.1. Figure 3.4 on page 18 shows a schematic diagram of the circuit. At
this point the full implementation was done using a schematic design tool rather than a hardware
description language. In addition to the main circuit a counter component from the Altera provided
component library was included into the design to measure the number of clock cycles the circuit
needs to stabilise. The clock signal was produced by the on-board base clock running at 14.318
MHz (this was kept for all other experiments as well). During the manual experiments the reset
signal was produced by one of the push button switches present on the development board. The
push button switches generate a logical 1 if they are in their normal state and a logical 1 if they are
pressed. Unfortunatly the push button switches on the board proved to be not very well stabilised
making it necessary to clear the counter with the reset signal (the FPGA device initialises all of
its registers to 0).

The variable as well as the counter value signals where let to pin headers on the board where
they could be investigated using the oscilloscope. Analysis of the signals produced by the chip
showed that the circuit was behaving exactly as prognosed by the simulation presented in [COP06].
Therefore it produced a variable assignment of A = 1, B = 0, C = 0, D = 1 after 2 feedback steps.

3.1.3 Asynchronous circuit

After testing the synchronous design which worked as expected, the design was changed to the
asynchronous one shown in Figure 3.5 on page 19. The rest of the setup of the experiment stayed
unchanged. This circuit quickly found a satisfying truth assignment, too, but it was different from
the one the synchronous circuit found (the synchronous circuit found A and D being set and B and
C being cleared whereas the asynchronous circuit found only D being set and the other variables
being cleared). Furthermore the stabilisation time of the circuit was so short that the clocked
on-chip counter circuit was not able to measure it (it stopped counting after a single clock cycle
in all cases).

Because of this, the stabilisation time was measured externally using the oscilloscope. The reset
signal generated by the push button was used as trigger to center the oscilloscope image on the
rising edge of it. A second signal indicating that a solution was found was superimposed and the
timing differences measured. Table 3.1 on page 17 shows the time differences of the two signals
reaching a level of 2 Volts as well as the difference to the first peak of the singals (the signal
indicating that a solution was found tended to rise slower than the reset signal). Please note that
these timings can only be considered as approximations because the maximum resolution of the
oscilloscope used is 1 ns.

3.1.4 Hardening against compiler optimisations

After the results of the first two experiments were very promising the next step was to try a
synchronous as well as an asynchronous implementation of an unsatisfiable 3CNF-SAT instance.
If the concept is fully working the circuits must not come up with a solution for an unsatisfiable
instance. For doing this an unsatisfiable 3× 8 instance was created using diagonalisation:

(A∨B∨C)∧(A∨B∨C)∧(A∨B∨C)∧(A∨B∨C)∧(A∨B∨C)∧(A∨B∨C)∧(A∨B∨C)∧(A∨B∨C)

On the first attempt to implement this instance directly as circuit the resulting FPGA program
just set the output signals to constant values. The reason for this is that the used FPGA compiler
which is part of the Altera provided development environment contains a powerful optimisation
engine probably featuring a complete software SAT solver. Because of this the compiler detected
that the circuit is actually modelling constant output signals and removed most parts of the circuit.
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Run ∆trising ∆tfirstpeak

1 1.52 ns 1.78 ns
2 2.04 ns 1.72 ns
3 1.88 ns 1.62 ns
4 2.04 ns 1.84 ns
5 1.98 ns 2.00 ns
6 1.68 ns 1.58 ns
7 1.28 ns 1.72 ns
8 1.48 ns 1.76 ns
9 1.38 ns 1.82 ns

10 1.42 ns 1.72 ns
11 1.94 ns 1.80 ns
12 2.02 ns 1.80 ns
13 1.72 ns 1.74 ns
14 0.88 ns 1.60 ns
15 1.38 ns 1.86 ns
16 1.64 ns 1.48 ns
17 1.32 ns 1.76 ns
18 1.78 ns 1.84 ns
19 1.20 ns 1.82 ns
20 1.54 ns 1.76 ns

Average 1.61 ns 1.75 ns
Variance 0.10 ns 0.01 ns

Standard deviation 0.32 ns 0.11 ns

Table 3.1: Timings of asynchronous circuit stabilisation

Since this satisfiability analysing optimisation engine could easily tamper future measurement
results even on satisfiable instances it was necessary to effectively disable it. This was also the only
way to test whether the circuits would come up with solutions for unsatisfiable instances. Since the
compiler does not provide the option to entirely disable its optimisation engine it was necessary to
circumvent it by the introduction of constant external signal the optimiser does not know.

Two external signals provided by push buttons on the development board were introduced into
the circuit. These signals have a constant logical value of 1 as long as they are not pressed. Their
complements were combined with the variable signals inside the circuit using XOR gates as shown
in Figure 3.6 on page 20.

To further strengthen future circuit designs against the optimisation engine a third external signal
was combined with the feedback signals produced by the term evaluation parts of the circuit. This
way the optimisation engine of the compiler was no longer able to remove constant parts of the
circuit.

After these hardening components were added to both circuits their behaviour was investigated
using the oscilloscope. Both circuits produced a constant output signal regarding the satisfiability
of the instance set to 0. The signals describing the truth assignment of the variables were floating
around without settling down to a specific value. Therefore both circuits were behaving like
prognosed providing a proof that the concepts proposed in [COP06] really word at least on very
small instances. Therefore the next step in the project was to unitise the SAT circuitry, and to
build a framework allowing for automated generation and even automated execution of experiments
on the FPGA.
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Figure 3.4: Synchronous circuit implementing 4x4 3CNF-SAT instance
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3.2 Modularisation and automation

3.2.1 Unitised SAT circuitry

After the manually created test cases showed a very promising behaviour the decision was taken to
prepare the experimental setup for the automated generation and execution of test cases and the
underlying circuits, repsectively. The first step in this process was the expression of the different
parts of the circuit using a hardware definition language (all previous experiments were set up using
a schematic design tool). The Altera provided development environment supports three different
languages in different versions each. Besides Altera’s own AHDL language, the industry standard
languages VHDL and Verilog are supported. VHDL was chosen for this project because of its good
support by the Altera software, its modular structure and its compatibility to other design tools
making reusing and simulating the created components using non-Altera provided tools possible.
It is also well suited for automated code generation.

The SAT circuitry itself was divided into three modules. On the one hand the term evaluator and
variable source modules drafted in Section 2.4 were implemented in stand-alone VHDL modules
shown in Section 3.2.3 to be easily exchangable in different experiments. This makes these modules
also independant from the actually implemented SAT instance. On the other hand the actual SAT
instances are implemented by modules combining term evaluators and variable sources (and in some
experiments other components as well). These modules are automatically generated by software
specifically for each type of experiment as shown in Section 3.2.5.

This design makes the SAT core independant from the measurement circuitry necessary for
unattended testing and result collection as shown in Section 3.2.2.

3.2.2 Support circuitry for automated measurements

Since the different experiments on the SAT problems required a large number of different test cases
covering an even larger number of single test instances it was not an option to execute all tests
manually. Instead the generation of the circuit definitions, their compilation, the programming of
the FPGA and the retrieval of the measurement data had to be automated to be executable in an
unattended way.

To achieve this goal all measurements had to be done by the circuitry implemented by the FPGA
and the result data had to be transferred to the host computer for storage and later analysis. After
looking into different possibilities of communication between the host computer and the FPGA the
decision was taken to use the provided JTAG interface (see Section 3.2.4) to read the result data
back to the host computer. To make this possible the result data had to be stored either directly in
logic elements on the chip (using their built-in flip-flops) or in the 4096 bit memory blocks provided
on the device. The latter option was selected because it provides much more flexibility regarding
the collected data and also requires much less chip space.

The memory blocks provided by the FPGA are accessible in VHDL code through an Altera
provided pseudo-component which acts as a wrapper around one or more memory blocks. This
pseudo-component also optionally triggers the generation of JTAG interface structures allowing
the memory block contents to be read (and optionally even to be written) using the JTAG interface
connecting the FPGA development board to the host computer.

Since the memory block component supports only writing data at one (or optionally two) distinct
addresses at a time a memory controller had to be implemented which collects the measurement
data from other components of the circuit, buffers it, and writes it in a defined structure to the
memory block. The actual data written varies between the experiments but most experiments write
at least the number of clock cycles the circuit required to stabilise on the result (if not interrupted
by a time-out), a flag whether a solution was found before the time-out occurred and the final truth
assignment when the solution was found or the time-out occurred. Most experiments also output
the number of variables participating in the analysed instance or even a computed checksum for
error detection and debug purposes.
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3 Basic experiments and infrastructure

To be able to collect these types of data a couple of other components had to be implemented.
Delay and time-out controllers were implemented to start the experiment at a specific point in
time and to abort it if a solution could not be found after a preset number of clock cycles. A
performance counter component uses the signals provided by these components to calculate the
exact running time of the experiments in clock cycles. Figure 3.8 on page 22 shows a sketch of the
basic layout of the support circuitry. Details about the different experiments are documented in
Chapter 4.
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Figure 3.8: Example support circuitry layout for automated test case execution

Some experiments required the implementation of other more experiment-specific modules as
well (e.g. randomisation components as shown in Figure 3.8 on page 22). During the development
of all components the reusability of the created components through multiple experiments was
emphasised. Because of this many components are implemented as VHDL generics providing
module templates for different types of experiments and instances (e.g. the memory controller is
able to handle different numbers of variable value signals using a VHDL generic).

The delay controller is needed because the circuit basically starts ”somehow” after the program-
ming of the FPGA finished. This component ensures that a clear reset signal is emitted and that
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3.2 Modularisation and automation

this reset signal is hold long enough for all components to initialise. Note that all registeres of the
FPGA are initialised to 0 when starting up.

3.2.3 Overview over the VHDL library used during the experiments

The following paragraphs give an overview over the VHDL module library created during the
project. Please note that the VHDL modules presendet in this section were not created for a
single experiment but for a large number of experiments over a time of several months. This
section is mainly intended as a reference to facilitate understanding the source codes and diagrams
created during the project and to make reusing the created components in future projects as easy
as possible.

It should be pointed out up front that the semantics of the reset signals used by many compo-
nents changed during the project. The first components developed during the project (and also
components derived from them) expect the reset signal to be set to a logical 0 if being in reset state
and to a logical 1 if being in operational state. This assignment was selected because in the early
experiments the reset signal was manually generated by pressing one of the push button switches
on the development board. These switches generate a logical 0 signal if pressed and a logical 1
signal if released. Since this assignment is not very intuitive the assignment was swapped later in
the course of the project. Because of this there are components expecting a reset signal using the
first way and others which expect the reset signal using the second way of assignment. Please pay
attention to this fact if reusing and mixing the created components in future projects.

If not otherwise stated, all synchronous modules use registered inputs. The outputs of all modules
are unregistered. If necessary, the produced values have to be stored by subsequent modules. The
latency of all modules is exactly one clock cycle unless otherwise stated in the module description.

Term evaluators

The term evaluator modules are implemented as VHDL generics supporting an arbitrary number
of input signals. Each each signal corresponds to a variable value or its complement, respectively.
Figure 3.9 on page 23 shows block diagrams of the available term evaluators. Implementation
details are shown by the module sources in Appendix B.1.
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Figure 3.9: Block diagrams of term evaluator modules

Basic term evaluator The basic term evaluator module is a straight-forward implementation
of the term evaluator module draft shown in Section 2.4. The input signals are combined using an
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Figure 3.10: Schematic diagram of basic term evaluator module

OR function. If the result of the disjunction is false, all outgoing wrong signals are set to true and
the outgoing solved signal is set to false. Otherwise the incoming wrong signals and the incoming
solved signal are passed through. The source code of this module if available in Appendix B.1.1.
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Input port Type Required Comments
input[] STD LOGIC VECTOR Yes Current truth assignment of the par-

ticipating variables or their comple-
ments, respectively

wrong in[] STD LOGIC VECTOR Yes Participation status signals provided
by previous evaluator modules

solved in STD LOGIC Yes Solution status signal provided by
previous evaluator modules

Output port Type Required Comments
wrong out[] STD LOGIC VECTOR Yes Signal vector signalling that vari-

ables participated in wrong clauses
(0 means no participation in wrong
clause, 1 means participation in at
least one wrong clause)

solved out STD LOGIC Yes Updated signal signalling solution
state (0 means solution not found, 1
means possible solution so far)

Parameter Type Required Comments
clause length Integer No Number of variables in this clause

(default is 3)

Table 3.2: Basic term evaluator interface

Probabilistic term evaluator The probabilistic term evaluator module behaves exaclty like
the basic term evaluator module with the only difference that in the case of the clause evaluating
to false, a wrong signal is only set to true if the corresponding select signal is set. Otherwise the
wrong signal is passed through just as if the clause would have been satisfied. The source code of
this module is available in Appendix B.1.2.
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Figure 3.11: Schematic diagram of probabilistic term evaluator module

Input port Type Required Comments
input[] STD LOGIC VECTOR Yes Current truth assignment of the par-

ticipating variables or their comple-
ments, respectively

wrong in[] STD LOGIC VECTOR Yes Participation status signals provided
by previous evaluator modules

wrong sel[] STD LOGIC VECTOR Yes If a signal of this vector is set to
0 the corresponding wrong signal is
just passed through regardless of the
evaluation result of the clause

solved in STD LOGIC Yes Solution status signal provided by
previous evaluator modules

Output port Type Required Comments
wrong out[] STD LOGIC VECTOR Yes Signal vector signalling that vari-

ables participated in wrong clauses
(0 means no participation in wrong
clause, 1 means participation in at
least one wrong clause)

solved out STD LOGIC Yes Updated signal signalling solution
state (0 means solution not found, 1
means possible solution so far)

Parameter Type Required Comments
clause length Integer No Number of variables in this clause

(default is 3)

Table 3.3: Probabilistic term evaluator interface
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Figure 3.12: Schematic diagram of erroneous probabilistic term evaluator module

Probabilistic term evaluator (buggy) This variant of the term evaluator module is just
included for completeness. It was accidently used in some experiments but contains a bug rendering
the measurement results useless. If a specific signal in the select signal vector is set to 1 with a
probability of p, the total probability of a variable being announced for toggling in the correct
module is np with n being the number of unsatisfied clauses the variable is participating in. With
this buggy variant of the term evaluator module the probability is roughly pn. The interface of
the module is identical to the non-buggy variant. The source code of this module is available in
Appendix B.1.3.

Variable sources

The variable source modules heavily differ because one of the most important parts of the re-
search regarding the SAT circuitry focused on different variable source types. The library contains
synchronous as well as asynchronous variable sources modules which were used in many different
experimental contexts. See Chapter 4 for details regarding the different experiments. Some vari-
able sources are implemented as VHDL generics supporting multiple configurations of the same
component template. Figure 3.9 on page 23 shows block diagrams of the available variable sources.
Implementation details are shown by the module sources in Appendix B.2.

27



3 Basic experiments and infrastructure

wrong_in

wrong_not_in

reset

wrong_out

wrong_not_out

var_out

var_not_out

variable_source_async

wrong_in

wrong_not_in

reset

clock

wrong_out

wrong_not_out

var_out

var_not_out

variable_source_sync

wrong_in

wrong_not_in

reset

clock

zero_a

zero_b

zero_c

wrong_out

wrong_not_out

var_out

var_not_out

variable_source_sync_hardened

wrong_in

wrong_not_in

reset

zero_a

zero_b

zero_c

wrong_out

wrong_not_out

var_out

var_not_out

variable_source_async_hardened

wrong_in

wrong_not_in

reset

clock

zero_a

zero_b

zero_c

wrong_out

wrong_not_out

var_out

var_not_out

variable_source_sync_hardened_compact

clock

enabled

zero

clause_wrong[literal_count-1..0]

rand_bits[5..0]

variable_out

variable_source_smart

random_bits[5..0] value[output_bits-1..0]

modulo_lookup_table

Figure 3.13: Block diagrams of variable source modules
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Figure 3.14: Schematic diagram of basic asynchronous variable source module

Basic asynchronous variable source This is the basic asynchronous variable source module
used in early experiments before the idea of having asynchronous variable sources was discarded.
The toggling of a variable is delayed by a configurable number of delay gates which are implemented
as AND gates combining the feedback value with true. Unfortunately it could not be verified what
the compiler optimisation engine does with this implementation so it is possible that this way of
delaying the toggling of variables is completely ineffective. This was not further investigated
since the asynchronous circuit variant showed very uncontrollable behaviour evan on smaller SAT
instances when watched using the oscilloscope. Besides this, the component is a straight-forward
implementation of the asynchronous variable source module drafted in Section 2.4. The source
code of this module is available in Appendix B.2.1.

28



3.2 Modularisation and automation

Input port Type Required Comments
wrong in STD LOGIC Yes A signal value of 1 indicates that the variable

participated in an unsatisfied clause
wrong not in STD LOGIC Yes A signal value of 1 indicates that the comple-

ment of the variable participated in an unsatis-
fied clause

reset STD LOGIC Yes The module expects the reset signal being 0 if
in reset state - in this case the feedback loop is
cleared and the variable initialised to 0

Output port Type Required Comments
wrong out STD LOGIC Yes Signal vector signalling that variables partici-

pated in wrong clauses (0 means no participa-
tion in wrong clause, 1 means participation in
at least one wrong clause)

wrong not out STD LOGIC Yes Updated signal signalling solution state (0
means solution not found, 1 means possible so-
lution so far)

var out STD LOGIC Yes Updated signal signalling solution state (0
means solution not found, 1 means possible so-
lution so far)

var not out STD LOGIC Yes Updated signal signalling solution state (0
means solution not found, 1 means possible so-
lution so far)

Parameter Type Required Comments
delay gates Natural No Number of delay gates used to delay the feedback

signal (default is 0)

Table 3.4: Basic asynchronous variable source interface

Asynchronous variable source hardened against compiler optimisations As described
in section Section 3.1.4, several parts of the SAT circuitry require special hardening against com-
piler optimisations. This variant of the variable source module behaves exactly like the basic
asynchronous variant with the exception that combines three externally provided signals with the
internal signals of the module using a logical XOR function. The source code of this module is
available in Appendix B.2.2.
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Figure 3.15: Schematic diagram of basic asynchronous variable source module

Input port Type Required Comments
wrong in STD LOGIC Yes A signal value of 1 indicates that the variable

participated in an unsatisfied clause
wrong not in STD LOGIC Yes A signal value of 1 indicates that the comple-

ment of the variable participated in an unsatis-
fied clause

reset STD LOGIC Yes The module expects the reset signal being 0 if
in reset state - in this case the feedback loop is
cleared and the variable initialised to 0

zero a STD LOGIC Yes The module expects this signal to be constantly
set to 0

zero b STD LOGIC Yes The module expects this signal to be constantly
set to 0

zero c STD LOGIC Yes The module expects this signal to be constantly
set to 0

Output port Type Required Comments
wrong out STD LOGIC Yes Signal vector signalling that variables partici-

pated in wrong clauses (0 means no participa-
tion in wrong clause, 1 means participation in
at least one wrong clause)

wrong not out STD LOGIC Yes Updated signal signalling solution state (0
means solution not found, 1 means possible so-
lution so far)

var out STD LOGIC Yes Updated signal signalling solution state (0
means solution not found, 1 means possible so-
lution so far)

var not out STD LOGIC Yes Updated signal signalling solution state (0
means solution not found, 1 means possible so-
lution so far)

Parameter Type Required Comments
delay gates Natural No Number of delay gates used to delay the feedback

signal (default is 0)

Table 3.5: Hardened asynchronous variable source interface
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Figure 3.16: Schematic diagram of basic synchronous variable source module

Basic synchronous variable source This is the basic synchronous variable source module used
in early experiments. In contrast to the asynchronous variable source modules, the toggling of a
variable only occurs on a rising edge of the clock signal. The component is a straight-forward
implementation of the synchronous variable source module drafted in Section 2.4. The source code
of this module is available in Appendix B.2.3.
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Input port Type Required Comments
wrong in STD LOGIC Yes A signal value of 1 indicates that the variable

participated in an unsatisfied clause
wrong not in STD LOGIC Yes A signal value of 1 indicates that the comple-

ment of the variable participated in an unsatis-
fied clause

reset STD LOGIC Yes The module expects the reset signal being 0 if
in reset state - in this case the feedback loop is
cleared and the variable initialised to 0

clock STD LOGIC Yes Module operation is triggered by the rising edge
of the clock signal

Output port Type Required Comments
wrong out STD LOGIC Yes Signal vector signalling that variables partici-

pated in wrong clauses (0 means no participa-
tion in wrong clause, 1 means participation in
at least one wrong clause)

wrong not out STD LOGIC Yes Updated signal signalling solution state (0
means solution not found, 1 means possible so-
lution so far)

var out STD LOGIC Yes Updated signal signalling solution state (0
means solution not found, 1 means possible so-
lution so far)

var not out STD LOGIC Yes Updated signal signalling solution state (0
means solution not found, 1 means possible so-
lution so far)

Table 3.6: Basic synchronous variable source interface

Synchronous variable source hardened against compiler optimisations This synchronous
variable source module is hardened against compiler optimisations analogous to the hardened asyn-
chronous variable source module. Despite this, the behaviour of the module is identical the the
basic synchronous variable source module. The source code of this module is available in Appendix
B.2.4.
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Figure 3.17: Schematic diagram of hardened synchronous variable source module

Input port Type Required Comments
wrong in STD LOGIC Yes A signal value of 1 indicates that the variable

participated in an unsatisfied clause
wrong not in STD LOGIC Yes A signal value of 1 indicates that the comple-

ment of the variable participated in an unsatis-
fied clause

reset STD LOGIC Yes The module expects the reset signal being 0 if
in reset state - in this case the feedback loop is
cleared and the variable initialised to 0

clock STD LOGIC Yes Module operation is triggered by the rising edge
of the clock signal

zero a STD LOGIC Yes The module expects this signal to be constantly
set to 0

zero b STD LOGIC Yes The module expects this signal to be constantly
set to 0

zero c STD LOGIC Yes The module expects this signal to be constantly
set to 0

Output port Type Required Comments
wrong out STD LOGIC Yes Signal vector signalling that variables partici-

pated in wrong clauses (0 means no participa-
tion in wrong clause, 1 means participation in
at least one wrong clause)

wrong not out STD LOGIC Yes Updated signal signalling solution state (0
means solution not found, 1 means possible so-
lution so far)

var out STD LOGIC Yes Updated signal signalling solution state (0
means solution not found, 1 means possible so-
lution so far)

var not out STD LOGIC Yes Updated signal signalling solution state (0
means solution not found, 1 means possible so-
lution so far)

Table 3.7: Hardened synchronous variable source interface
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Figure 3.18: Schematic diagram of hardened compact synchronous variable source module

Synchronous variable source hardened against compiler optimisations (compact) This
is a slightly compacted version of the hardened synchronous variable source module. If integrated
into the SAT circuitry the compiler is able to optimise the solver circuit more compactly if this
module is used compared to the previous version of the module. Despite this, the behaviour and
the interface of the module are identical the the hardened synchronous variable source module.
The source code of this module is available in Appendix B.2.5.

Locally probability driven variable source This synchronous variable source module was
used in some experiments regarding locally probability driven SAT solvers. The basic idea behind
this is explained in Section 4.4. This module was only used in a few experiments because of its
high space requirements which make it hard to build an universal ASIC using this kind of variable
source. If using this variable source the probability driven state evaluation is moved from the term
evaluators into the variable sources. This means that this module must not be used in combination
with the probabilistic term evaluator module. If a variable participates in m clauses with n of them
being unsatisfied the probability of the corresponding variable being toggled is roughly n/m. The
source code of this module is available in Appendix B.2.6.
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Figure 3.19: Schematic diagram of experimental locally probability driven variable source module
(example for a variable participating in 5 clauses)

Input port Type Required Comments
clock STD LOGIC Yes Module operation is triggered by the rising

edge of the clock signal
enabled STD LOGIC Yes The module expects the enabled signal being 0

if in reset state - in this case the feedback loop
is cleared and the variable initialised to 0

zero STD LOGIC Yes The module expects this signal to be con-
stantly set to 0

clause wrong[] STD LOGIC Yes A signal value of 1 indicates that the corre-
sponding clause, in which the variable or its
complement is participating, is unsatisfied

rand bits[] STD LOGIC Yes The module expects this signal vector to con-
sist of (pseudo-)randomly generated bits and
to contain one bit for each clause this variable
participates in

Output port Type Required Comments
variable out STD LOGIC Yes Updated truth assignment of the correspond-

ing variable
Parameter Type Required Comments
literal count Integer Yes Number of clauses the correspondign variable

or its complement participate in
count bits Integer Yes Ceiled binary logarithm of the number of rele-

vant clauses

Table 3.8: Experimental locally probability driven variable source interface
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Fast modulo computation for smart variable source This module is used by the experi-
mental locally probablity driven variable source module. It provides a fast combinatorial lookup
table for computing the remainder of a natural number passed as bit vector and a constant chosen
at compile time. The (shortened) source code of this module is available in Appendix B.2.7.

Input port Type Required Comments
random bits[] STD LOGIC Yes Signal vector describing a 6-bit wide natural

number
Output port Type Required Comments
value[] STD LOGIC Yes Signal vector describing the number described

by the input signal vector modulo the output
range

Parameter Type Required Comments
output range Integer Yes Modulus (valid numbers are from 1 to 32)
output bits Integer Yes Length of the output signal vector (valid num-

bers are from 1 to 5)

Table 3.9: Fast modulo computation interface

Fixed distribution bit sources

As early experiments showed that some form of probability driven architecture is necessary to reach
good results using the highly parallelised SAT solvers investigated during this project, a number of
randomisation components were developed. The fixed distribution bit source modules transform
one or multiple streams of (pseudo-)randomly generated bits having a theoretical probability of 0.5
of a bit being set to 1 to a single bit stream in which the probability of a bit being 1 is an arbitrary
constant between 0 and 1 preset during compile time. The bit source modules also provide long
shift registers serving selector signals to the probabilistic term evaluator modules described earlier.
The bit source modules are implemented as VHDL generics supporting an arbitrary number of
output bits gated to approximate a given probability distribution. Figure 3.9 on page 23 shows
block diagrams of the available bit sources. Implementation details are shown by the module
sources in Appendix B.3.
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Figure 3.20: Block diagrams of bit source modules

Bit source using single bit LFSR This bit source module uses a single linear feedback shift
register moving by a single bit each clock cycle. The highest ten bits of the LFSR are gated to
produce a preset probability distribution. Since each bit produced by the LFSR influences 10 bits
running through the bit source register this basic bit source module proved to be not very well
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Figure 3.21: Schematic diagram of bit source using single bit LFSR

suited for proper randomisation of the SAT solver circuitry because the bits running through the
selection register are closely statiscally dependant from at least nine other bits each. The effects of
proper randomisation of the solver engine are discussed in Section 5.2.4. The source code of this
module is available in Appendix B.3.1.

Input port Type Required Comments
reset STD LOGIC Yes The module expects the reset signal being

1 if in reset state - in this case the LFSR
as well as the selection register are cleared

clock STD LOGIC Yes Module operation is triggered by the ris-
ing edge of the clock signal

Output port Type Required Comments
bits[] STD LOGIC Yes Signal vector representing bits having pre-

set probability distribution
Parameter Type Required Comments
output bits Integer Yes Length of the selection register
probability factor Integer Yes b210 · (1− p)+0.5c with p being the prob-

ability of a bit in the selection register be-
ing 1

Table 3.10: Interface of bit source using single bit LFSR

Bit source using parallelised LFSR This module is an improved version of the previous single
bit. It still uses a single LFSR but this LFSR is implemented in a parallelised manner to generate
10 fresh bits every clock cycle. This way the statistical dependancy of the bits running through the
selection register is heavily reduced. However, the statistical properties of this bit source module
are still not good enough for representative experiments with the SAT solver engine. Despite this,
the behaviour as well as the interface of this module are identical to the previously described single
bit variant of the bit source. The source code of this module is available in Appendix B.3.2.

Bit source using parallelised LFSR array This module is the finally used bit source module
implementing an array of 10 parallelised LFSRs. Each of these LFSRs produces 10 fresh bits every
clock cycle which are reduced to a single bit fulfilling the preset probability distribution. This
way 10 fresh bits are sent through the selection registers letting it move with the tenfold speed
compared to the previous bit source modules. The bits running through the selection register are
still subject to statistical dependancies but these proved to be small enough to produce reliable
measurement results. Unfortunately the employed array of 10 equally long LFSRs (each having
alnegth of 40 bits) seems to degrade the period of the LFSR. This became a problem when running
single instance test cases as described in Section 4.3.4. Despite this, the behaviour as well as the
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interface of this module are identical to the previously described variants of the bit source. The
source code of this module is available in Appendix B.3.3.

Bit source using parallelised LFSR array with shift register preseeding The previously
described bit sources all have the problem that the selection register is initialised to all bits being
set to 0. This way it in the worst case it can take several hundred clock cycles before the first
variables are toggled. This module is a slightly modified variant of the previous module employing
an array of LFSRs. In addition to this improvement, this module preseeds the selection register
with a preset seed whose proper probability distribution has to be ensured by the developer (source
code to generate such a bit sequence is included in Appendix A.2). The selection register is set to
the preset seed whenever the reset signal is set to 1. Please not that the length of the selection
register is hardcoded in the current version of the module. If the module is to be used in future
projects this parts should be converted to a VHDL generic. The source code of this module is
available in Appendix B.3.4.

Input port Type Required Comments
reset STD LOGIC Yes The module expects the reset signal being

1 if in reset state - in this case the LFSR
as well as the selection register are cleared

clock STD LOGIC Yes Module operation is triggered by the ris-
ing edge of the clock signal

Output port Type Required Comments
bits[] STD LOGIC Yes Signal vector representing bits having pre-

set probability distribution
Parameter Type Required Comments
output bits Integer Yes Length of the selection register
probability factor Integer Yes b210 · (1− p)+0.5c with p being the prob-

ability of a bit in the selection register be-
ing 1

seed[] STD LOGIC Yes Preset seed to be loaded into the selection
register if the reset signal is set to 1 (cur-
rently this has to be of length 1110)

Table 3.11: Interface of bit source using parallelised LFSR array and preseeding

Bit source supporting dynamic probabilities using simulated annealing This module is
a modified variant of the bit source module using a parallelised LFSR array. It currently does not
support preseeding but instead includes the possibility to dynamically alter the probability of a bit
being set to 1 in the selection register. It does this by employing the fixed probability algorithm
described previously and adding a dynamic probability component read from a table contained in
an on-chip ROM block (this has to be preloaded during compilation). Details about the simulated
annealing experiments are documented in Section 4.3.3. Despite this, the behaviour as well as the
interface of this module are identical to the previously described variants of the bit source without
preseeding. Source code for the generation of the simulated annealing table data can be found in
Appendix A.3 along with the source code of this module in Appendix B.3.5.

ROM interface for simulated annealing stepping tables This module provides a wrapper
for an on-chip SRAM block configured to operate in ROM mode and is internally used by the
previously described module. The ROM block is accessed in units of 16 bits and holds a maximum
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of 4096 words which are preloaded from file sa table.mif. The source code of this module is
available in Appendix B.3.6.

The initialisation file has to be an ASCII text file (with the extension .mif) that specifies the
initial content of a memory block, that is, the initial values for each address. This file is used during
project compilation and/or simulation. A MIF is used as an input file for memory initialization in
the Compiler and Simulator (alternatively a Hexadecimal (Intel-Format) File (.hex) can be used
to provide memory initialisation data).

A MIF contains the initial values for each address in the memory. In a MIF, it is also required to
specify the memory depth and width values. In addition, the radixes used to display and interpret
addresses and data values can be specified.

DEPTH = 32;
WIDTH = 8;
ADDRESS_RADIX = HEX;
DATA_RADIX = BIN;
CONTENT
BEGIN

00 : 00000000;
01 : 00000001;
02 : 00000010;
03 : 00000011;
04 : 00000100;
05 : 00000101;
06 : 00000110;
07 : 00000111;
08 : 00001000;
09 : 00001001;
0A : 00001010;
0B : 00001011;
0C : 00001100;

END;

Figure 3.22: Example of a memory initialisation file (MIF)

The actual data used for determining the dynamic probability adjustments must consist of 16-bit
words using big endian encoding. The data is encoded using a simple run length encoding scheme
to save on-chip memory. The lower 10 bits of each word consist of the value b210 · (1 − p) + 0.5c
with p being the probability to be added to the preset base probability (note that it is theoretically
possible to exceed a probability of 1 using this mechanism, but this case is handled automatically
by the circuit). The higher 6 bits of each words are treated as run-length counter. For example, if
the first 16-bit word in the table is 0011000010000000, this means, that during the first 001100 = 12
clock cycles, a probability of 1/8 is added to the preset base probability of a bit being sent through
the selection register being set to 1. The sequence of code words has to be terminated by a word set
to 0000000000000000 leaving a maximum of 4095 slots for table data. The source code provided in
Appendix A.3 generates a table in the correct format using an adjustable exponentially declining
probability boost curve.

Pseudo-random number generators

The pseudo-random number generators used by generate input bits for the probability distribution
gating in front of the selection register are based und simple linear feedback shift registers (LFSR)
using Fibonacci-Style layout and XNOR feedback gates. Figure 3.23 on page 40 shows block
diagrams of the available LFSRs. Implementation details are shown by the module sources in
Appendix B.4.

Please note that the 40-bit variants of the LFSR module contain a problem related to the period
of the LFSR states. Section 5.2.4 describes the problem and gives some mathematical background.
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Figure 3.23: Block diagrams of LFSR based pseudo-random number generator modules

The seeds used in combination with the 40-bit LFSRs have been checked to give a reasonable
high period in combination with the seeds used in most experiments (source code for simulating
the 40-bit LFSR is available in Appendix A.4). Only the batch experiments described in Section
4.3.4 are affected by this flaw. It is strongly recommended to replace the 40-bit LFSR modules for
future experiments. However, the 41-bit LFSR module is not affected by this weakness and gives
the documented period regardless of the seed used.

Furthermore it is important to include at least one 0 bit in every seed used to initalise a LFSR
module (the default seed for all modules consists of a 0 bit vector). If all bits of the register are set
by the seed, the LFSR module gets stuck in this single state. Note that all other seed values are
not creating this problem (if the seed contains at least one 0 bit, it is guaranteed, that the shift
register never gets into a state where all bits are set to 1).
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Figure 3.24: Schematic diagram of single bit LFSR (40-bit)

Single bit LFSR (40-bit) This basic single bit LFSR module implements a linear feedback
shift register with a length of 40 bits. Please note previous paragraph about problems with the
state period of this implementation. This variant of the 40-bit LFSR generates one fresh bit every
clock cycle. The source code of this module is available in Appendix B.4.1.
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Input port Type Required Comments
reset STD LOGIC Yes The module expects the reset signal being 1 if

in reset state - in this case the shift register is
cleared

clock STD LOGIC Yes Module operation is triggered by the rising edge
of the clock signal

Output port Type Required Comments
value[] STD LOGIC Yes Signal vector representing the higher part of the

shift register
Parameter Type Required Comments
output bits Integer Yes Length of the higher end shift register part led to

the output port (valid values range from 1 to 40)

Table 3.12: Interface of single bit LFSR (40-bit)
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Figure 3.25: Schematic diagram of parallelised LFSR (40-bit)

Parallelised LFSR (40-bit) This parallelised 40-bit LFSR module behaves exactly like the
single bit variant of the module described in the previous paragraph. The only exception is that
the LFSR generates 10 fresh bits in every clock cycle using a parallelised implementation (which
limits the maximum size of the output signal vector). Please note previous paragraph about
problems with the state period of this implementation. The source code of this module is available
in Appendix B.4.2.
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Input port Type Required Comments
reset STD LOGIC Yes The module expects the reset signal being 1 if

in reset state - in this case the shift register is
cleared

clock STD LOGIC Yes Module operation is triggered by the rising edge
of the clock signal

Output port Type Required Comments
value[] STD LOGIC Yes Signal vector representing the higher part of the

shift register
Parameter Type Required Comments
output bits Integer Yes Length of the higher end shift register part led to

the output port (valid values range from 1 to 19)

Table 3.13: Interface of parallelised LFSR (40-bit)

Parallelised LFSR supporting variable seed (40-bit) This module is identical to the par-
allelised 40-bit LFSR module with the only exception being that the shift register is set to a preset
seed value if the reset signal is set, instead of just clearing it. Please note previous paragraph
about problems with the state period of this implementation. The source code of this module is
available in Appendix B.4.3.

Input port Type Required Comments
reset STD LOGIC Yes The module expects the reset signal

being 1 if in reset state - in this case
the shift register is reseeded using a
preconfigured seed vector

clock STD LOGIC Yes Module operation is triggered by the
rising edge of the clock signal

Output port Type Required Comments
value[] STD LOGIC Yes Signal vector representing the higher

part of the shift register
Parameter Type Required Comments
output bits Integer Yes Length of the higher end shift regis-

ter part led to the output port (valid
values range from 1 to 19)

seed[] STD LOGIC VECTOR No Seed to load into shift register when-
ever the reset signal is set to 1 (the de-
fault is filling the register with 0 bits)

Table 3.14: Interface of parallelised LFSR supporting variable seed (40-bit)

Parallelised LFSR supporting variable seed (41-bit) This module is identical to the par-
allelised 40-bit LFSR module supporting a confiurable seed. The only difference is an extended
shift register (41 instead of 40 bits) using a different feedback function. This is currently the only
LFSR implementation giving a period which is not dependant on the seed used. The period of the
41-bit LFSR is equal to 241− 1. The source code of this module is available in Appendix B.4.4.

42



3.2 Modularisation and automation

Input port Type Required Comments
clock STD LOGIC Yes Module operation is triggered by the

rising edge of the clock signal
enabled STD LOGIC Yes The module expects the enabled sig-

nal being 0 if in reset state - in this
case the shift register is reseeded us-
ing a preconfigured seed vector

Output port Type Required Comments
output[] STD LOGIC Yes Signal vector representing the higher

part of the shift register
Parameter Type Required Comments
output bits Integer Yes Length of the higher end shift regis-

ter part led to the output port (valid
values range from 1 to 37)

seed[] STD LOGIC VECTOR No Seed to load into shift register when-
ever the enabled signal is set to 0 (the
default is filling the register with 0
bits)

Table 3.15: Interface of parallelised LFSR supporting variable seed (41-bit)

Support circuitry

The various support circuitry modules are intended to guarantee a fully defined execution envi-
ronment for the various SAT solvers and to collect measurement data about their performance.
The serialisation of the measurement data is supported by special modules as well which write
the collected result data to the on-chip memory allowing it to be read by the host computer.
Implementation details are shown by the module sources in Appendix B.5.

clock reset

delayed_startup_controller_single

Figure 3.26: Block diagram of delayed startup controller module

Delayed startup controller for single testruns The delayed startup controller module guar-
antees that a reset signal is automatically issued for a preset number of clock cycles after the circuit
powers up. This way it guarantees that all components of the circuit are properly initialised before
the actual circuit operation starts. The circuit immediately starts running after programming of
the FPGA device finished with all flip-flops and memory blocks, respectively, being initalised to
0 bits, unless otherwise stated in the source code. The component is designed to wait 71590000
clock cycles (which corresponds to 5 seconds assuming the FPGA is running at the base frequency
of the development board being 14.318 MHz) during which the reset signal is set to 1. After this
number of clock cycles passed, the output reset signal is set to 0 for 100 clock cycles and set to 1
again after this period of time. The source code of this module is available in Appendix B.5.1.
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Figure 3.27: Schematic diagram of delayed startup controller for single testruns

Input port Type Required Comments
clock STD LOGIC Yes Module operation is triggered by the rising edge

of the clock signal
Output port Type Required Comments
reset STD LOGIC Yes The module issues the reset signal being 0 if in

reset state and being 1 otherwise

Table 3.16: Interface of delayed startup controller for single testruns

Delayed startup controller for batch testruns This delayed startup controller module is
a variant of the previously described module designed to be used in the batch test environment
described in Section 4.3.4. This test environment uses two distinct reset signals, one resetting the
whole circuit and another one just restarting a single test run. The delayed startup controller only
manages the global reset signal initialising the circuit. This signal is issued for 71590000 + 100
clock cycles and cleared after that. It stays this way until the circuit is powered down. Please note
that the semantic of the reset signal was swapped compared to the previously described module.
The source code of this module is available in Appendix B.5.2.
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Input port Type Required Comments
clock STD LOGIC Yes Module operation is triggered by the rising edge

of the clock signal
Output port Type Required Comments
reset STD LOGIC Yes The module issues the reset signal being 1 if in

global reset state and being 0 otherwise

Table 3.17: Interface of delayed startup controller for batch testruns
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Figure 3.28: Block diagram of timeout controller module

Timeout controller for single testruns The timeout controller module aborts a testrun if a
solution has not been found after a configurable number of clock cycles and initiates the writing of
the result data to the on-chip memory. If used in manual experiments without the delayed startup
controller this module also eliminates problems produced by bouncing or floating reset signals and
guarantees precise measurement timeouts (e.g. the push button switches on the development are
not sufficiently stabilised). As long as the incoming reset signal is set to 1 this settings is just
passed through. Whenever the incoming reset signal becomes 0 the modules ignores the incoming
reset signal for the preconfigured amount of clock cycles and sets its outgoing reset signal to 0
until the timeout elapses. After this amount of time the outgoing reset signal is set to 1 again and
the component restarts listening to the incoming reset signal. Please note the different semantics
of the incoming and outgoing reset signals. The source code of this module is available in Appendix
B.5.3.

Input port Type Required Comments
reset in STD LOGIC Yes The module expects the incoming reset sig-

nal being 0 if in reset state and being 1 oth-
erwise

clock STD LOGIC Yes Module operation is triggered by the rising
edge of the clock signal

Output port Type Required Comments
reset out STD LOGIC Yes The module issues the outgoing reset signal

being 1 if in reset state and being 0 otherwise
Parameter Type Required Comments
timeout cycles BIT VECTOR No Natural number specifying the number of

clock cycles the SAT solver has to find a so-
lution (the default is 71590000 clock cycles)

Table 3.18: Interface of timeout controller for single testruns
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Figure 3.29: Schematic diagram of timeout controller for single testruns

Timeout controller for batch testruns This module is a modified variant of the basic timeout
controller which got amended by a small state machine which controls starting and stopping
consecutive testruns in a batch test environment. This component was used during the experiments
described in Section 4.3.4. Please note that the semantics of the incoming reset signal changed (an
incoming reset signal of 1 now means being in reset state which is compatible with the unchanged
semantics of the outgoing reset signal). The source code of this module is available in Appendix
B.5.4.
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Input port Type Required Comments
reset in STD LOGIC Yes The module expects the incoming reset sig-

nal being 1 if in reset state and being 0 oth-
erwise

clock STD LOGIC Yes Module operation is triggered by the rising
edge of the clock signal

Output port Type Required Comments
reset out STD LOGIC Yes The module issues the outgoing reset signal

being 1 if in reset state and being 0 otherwise
Parameter Type Required Comments
timeout cycles BIT VECTOR No Natural number specifying the number of

clock cycles the SAT solver has to find a so-
lution (the default is 71590000 clock cycles)

Table 3.19: Interface of timeout controller for batch testruns
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Figure 3.31: Schematic diagram of performance measurement

Performance counter The performance counter module acts as a wrapper around a binary
32-bit counter, incrementing by 1 in every clock cycle. The counter is only running if neither the
reset nor the solved signal is set to 1 (but it still keeps its value if this is not the case). The source
code of this module is available in Appendix B.5.5.
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Input port Type Required Comments
sclr STD LOGIC Yes Clears the counter register if set to 1
clock STD LOGIC Yes Module operation is triggered by the

rising edge of the clock signal
reset STD LOGIC Yes The module expects the incoming

reset signal being 1 if in reset state
and being 0 otherwise

solved STD LOGIC Yes The module expects the incoming
solved signal being 1 if the SAT solver
found a solution and being 0 otherwise

Output port Type Required Comments
value[] STD LOGIC VECTOR Yes Signal vector representing the current

value of the 32-bit counter register

Table 3.20: Performance measurement interface
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Figure 3.32: Block diagrams of memory controller modules

Memory controller for single testruns The memory controller module implements a circuit
responsible for collecting and serialising measurement data which is written to the attached memory
block interface. The circuit itself is synthesised from a serialisation algorithm. Serialisation of
measurement data is triggered by the reset signal being set to 1. The source code of this module
is available in Appendix B.5.6.

The memory controller module outputs the measurement data to the on-chip memory according
to the following data format. The measurement data is organised in 32-bit words stored in big
endian byte order.
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Input port Type Required Comments
reset STD LOGIC Yes The module expects the reset signal

being 1 if in reset state and being 0
otherwise

clock STD LOGIC Yes Module operation is triggered by
the rising edge of the clock signal

variables[] STD LOGIC VECTOR Yes Final truth assignment established
by the SAT solver to be serialised

solved STD LOGIC Yes The module expects the solved sig-
nal being 1 if the SAT solver claims
having found a solution and being 0
otherwise

performance[] STD LOGIC VECTOR Yes Signal vector describing the number
of clock cycles the SAT solver ran

Output port Type Required Comments
data[] STD LOGIC VECTOR Yes 32-bit data port to the attached

memory block interface
address[] STD LOGIC VECTOR Yes 7-bit address port to the attached

memory block interface
write enable STD LOGIC Yes Write enable port to the attached

memory block interface (set to 1 if
the data and address vectors are
valid)

Parameter Type Required Comments
variable count Integer Yes Number of variables participating

in the SAT instance

Table 3.21: Interface of memory controller for single testruns

Bit offset Content Comment
0x00 Number of clock cycles the SAT

solver ran
This might be the preconfigured
timeout of the timeout controller if
the SAT solver did not manage to
find a solution

0x20 Solution status flag Set to 1 if the SAT solver claims hav-
ing found a solution and set to 0 oth-
erwise

0x30 Truth assignment Final truth assignment established
by the SAT solver (variable values
are serialised starting with the high-
est bit of the word and padded with
zero bits if the number of variables
is not a multiple of 32)

0x30 + dcount/32e Number of variables participating in
the instance

Mainly intended for debug purposes

Table 3.22: Data format produced by memory controller for single testruns
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Memory controller for batch testruns The memory controller module for batch testruns is a
modified version of the basic memory controller module. It writes a hardcoded number of 256 pairs
of solved flags and performance counter values to the attached memory block interface. After each
testrun the controller issues a restart signal triggering the beginning of the next test run until 256
testruns got executed and their results stored. The circuit itself is synthesised from a serialisation
algorithm. Serialisation of measurement data is triggered by the reset signal being set to 1. The
source code of this module is available in Appendix B.5.7.

Input port Type Required Comments
reset STD LOGIC Yes The module expects the reset signal

being 1 if in reset state and being 0
otherwise

clock STD LOGIC Yes Module operation is triggered by
the rising edge of the clock signal

variables[] STD LOGIC VECTOR Yes Final truth assignment established
by the SAT solver to be serialised

solved STD LOGIC Yes The module expects the solved sig-
nal being 1 if the SAT solver claims
having found a solution and being 0
otherwise

performance[] STD LOGIC VECTOR Yes Signal vector describing the number
of clock cycles the SAT solver ran

Output port Type Required Comments
data[] STD LOGIC VECTOR Yes 32-bit data port to the attached

memory block interface
address[] STD LOGIC VECTOR Yes 7-bit address port to the attached

memory block interface
write enable STD LOGIC Yes Write enable port to the attached

memory block interface (set to 1 if
the data and address vectors are
valid)

restart STD LOGIC Yes Set to 1 when the start of the next
testrun is requested and set to 0
otherwise

Parameter Type Required Comments
variable count Integer Yes Number of variables participating

in the SAT instance

Table 3.23: Interface of memory controller for batch testruns

The modified memory controller module outputs the measurement data to the on-chip memory
according to a simplified data format. The measurement data is organised in 32-bit words stored
in big endian byte order. The first 256 words each contain a 1-bit flag set to 1 if the SAT solvers
claims having found a solution which is stored in the highest bit of the word. The lower 31 bits
contain the number of clock cycles the SAT solver ran. The established truth assignments are
not stored to the result data memory. The 256 result words are followed by a single checksum
word mainly intended for debug purposes. This checksum c is computed as a rotating XOR-based
checksum of the data words wi:

c :=
255⊕
i=0

(
wi · 28(4−(i mod 4)) + bwi · 2−8(i mod 4)c

)
mod 232
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RAM interface (4K) This module provides a wrapper for an on-chip SRAM block configured
to operate in RAM mode and is used by the memory controller module for single testruns. The
ROM block is accessed in units of 32 bits and holds a maximum of 128 words. The source code of
this module is available in Appendix B.5.8.

RAM interface (16K) This module provides a wrapper for an on-chip SRAM block configured
to operate in RAM mode and is used by the memory controller module for batch testruns. The
ROM block is accessed in units of 32 bits and holds a maximum of 512 words. The source code of
this module is available in Appendix B.5.9.

3.2.4 Introduction to the JTAG standard

Joint Test Action Group (JTAG) is the usual name used for the IEEE 1149.1 standard entitled
Standard Test Access Port and Boundary-Scan Architecture as well as following standards based
on this for test access ports used for testing printed circuit boards using boundary scan. Boundary
scanning is a technique which allows specifically defined registers and signals, respectively, of a
circuit being accessed by an external interface without disturbing the chip operation itself. This
way JTAG provides a very convinient way for debugging hardware of various kinds.

While designed for printed circuit boards, it is nowadays primarily used for testing sub-blocks of
integrated circuits, and is also useful as a mechanism for debugging embedded systems, providing
a convenient ”back door” into the system. When used as a debugging tool, an in-circuit emulator
which in turn uses JTAG as the transport mechanism enables a programmer to access an on-chip
debug module which is integrated into a chip via JTAG. The debug module enables the programmer
to debug the behaviour of an embedded system.

Hardware devices communicate to the outside world via a set of I/O pins. By themselves, these
pins provide limited visibility into the workings of the device. However, devices that support
boundary scan contain a shift-register cell for each signal pin of the device. These registers are
connected in a dedicated path around the device’s boundary (hence the name). The path creates
a virtual access capability that circumvents the normal inputs and provides direct control of the
device and detailed visibility at its outputs. Many modern devices are even able to provide this
kind of debug facility for structures within the circuitry implemented by the chip. This way a
chip can allow debug access to internal strucutres which otherwise would be completely isolated
and invisible from the outside world. During testing, I/O signals enter and leave the chip or
its components, respectively, through the boundary-scan cells. The boundary-scan cells can be
configured to support external testing for interconnection between chips or internal testing for
logic within the chip.

To provide the boundary scan capability, IC vendors add additional logic to each of their devices,
including scan registers for each of the signal pins, a dedicated scan path connecting these registers,
four or five additional pins, and control circuitry. The overhead for this additional logic is minimal
and generally well worth the price to have efficient testing at the board level.

Almost all modern FPGA provide powerful JTAG based debugging and even programming ca-
pabilities. Using the standardised JTAG interface, it is possible to read and even write register
and memory block contents inside the FPGA and to access signals using special control circuitry.
Most devices even allow to be partially or fully programmed using the JTAG transport infras-
tructure. This way the JTAG interface provides an integrated communication platform between a
FPGA and a host computer which provides all ways of interactions with the hardware device that
are necessary during hardware development. Most FPGA development environments even contain
JTAG based communication libraries which allow for automated testing and communication with
the FPGA device. For example, the Altera development environment used during this project,
provides efficient ways to read the full contents of an on-chip SRAM block to the host computer
and if necessary to write new data back into the memory block.
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3.2.5 Automatic generation and execution of test cases

To be able to run large-scale experiments on the FPGA equipment covering reasonable numbers of
different SAT instances, it was necessary to build an infrastructure able to automatically generate
hardware definitions implementing a given SAT instance in the way it was desired in the particular
experiment and to automatically compile, run, and measure the generated hardware definitions.
Especially compilation and execution of the test cases had to be done in a fully unattended manner
since the compilation of a single test case can take up to several minutes depending on the exact
scenario.

The generation of the hardware definitions is highly specific for the different experimental setups
and described in Chapter 4. However, since the circuitry used was designed with a high level of
reusability in mind, the generation in most cases was restricted to the generation of the main
SAT solver module. The main modules linking the different components together were adjusted
manually in most cases because they just changed between several experimental scenarios but nut
depending on the instance being analysed.

Compilation, execution and data collection were performed by simple Windows batch scripts,
which were manually adjusted for the different experiments. These scripts called several prebuild
tools and script modules to make the setup of the experiments as efficient as possible.

The unattended interaction with the Altera provided development environment was performed
using a couple of very powerful command-line interfaces to the Altera software. These interface
allow for script controlled operation of nearly the whole development environment. The core script
used to compile and run a test case and to read back the result data is shown in Figure 3.33 on
page 52.

md %1
copy %1. vhd %1\ sat_solver.vhd
copy %2 %1\
cd %1

quartus_map Sample --source=Sample.vhd --read_settings_files=on --write_settings_files=off --
family=Cyclone

quartus_fit Sample --read_settings_files=off --write_settings_files=off --part=EP1C6Q240C8 --
fmax =14.318 MHz

quartus_asm Sample --read_settings_files=off --write_settings_files=off
quartus_tan Sample --read_settings_files=off --write_settings_files=off --timing_analysis_only
quartus_pgm -c "ByteBlaster [LPT1]" Sample.cdf
..\ Sleep.exe 15000
quartus_stp -t ..\ readmem.tcl > out_stp1.txt
..\ Sleep.exe 5000
quartus_stp -t ..\ readmem.tcl > out_stp2.txt

cd ..

Figure 3.33: Example script controlling automated operation of the Altera Quartus II development
environment

The script takes as first parameter the name of the test case to execute. The specification of the
SAT solver module is expected to be stored under the name of the test case using the extension
.vhd in the current directory. As second parameter the script takes a directory, whose contents
are copied together with the SAT solver module to a working directory named after the test case.
This mechanism is intended to provide a template directory containing all files which are identical
for all SAT instances investigated in the current experiment (which are actually all files except the
actual SAT solver module).

After compiling the test case (whose master definition files are expected to be named Sample.vhd
and Sample.cdf for legacy integration reasons), the script programs the FPGA device. After this
the script waits 15 seconds (needs to be adjusted for batch test cases) to allow the FPGA running
the specific test case. Waiting is performed using a small application whose source code can be

52



3.3 Acquisition of reference data

begin_memory_edit -hardware_name "ByteBlasterII \[LPT1\]" -device_name "@1: EP1C6 (0 x020820DD)"
puts [read_content_from_memory -instance_index 0 -start_address 0 -word_count 128

-content_in_hex]
end_memory_edit

Figure 3.34: Example script controlling JTAG communication through the Altera Quartus II
development environment

found in Appendix A.5. The result data is read back using the Altera provided JTAG based
communication tool which is controlled using TCL scripts. Figure 3.34 on page 53 shows a TCL
script to read a single JTAG enabled memory block and displaying its contents in hexadecimal
notation to the screen (needs to be adjusted for batch tests as well since it reads only 128 words
in the displayed configuration). Please note that the words contained in the memory are read in
the opposite order as they appear in the SRAM block (e.g. the word written to the lowest address
of the memory block will be the last word outputted by the script). A second copy of the result
data is read after a delay of 5 seconds. This copy is compared by other support tools against the
first copy for debug purposes (but actually this comparison did not fail even in a single test case).

The text files created by this script contain the result data according to the formats described
in Section 3.2.3. They were processed by various scripts and tools to aggregate them into comma
separated value (CSV) table files which are readable by Microsoft Excel and other spreadsheet
applications. Many of these tools and scripts are quite specific to the different experiment scenarios.
Since all of these tools are very basic text processing and aggregation tools (written in C#), there
is no point in discussing them in detail in this report because they are not giving any insights
into the matter of the project. The scripts and tools are included on the accompanying CD-ROM
to make them available to future projects. The aggregated results of the various experiments are
presented in Chapter 5.

3.3 Acquisition of reference data

Acquiring and verifying reference data was a crucial aspect of the project. On the one hand there
was the need for randomly generated SAT instances consisting of a defined number of variables and
clauses having a specified length to be investigated using different hardware SAT solver approaches.
On the other hand, reliable performance data of SAT solvers on these instances was necessary to
have a base data set for comparing the hardware performance against.

3.3.1 Generation of random SAT instances

Since the aim of the project mainly was the research on a general purpose SAT solver engine rather
than a domain specific engine, the decision was taken to investigate the behaviour of the software
and hardware SAT solver engines on pseudo-randomly generated SAT instances. This requirement
was served by a manually created SAT instance generator. The generated instances should have
four basic properties:

• Distinct variables should appear according to a uniform probability distribution

• A variable must not appear multiple times inside a single clause

• All specified variables must appear inside the SAT instance

• The generated SAT instance must not be easily partitionable
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The reason for the first three requirements is quite obvious. If a SAT instance is partitionable,
this means, that it is possible to split the set of variables into multiple classes in a way, that no two
variables contained in different classes together appear in the same clause. A partitionable SAT
instance in 3CNF can easily be split into smaller SAT instances which can be solved individually.
The original SAT instance is satisfiable if, and only if, all of these sub-instances are satisfiable.

The format chosen to represent SAT instances is compatible with the one used by many SAT
related tools published by other researchers. It is a simple text format in which every line starting
with a single letter ”c” followed by a space character as well as whitespace lines are treated as
comments. The first non-comment line must be starting with the string ”p cnf” followed by a space
character which is followed by the number of variables and the number of clauses, separated by a
space character. Each following line represents a single clause of the SAT instance. Variables are
named consecutively starting from 1 to the number of variables available. A clause is defined by a
space separated series of variable numbers, optionally prepended by a ”-” character which signals
an inverted literal. The lines are terminated by an optional ”0” character followed by a normal
line break. Optionally the last non-comment line of the file can contain a single ”0” character to
signal the end of the file. Most tools used in this project handle these ”0” delimiters in a flexible
way by ignoring them. Regarding SAT related tools on the internet, there are some tools which
actually require the zeroes and other that do not require or even do not allow them.

1. Repeat for k clauses with 3 out of n variables each:

a) Get 2 pseudo-random bytes bi, i ∈ {0..1} from the cryptographic random number gen-
erator built into Microsoft Windows (Crypto API)

b) Convert b0 to a double precision floating point value µ (53-bit mantissa)

c) Multiply µ by (n− 1) (assuming n ≤ 50, giving at most 46 significant bits)

d) Divide µ by (28 − 1)

e) Floor the result and use it as variable identifier (in the range of 1 to n)

f) If variable is already present in the current clause, discard it and restart current iteration

g) If b1 ≥ 128, the variable is inverted in the clause

2. Check whether all n variables occur in the instance - if not discard generated instance and
repeat generation process

Figure 3.35: Basic algorithm for generation and pseudo-random SAT instances (not recommended
for future experiments)

During the first experiments generation of SAT instances was accomplished by the algorithm
show in Figure 3.35 on page 54. Unfortunately, this algorithm provides a resonably uniform
probability distribution only for smaller variable counts (≤ 50) which caused problems during
the phase transition related experiments. Therefore the algorithm was replaced by the algorithm
shown in Figure 3.36 on page 55 in all following experiments. The first version of the generation
algorithm should not be used for future experiments. The source codes of the instance generators
are available in Appendix A.6 and Appendix A.7, respectively.

The distribution of the variables inside a generated instance as well as whether it is easily
partitionable were verified by a secondary tool whose source code is available on the accompanying
CD-ROM. The partitionability check works by building the dependancy graph of the variables
regarding the clauses they participate in. Each variable participating in the analysed instance
corresponds to a vertex in the dependancy graph. The graph contains an (undirected) edge between
two vertices if the corresponding variables participate together in a single clause. The instance is
easily partitionable if the dependancy graph is not connected (meaning that there exist vertices

54



3.3 Acquisition of reference data

1. Repeat for k clauses with 3 out of n variables each:

a) Get 6 pseudo-random bytes bi, i ∈ {0..5} from the cryptographic random number gen-
erator built into Microsoft Windows (Crypto API)

b) Concatenate first 5 bytes to form an unsigned 40-bit integer λ :=
∑4

k=0 bi · 28(4−i)

c) Convert it to a double precision floating point value µ (53-bit mantissa)

d) Multiply µ by n (assuming n ≤ 256, giving at most 48 significant bits)

e) Divide µ by 240

f) Floor the result and use it as variable identifier (in the range of 1 to n)

g) If variable is already present in the current clause, discard it and restart current iteration

h) If b5 ≥ 128, the variable is inverted in the clause

2. Check whether all n variables occur in the instance - if not discard generated instance and
repeat generation process

Figure 3.36: Improved algorithm for generation and pseudo-random SAT instances

which do not have a path between them).

3.3.2 Examination of satisfiability using software tools

To be able to verify the correct behaviour of the different hardware SAT solver engines it was im-
portant to know whether a particular SAT instance was satisfiable or unsatisfiable. This knowledge
was acquired by running all generated instances through a complete software SAT solver known
to work reliably. The software solver chosen for this task is MiniSat which is a freely available
complete light-weight SAT solver implemented in C. It supports the previously mentioned data
format and also makes performance measurements quite easy (see Section 3.3.3). MiniSat operates
based on the DPLL algortihm mentioned in Section 2.2. The original version is designed to be
used under Linux but there is also a patch available to make it compile under Windows.

The accompanying CD-ROM includes some scripts used to automatically generate large numbers
of pseudo-random SAT instaces and running them through MiniSat. There is also a small tool
available aggregating the MiniSat results into CSV files to be further processed by other aggregation
tools mentioned in Section 3.2.5 or to be used directly within a spreadsheet application, respectively.

3.3.3 Automatic measurement of software solver timings

Since the aim of the project was the research in efficient hardware SAT solver engines which are able
to operate faster than existing software based SAT solver engines it was necessary to acquire timing
information of various software SAT solvers for comparison. The primary problem of this task is
the fact, that on the one hand, the algorithms implemented by the software SAT solver engines
are heavily different from the hardware approaches researched during this project. This makes it
hard to measure the performance in some sort of ”algorithm steps”. On the other hand, since most
experiments were done on rather small SAT instances due to the limited space available on the
provided FPGA device, the SAT solvers found most solutions so quickly, that it was not possible
to get meaningful execution timings on the application level. The latter is also undesirable because
this method of measurement would include the time the software SAT solver needs to start and to
load and to preprocess a particular SAT instance. Regarding the hardware SAT solver engines, this
time is absorbed by the compilation stage which is not included into the measurements because
this amount of time is negligible if the hard engine is implemented by an ASIC. Therefore another
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way had to be found to measure the performance of the software engines.
The software SAT solvers used for comparison purposes were the previously mentioned MiniSat

solver [ES03] [SE05] on the one hand, which is a complete solver, and the software based WalkSAT
solver, which is an incomplete solver more closely related to the algorithms implemented by the
hardware engines. Both solvers are freely available through the internet and operate as command-
line tools under Linux. To get meaningful performance data about these solvers the decision was
taken to slightly modify both solvers enabling them to use the time-stamp counter included in all
modern Intel IA-32 compatible CPUs as a timing reference. This time-stamp counter consists of
a 64-bit register (even on 32-bit CPUs) which is initialised to 0 at powerering up the CPU and
incremented by 1 every clock cycle regardless of the application context. The register contents can
be read by a special CPU instruction named RDTSC which is available in all priviledge levels (see
[Int06a] and [Int06b]).

Both software SAT solvers were prepared by surrounding their inner search loops by two measure-
ment points reading the time-stamp register to a local variable. The difference of the time-stamps
at both measurement points gives the number of clock cycles the search ran through. Figure 3.37
on page 56 shows inline assembly code reading the time-stamp register to a local variable living
on the stack. To make measurement results more meaningful, all screen output and unnecessary
statistics collection of the SAT solvers which take place in the main search loop were removed (see
modified sources available on the accompanying CD-ROM).

unsigned int tscStartHigh;
unsigned int tscStartLow;
unsigned int tscEndHigh;
unsigned int tscEndLow;
unsigned long long clockCycles;

__asm__ __volatile__ (
"rdtsc;"
"mov %%eax , %0;"
"mov %%edx , %1;"
: "=m"(tscStartLow), "=m"(tscStartHigh)
: "m"(tscStartLow), "m"(tscStartHigh)
: "%eax", "%edx"

);

/*
* Activity to measure goes here
*/

__asm__ __volatile__ (
"rdtsc;"
"mov %%eax , %0;"
"mov %%edx , %1;"
: "=m"(tscEndLow), "=m"(tscEndHigh)
: "m"(tscEndLow), "m"(tscEndHigh)
: "%eax", "%edx"

);

clockCycles = (((( unsigned long long)(tscEndHigh)) << 32) | (( unsigned long long)(tscEndLow)))
- (((( unsigned long long)(tscStartHigh)) << 32) | (( unsigned long long)(tscStartLow)))

Figure 3.37: Example C/Assembler source for reading the time-stamp counter of Intel IA-32 com-
patible CPUs

The main problem with this measurement technique is the fact that the time-stamp register is
independant of execution context and cannot be saved by the operating system or an application.
Therefore it is necessary to reduce the number of CPU interrupts and context changes during
the measurement interval as much as possible. This was accomplished by booting the computer
running the measurements from a bootable Linux CD-ROM into text mode without loading the
graphical user interface (Knoppix V5.1.0 English CD edition was used for the measurements).

56



3.3 Acquisition of reference data

All unnecessary cables like USB devices, mouse and network connection were unplugged and the
bootable CD-ROM removed from the drive (the CD data was entirely loaded to a RAM disk at
startup). Each SAT instance was measured 100 times and the minimum timing of all runs taken
as the result.
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4.1 Basic circuits

After reaching a project state allowing for automated large-scale experimentation, the first cir-
cuits investigated were straight-forward implementations of small SAT instances consisting of 10
variables following the basic experiments described in Section 3.1.2 and Section 3.1.3. These ex-
periments were the first experiments which used the newly created VHDL component library doc-
umented in Section 3.2.3. Rather than manually implementing single instances, these experiments
used SAT solver modules automatically generated by software out of SAT instance descriptions
generated using the techniques described in Section 3.3.1.

The main goals of these experiments were on the one hand to check that the automated testing
facilities described in Section 3.2.5 were working properly. On the other hand the scalability of
the basic algorithms proposed in [COP06] on slightly larger instances was of major interest. Until
these experiments, the proposed algorithms had only been tested on very small instances consisting
of variable and clause counts in ranges where in fact all produced SAT instances are satisfiable.

These early automated experiments were accompanied by the creation of an extensible generator
application which is able to generate SAT solver modules in VHDL language based on SAT instance
descriptions. The generator tool is included on the accompanying CD-ROM and support a wide
variety of options for the creation of the SAT solver modules. Unless otherwise stated, all SAT
solver modules used in the automated experiments were created using this tool.

The SAT instances used were created using version 1 of the SAT instance generator which gives
a reasonable variable distribution for the given instance sizes. All instances investigated consisted
of 10 variables. The number of clauses included were 30, 40, 50, 60, 70 and 80, respectively.
For each configuration 30 instances were generated leading to a total of 180 instances which were
investigated.

4.1.1 Asynchronous circuits

These were the first automated experiments executed using the newly created automated testing
environment. The SAT solver modules used in these experiments were of the asynchronous type
described in Section 3.1.3 with additionally added logic described in Section 3.1.4 to harden the
circuits against compiler optimisations. The top-level template linking the SAT solver modules
with the synchronous support circuitry can be found in Appendix C.1.

Since the asynchronous circuit type showed very promising behaviour through the manual ex-
periments, it was chosen first for the automated tests. Unfortunately, the results were very disap-
pointing because the circuits did not manage to come up with a solution in the given time for most
satisfiable instances. A couple of instances could be solved by this type of circuit but the average
performance reached was very poor (see Section 5.1 for results and a discussion of the behaviour
of this circuit type).

A couple of experiments were carried out testing the circuit type using different numbers of
delay gates and insertion of delay logic to other parts of the circuit. However, these modifications
were unable to noticeably increase the average performance of the circuit type. The main problem
with the asynchronous circuit type is that the Altera provided compiler provides only very limited
options to influence the optimisation and the layout of combinational loops. Even for smaller
instances the compiler takes large amounts of time apparently trying to optimise the combinational
circuit. Doing this it outputs warning messages stating that a combinational loop was found. Since
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proper support for combinational loops is apparently not integrated into the Altera compiler and
because of the fact, that meaningful information about the circuit behaviour is not extractable
without precise control over the circuit layout on the FPGA chip, the decision was taken to drop
the idea of having fully combinational SAT solver engines for this project. Instead of this, all further
efforts were concentrated on the optimisation of the synchronous variants of the SAT solver engine.

4.1.2 Synchronous circuits

The first synchronous circuits investigates in the automated testing environment were of the syn-
chronous type described in Section 3.1.2 with additionally added logic described in Section 3.1.4 to
harden the circuits against compiler optimisations. The top-level template linking the SAT solver
modules with the support circuitry can be found in Appendix C.2.

Unfortunatly it turned out, that the basic algorithm concept used in the manual experiments is
not scalable to larger instances because the fully deterministic synchronous circuit type was unable
to solve most instances provided. Only very few instances could be solved and these were limited
to instances which were either satisfied by the initial truth assignemnt (all variables set to false)
or which required only a single cycle truth the circuit flipping some variables. A short discussion
of this behaviour is included in Section 5.2.1.

Because of the structure of the SAT instances the synchronous circuit type was able to solve it was
conjectured that the synchronous circuit is toggling to many variables at ones continously flipping
between truth assignments having most variables set to either true or false, respectively. This led
to the idea of introducing some form of randomisation to the synchronous circuit. The basic idea
was to toggle a variable participating in an unsatisfied clause only with a certain probability while
variables participating in more unsatisfied clauses than others should have a higher probability of
being flipped.

4.1.3 Probabilistic synchronous circuits

The idea behind the first probability driven circuits was that each unsatisfied clause on average
should cause only one of its variables to be toggled to prevent the global truth assignment from
changing to quickly. To accomplish this task the synchronous circuit was amended by a shift
register holding one bit for each literal in each clause (e.g. for 50 clauses, this means 150 bits
assuming a SAT instance in 3CNF). This shift register is fed by a pseudo-random number generator
(implemented as linear feedback shift register) whose output is postprocessed by gating logic to
convert the uniform binary probability distribution of the LFSR to a configurable binary probability
distribution (in this case giving a probability of approximately 1/3 for a bit being set to 1). The
shift register is running through all term evaluators and shifted by one bit each clock cycle. An
unsatisfied clause triggers the toggling of a participating variable only if the corresponding bit in
the area of the shift register corresponding to this clause is set to 1. The top-level template linking
the SAT solver module with the mentioned shift register and the support circuitry can be found
in Appendix C.3.

Despite using early randomisation components later proving to have significant problems regard-
ing various functional aspects and suffering from statistical dependencies and short periods, this
synchronous circuit type managed to solve all satisfiable instances which were investigated. Most
of them were even solved in significantly less than 1000 clock cycles. Even the use of a erroneous
term evaluator component producing wrong toggling probabilities did not significantly obstruct
the computation of satisfying truth assignments because the SAT instances used were still very
small. A discussion about the behaviour of the circuit type can be found in Section 5.2.2.
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4.2 Phase transition related experiments

Because the space on the available FPGA device is very limited, the idea came up to systematically
generate SAT instances which will be particularly hard to solve because of their structure. Previous
publications [CKT91] [GMPW96] show that large numbers of hard SAT instances can be found
at specific ratios of the number of participating variables to the number of clauses as described in
Section 2.3.

Since available research publications experimentally show the existence of these kinds of phase
transition phenomena, the available documentation does not provide large-scale experimental re-
sults about the exact location of the phase transition regarding different numbers of participating
variables. Therefore two different experiments were setup to investigate the behaviour of a com-
plete software SAT solver regarding phase transition phenomena taking into account the number of
participating variables and to investigate the behaviour of the previously introduced probabilistic
hardware SAT solver engine in and around the phase transition area.

4.2.1 Phase transition points

To get more precise data about the location of the phase transition points, the first step was to
carry out a purely software based experiment. SAT instances consting of 5 to 250 variables in steps
of 5 variables were analysed. For each number of variables 1000 pseudo-random instances were
created for every ratio between the number of variables and the number of clauses between 3.5 and
6.0 in steps of 0.1 (e.g. a ratio of 4.0 means taht there are exactly four times more clauses than
variables). This leads to a total of 1.3 million SAT instances whose satisfiability was checked using
the complete MiniSat software solver engine. For each configuration of the number of variables
and the number of clauses, the number of satisfiable and unsatisfiable instances was recorded.

Unfortunately, after executing these experiments, the first version SAT instance generator de-
scribed in Section 3.3.1 which was used to generate the pseudo-random SAT instances, proved
not to generate a reasonably uniform probability distribution of the variables leading to highly
unprecise results shown in Section 5.2.3. However, the results were precise enough to get an idea of
the location of the phase transition point for smaller instances up to 100 variables. Therefore the
next step was, to investigate the behaviour of the hardware SAT solver engine on larger sized SAT
instances (compared to the previous experiments) which are located around the phase transition
point.

4.2.2 Satisfiability related experiments in hardware

To provide higher quality reference data for the following exepriments, new instances were gener-
ated using the second version of the SAT instance generator described in Section 3.3.1. The number
of variables for this and in fact all experiments following was fixated to 100. On the one hand,
this number of variables is sufficiently high to give good experiment results about the behaviour
of the hardware SAT solver at least on mid-sized SAT instances. On the other hand, this number
of variables leaves enough room on the FPGA device to carry additional measurement logic as
well as future extensions to the SAT solver logic itself. This way a standard set of instances was
generated consisting of a total of 700 instances. The ratio of clauses to variables was chosen being
3.7 to 4.3 in steps of 0.1 leading to 100 pseudo-random SAT instances per configuration. However,
most experiments (including this one) use only a subset of this standard test set (which is also
included on the accompanying CD-ROM), because the compilation time of the test cases took up
to 10 minutes for some experiments.

Unfortunately, the basic probability driven SAT solver engine proved to perform very badly on
the generated instance only being able to solve only about 2% of the satisfiable instances. This
later proved to be caused mainly by the earlier mentioned toggling probability of 1/3 being still far
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to high for reasonably sized experiments and the randomisation engine containing severe problems
regarding statistical dependencies.

4.3 Globally probability driven circuits

The first step in engaging the previously mentioned problems were experiments on a subset con-
sisting of 20 SAT instances of ratio 3.7. These were tested using the basic probability driven
circuit using three different toggling probabilities of 1/2, 1/3 and 1/4, repsectively. The experiments
carried out showed a significantly better performance using a probability of 1/2 while being unable
to solve any instance using a probability of 1/4. Since this behaviour was absolutely contrary to
the expected behaviour, this led to a review of all involved parts of the VHDL library documented
in Section 3.2.3. While reviewing the term evaluator module used the bug in the term evaluator
module mentioned in this section was discovered and fixed. After fixing this bug the performance
significantly improved and the behaviour of the circuit was much closer to the expectations.

Since it was likely that the probability factors giving optimal performance were dependant on
the actual number of variables and clauses participating in the SAT instance, a basic formula for
the calculation of a base toggling priority Pb was defined with n being the number of variables and
c being the number of clauses, assuming a fixed clause length of 3:

Pb :=
1
3c
n

Since 3c/n is the average number of occurencies of a single variable in a pseudo-randomly gener-
ated SAT instance in 3CNF, the idea behind this formula was a linear toggling probability regarding
the fraction of clauses a variable participates in which are unsatisfied (e.g. if a variable participates
only in satisfied clauses, it should never be toggled, if it participates only in unsatisfied clauses it
should always be toggled). This is of course only an approximation since most variables do not
occur exaclty 3c/n times in an arbitrary instance.

4.3.1 Probability factor experiments

The next step during the experiments was testing the fixed circuitry with the derived probability.
Since the derived probability was less than 0.1 for the selected SAT instances of the standard set
(50 instances of ratio 3.7), the circuit was also run using probabilities derived by multiplying the
calculated base probability with factor between 1.0 and 4.0 in steps of 0.5. The results of these
experiments are shown in Section 5.2.2.

It turned out that the calculated base probability gave very good performance on some instanes,
while the multiplied probabilities gave good performance on some other instances. Since the average
performance of the circuit was still rather disappointing and the circuit even failed to solve several
instances depending on the probability multiplier used, another design review of the SAT solver
circuitry was started.

4.3.2 Pseudo-random number generators

During a discussion in one of the project meetings, the concern came up, that the simple randomi-
sation engine currently used could suffer from statistical dependencies between the bits run through
the selection bit register. Another point of concern was the large number of clock cycles a single
bit takes for traveling through the whole register until being discarded and the number of toggling
decisions it influences on its way through the register (e.g. regarding the SAT instances used in the
previous experiments, the number of clock cycles a generated bit remains in the selection register
was 3c = 3 · 370 = 1110).

To tackle possible problems with the randomisation engine, two modified versions of the ran-
domisation system were implemented. In the first step the LFSR used to generate the input bits
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for the probability gating logic was parallelised to generate 10 fresh bits every clock cycle. Since
the probability gating logic documented in Section 3.2.3 reduces ten bits in each clock cycle to
a single bit following the preconfigured probability distribution, this way statistical dependencies
between the input bits of the probability gating logic were reduced to the level implied by the
LFSR used. This modification heavily improved the average performance of the hardware SAT
solver and enabled it to solve instances the circuits using the old randomisation engine were unable
to solve.

The second modification introduced aimed at the travel time of the bits in the selection bit
register. The single LFSR previously used was replaced by an array of 10 LFSR starting with
different seeds each producing 10 fresh bits every clock cycle. The bits generated by each of these
LFSRs was processed by a dedicated probability gating module leading to the generation of 10
new selection bits each clock cycle. These 10 bits were concatenated and fed into the selection bit
register reducing the travel time of the single bits by a factor of 10. This way the number of toggling
decisions each bit influences was also reduced by a factor of 10. This variant of the SAT circuit
was the first variant able to solve all 50 SAT instances and it also was the first hardware engine
giving an average performance lying significantly over the performance of the MiniSat software
solver (even if the fact is taken into account, that the hardware engine - even if integrated into
an ASIC - cannot be clocked as fast as the pipelines of the Pentium IV CPU used to acquire the
reference data). Section 5.2.4 shows results of the experiments along with a discussion of the effects
of randomness to the circuit.

Since the calculated base probability still had no experimental evidence of giving optimal per-
formance, the experiments using different probability multipliers were repeated using the modified
SAT circuitry. This time, probability multipliers between 0.75 and 2.5 where tested in steps of 0.25
with an additional multiplier of 0.875 being evaluated. All probabilites tested managed to produce
a shortest runtime for at least one instance. However, the average performance of the circuit was
decreasing for all probability multipliers over 1.0. Starting with a factor of 1.75, the circuit was
even unable to solve certain instances. Surprisingly, the performance increased reducing the factor
slightly below 1.0 with a factor of 0.875 giving more than twice the average performance of the base
probability. However, reducing the multiplier further to 0.75 gave only half average performance
compared to the base probability. Detailed results of the experiments are discussed in Section
5.2.4.

4.3.3 Simulated annealing

To further improve the performance of the SAT solver engine, the idea came up to use a simulated
annealing approach to dynamically calculate the probability used to toggle a specific variable.
This was implemented by modifying the probability gating logic. The basic idea was to start the
solving process with a higher probability and to exponentially ”cool the process down” during the
first s clock cycles. This was achieved by reading probability boost values from a preconfigured
table which got added to the base probability dependant on the number of clock cycles the circuit
already run through. The starting probability was calculated as

Ps := 0.875 · Pb + ω · 0.875 · Pb

with ω being a preconfigured boost factor exponentially decreasing during the first s clock cycles
until it reaches 0. Experiments using boost factors between 0.25 and 1.25 in steps of 0.25 were
carried out using values of s of about 5000 and 10000, respectively. The formula used to precalculate
the boost factor for a specific clock cycle i is (λ and µ are constants, c is the number of clauses
and n the number of variables):

ωi :=
λ
3c
n

· e−
ci
nµ
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In some cases the performance reached was higher than that reached by the previously discussed
circuit variant using a probability factor of 0.875 but in 48% of the testruns, none of the circuits
using the simulated annealing technique was able to give better performance compared to the
circuit not using simulated annealing. Detailed results of the experiments can be found in Section
5.2.6 along with a discussion of the basic idea behind the simulated annealing approach and possible
reasons for its bad performance. Because of these rather disappointing results and because of the
limited time left in the porject schedule, the decision was taken to drop the simulated annealing
approach.

4.3.4 Runtime variance experiments

All experiments carried out so far were measured using only a single run per SAT instance using
a constant seed applied to the randomisation engine. To get more meaningful data regarding the
statistical behaviour of the SAT solver engine, the SAT circuitry described in Section 4.3.2 was
modified to be able to run a total of 256 consecutive testruns on the same instance and record the
number of clock cycles needed to find a solution by each iteration. The modifications done to the
components of the SAT support circuitry are documented in Section 3.2.3.

The results of these testruns can be found in Section 5.2.5 along with a discussion of the statistical
distribution of the runtimes using different seeds. Unfortunately, during these experiments, the
period related problems with the 40-bit LFSR became apparent because in many of the testruns
the result timings became periodic. However, since these periods are reasonable large compared
to the number of testruns per instance, the data generated is still usable to do meaningful analysis
about the statistical distribution of the runtimes.

For statitsical comparision the 50 SAT instances used in this experiment were also run through
the incomplete WalkSAT software solver that employes a randomised nieghborhood search strategy.
This search strategy is different from the highly parallelised search strategy used by the hardware
SAT solver engine but it is one of the closest comparable software search strategies compared to
the circuit used. The measurement of the timing of the WalkSAT solver were carried out according
to Section 3.3.3.

4.4 Locally probability driven circuits

During the experiments with the simulated annealing technique, another idea came up to heavily
modify the SAT solver design used so far. The globally probability driven SAT solvers all together
have the problem that they do not take into account the actual number of occurencies of a particular
variable in the SAT instance analysed. In almost all cases, the number of occurencies of most
variables will obviously not match the statistical expectancy. Therefore the idea came up the move
the logic doing the toggling decisions for the variables from the term evaluators to the variable
source modules. The basic design used in these experiments counted the number of clauses a
particular variable was wrong in and compared it to the total number of occurencies of that
particular variable in the SAT instance investigated (which was known by the variable sources by
preconfiguring it during code generation). The quotient of the number of unsatisified clauses and
the total number of clauses the variable particiaptes in was used as the probability of toggling it.

The resulting circuit gave excellent performance on a couple of the 50 instances used in the
previously described experiments but the average performance was comparable to that of the
globally probability driven ciruit using a probability factor of 1.0. Results of the basic experiments
carried out with this circuit can be found in Section 5.2.7. The behaviour of this type of circuit
was not investigated further due to a number of reasons:

• Each variable source requires its own randomisation engine making it nearly impossible to
express it using compact logic while keeping a good approximation of the described toggling
probability.
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• The routing of the variable signals gets more complex making it harder to implement the
circuit in an universal ASIC.

• The completely changed circuit design would have required significant additional experimen-
tation time to come up with meaningful figures about its behaviour which was not available.

• Since the average performance of the basic experiment was not significantly higher than that
of the globally probability driven circuit it was considered to be of greater value to invest
the remaining time available for the project in the analysis of the statistical behaviour of the
globally probability driven circuit (see Section 4.3.4).
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5.1 Asynchronous circuits

As already stated in Section 4.1.1, the asynchronous circuit type proved to be heavily uncontrol-
lable even for smaller SAT instances consisting of only 10 variables. Appendix D.1 shows tables
containing the aggregated measurement data collected by the support circuitry ordered by the
number of clauses participating in the SAT instances.

Despite the uncontrollable and comparatively poor performance shown by the asynchronous
circuits, the tables also show, that the detection of a found solution by the circuit itself is heavily
unreliable since multiple instances which were essentially solved by the circuit were not discovered
as solved. The cause of this were probably floating signal levels in the asynchronous part of the
circuits observable through the oscilloscope.

To be able to do meaningful research in this area of asynchronous circuits it would be necessary
to have full control over the circuit layout on the FPGA chip. It would be even better to have
some sort of structured ASIC available which has fixed variable sources and term evaluators and
allows for the configuration of the signal flow between the different components. Since the output
produced by the Altera compiler provided only partial, hardly analysable knowledge about the
layout of the circuits on the FPGA chip, the only really meaningful result extractable from these
early experiments with fully combinational logic is, that the equipment avaialble is not suitable for
their proper analysis. Therefore all following experiments were focussed on synchronous circuits
as already stated previously.

5.2 Synchronous circuits

5.2.1 Fully deterministic circuits

The fully deterministic variants of the synchronous circuit type were the first ones investigated.
As the exepriments described in Section 4.1.2 showed very poor performance this decision was
quickly taken to move on to probability driven circuits. In fact, the probability driven circuits
investigated during the following experiments were fully deterministic as well, since the started
operation of their randomisation engines using preconfigured seeds, mainly to be able to reproduce
experiments in a fully defined environment. However, if implemented in structured ASICs, the
design of the randomisation engines would obviously being changed to an effectively random bit
source, for example based on temperature or radiation sensors.

As conjectured early and proved by the later experiments, the reason for the original fully
deterministic approach not to work even on small SAT instances is, that this approach is flipping
far to many variables each clock cycle. Even if taking into account, that each clause participating
in the SAT instance has only a probability of 1/8 assuming 3CNF and a random state in the search
process, this means, that the fully deterministic circuit will toggle a variable with a probability of

Pt :=
1
8
· 3c

n

with c being the number of clauses and n being the number of variables participating in the SAT
instances (therefore, 3c/n is the average number of clauses each variable participates in). Applied
to the SAT instance configurations having 100 variables and 370 clauses, which were widely used
during this project, this means that each variable toggles with a probability of 1.3875. This
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effectively means that the circuit toggles almost all variables in each clock cycle never getting even
close to a solution. This conjecture is fortified by the results shown in Appendix D.1.

5.2.2 Globally probability driven circuits

The first basic globally probability driven circuits investigated reduced the probability of an arbi-
trary variable toggling by introducing the selection bit register described in Section 4.1.3. Since
the toggling probability in the early experiments with this technique was set to 1/3, this implies
that in the average case, each unsatisfied clause randomly picks one of its participating variables
and toggles it. This implies that the probability for a variable toggling is now

P̃t :=
1
8
· c

n

which proved to provide good performance on the small instances investigated. Appendix D.1
shows the results of these experiments. If taking into account the erroneous term evaluator modules
used these times, the results would probably be slightly different. The problem with these term
evaluator modules was that, instead of giving a probability of m/3 for a variable to toggle with
m being the number of unsatisfied clauses, it participates in, the modules gave a probability of
approximately 1/3

m which heavily reduced the toggling probabilities especially in the experiments
involving many clauses. However, since later experiments showed that a generic toggling probability
of 1/3 is far too high for larger SAT instances, this may have even helped the search process in
this case (the smaller instances were not tested again using the fixed logic). Appendix D.2 shows
a summary of the results of these experiments.

Ongoing experiments with this circuit types, which are documented in Section 4.3, showed
that the basic probabilistic circuit with a toggling base probability of 1/3 gives poor performance
as the size of the analysed instances grows. Experiments with SAT instances consisting of 100
variables and 370 showed that a toggling base probability of 1/4 gives higher performance on these
SAT instances. Therefore it was conjectured that the optimal probability for toggling a variable
is dependant upon the number of variables and clauses participating in the SAT instance being
analysed.

Because of this an experimental formula for the base probability was defined which depends on
these two paramters as described in Section 4.3. However, the following experiments using this
formula for the calculation of the base probability showed, that best average performance results
are achieved by a probability which was slightly below the one calculated by this formula as can
be seen in Appendix D.3.

The suboptimality of the proposed probability function may have different reasons. On the one
hand does this formula assume, that each variable occurs in the same number of clauses which is
not the case in randomly generated SAT instances. On the other hand, the linear function used
may not be optimal and it may be beneficial to use an exponential function for the summing of
the probabilities. Because of the assumption regarding the number of variable occurrencies, the
simple derivation function used to calculate the base priority has the problem, that it reaches a
toggling probability of 1 as soon as a variable appears in 3c/n unsatisfied clauses which is to early
for frequently occurring variables and to late for infrequently occurring variables. This fact led to
the idea of having locally probability driven circuits described in Section 4.4 and Section 5.2.7.

5.2.3 Phase transition points

The software based experiments regarding the location of the satisfiability/unsatisfiability phase
transition were not only done to find hard instances to save logic resources on the FPGA device
as described in Section 4.2.2. Another reason for these experiments was to study the dependancy
of the phase transition point of the number of variables participating in the generated instances.
However, as documented in Section 4.2.1 this aim was failed due to erroneously generated reference
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data. Due to the high time consumption of the experiments it was decided to move on in the project
and to not repeat the epxeriments to get more reliable data since the computed data was at least
precise enough to settle future experiments around the phase transition point.
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Figure 5.1: Location of phase transition point (Y-axis) depending of the number of participating
variables (X-axis)

Figure 5.1 on page 69 shows the phase transition curve computed from the experiment results
which are shown in Appendix D.6. Phase transition locations for variable number above 100 are
not graphed because the experimental results for larger variable counts are not meaningful. The
higher phase transition locations regarding very small SAT instances are most likely caused by the
fact that 3CNF-SAT instances with only a small number of participating variables need to reach
a certain number of participating clauses (dependant on the actual number of variables), before
unsatisfiable instances are even possible.
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Figure 5.2: Fraction of satisfiable random instances consisting of 10 variables (Y-axis) regarding
ratios lying in the phase transition area (X-axis)

Another interesting aspect is, that the size of the phase transition area rapidly declines with
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an increasing number of participating variables. Figure 5.2 on page 69 shows a comparatively
large phase transition area for pseudo-randomly generated SAT instances consisting of 10 variables
whereas Figure 5.3 on page 70 and Figure 5.4 on page 70 show declining area sizes for 50 and 100
participating variables.
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Figure 5.3: Fraction of satisfiable random instances consisting of 50 variables (Y-axis) regarding
ratios lying in the phase transition area (X-axis)
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Figure 5.4: Fraction of satisfiable random instances consisting of 100 variables (Y-axis) regarding
ratios lying in the phase transition area (X-axis)

5.2.4 Effects of randomness

The experiments described in Section 4.3.2 proved that a strong randomisation engine is absolutely
crucial for the performance of the whole SAT solver engine. The randomisation engine was based
on linear feedback shift registers from the beginning on because this type of pseudo-random number
generator logic is implementable especially compact in FPGAs as well as in ASICs. In the latter
case it would nonetheless be advisable to replace this form of pseudo-randomisation by a real
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hardware randomisation engine (e.g. based on temperature or radiation sensors) or at least a
hybrid form of deterministic and non-deterministic randomisation logic.

As the experiments comparing different randomisation engines showed it can be quite hard
to produce a LFSR based randomisation engine with good statistical properties. Results of the
experiments are shown in Appendix D.4 and Appendix D.5, respectively. Especially if the output
of a shift register based randomisation engine is passed through some sort of reduction function
(in this case the probability gating logic), the situation can get even worse, because the reduction
function may eventually map different series of input values to identical series of output values.

Even if the statistical properties of the randomisation engine are sufficiently good, there can be
other problems which might not necessarily be apparent at first glance. During the experiments
regarding the statistical runtime behaviour of the hardware SAT solver described in Section 4.3.4
it became apparent, that the randomisation engine used had a significantly shorter period than
expected during its design which is shown in Section 5.2.5. The first conjecture was that the
shorter periods are produced by the array design linking the outputs of 10 40− bit LFSRs of the
same type. However, later reinspection of the implementation of the single LFSRs brought up the
actual reason for the short periods.

The LFSR implementation serving as core component of all randomisation engines used in the
globally probability driven circuit variants was designed after information found on the Internet.
Due to some vagueness about the actual implementation of the linear feedback function generating
input bits for the LFSR, the 40-bit LFSR implementation included in the VHDL library docu-
mented in Section 3.2.3 proved to have a significantly shorter period than the period stated on the
website.

The linear feedback function of the LFSR using taps at positions 19 and 21 of the register can be
described as a linear recursion relationship (assuming all operations taking place in F2) in which
si is the ith bit generated by the linear feedback function (the following paragraphs abstract from
the usage of a XNOR gate instead of a XOR gate because this simplifies the formulas and does
not change the final outcome):

sk+40 = sk+19 + sk+21, k ≥ 0

or equivalently

sk+19 + sk+21 + sk+40 = 0, k ≥ 0

This allows for the definition of the characterisitc polynomial of the LFSR, which is

f(x) = x19 + x21 + x40 =
(
x19

) (
1 + x2 + x21

)
Since this characteristic polynomial is obviously not irreducible, the resulting LFSR has multiple

disjoint classes of states not necessarily having the same size. It can travel through each of these
classes, depending on the seed used, but is unable to cross the boundaries between these classes
during normal operation. Therefore the period length of the LFSR depends on the seed used to
initially load it. The seeds used in the experiments with the globally probability driven circuit
types were retrospectively checked and found to give periods much higer than 230 which is enough
for single testruns. However, the batch testruns, whose results are presented in Section 5.2.5, were
affected by this issue.

It is strongly recommended that future projects eventually reusing parts of the created VHDL
library use the 41-bit LFSR used in the experiments with the locally probability driven circuit
type because this LFSR implementation does not have the mentioned problem. To show this, the
following points recapitulate some facts and definitions from Algebra:

• Every polynomial f(x) with coefficients in F2 having f(0) = 1 divides xm + 1 for some m.
The smallest value m for which this fact holds is called the period of f(x).
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• An irreducible polynomial of degree n has a period which divides 2n − 1.

• An irreducible polynomial of degree n whose period is equal to 2n − 1 is called a primitive
polynomial.

So for a LFSR of length n to produce the maximum possible period length of 2n − 1 the char-
acteristic polynomial must be a primitive polynomial (the maximum period is not 2n because a
LFSR based on XOR-gates cannot leave the all-zero state and a LFSR based on XNOR-gates
cannot leave the all-one state).

Since the characteristic polynomial of the 41-bit LFSR provided by the VHDL libarary is

g(x) = 1 + x38 + x41

the period of this LFSR implementation if in fact 241 − 1 because it can be shown that g(x) is
a primitive polynomial.

5.2.5 Statistical distribution of solver runtimes

Since most experiments carried out during the project resulted only in per instance ”snapshots”
of the performance reached, an expriment was set up to investigate the statistical distribution of
the runtimes of the globally probability driven SAT solver engine as described in Section 4.3.4.

The results shown in Appendix D.7 are partially subject to periodical behaviour of the randomi-
sation engine producing even periodical runtimes in many cases. However, since the period lengths
are relatively long compared to the total number of testruns per instance (which was set to 256),
the results still provide meaningful statistical data.

The recorded performance measurements show very large variances in the runtime required to
solve the instances provided. For most instances some of the runs finished after only a few hundered
clock cycles. The reason for this is probably that the circuit is coincidently placed in a state close
to the solution by the choice of the seed. However, on the other hand, most instances also produced
testruns running for a long time until the solution was found. In four cases there were even timeouts
because the circuit was unable to find a solution in the given time frame (these four instances were
excluded for the statistically discussions below). The standard deviation of the runtimes is close
to the average runtime in most cases.

For comparison purposes, the instances testes were also run 256 times through the WalkSAT
software SAT solver which is an incomplete randomised SAT solver, just like the hardware engine.
However, the actual algorithm implemented by it is quite different in many details. The main
purpose of this part of the experiment was to observe whether the hardware SAT solver is subject
to the same statistical behaviour as a software SAT solver using a comparable approach for solving
SAT instances.

The authors of the WalkSAT software SAT solver published a paper [GSCK00] in which they
are discussing the statistical distribution of the runtimes WalkSAT needs to solve random SAT
instances of different configurations and how these runtimes can be improved. Of particular in-
terest in this context are so-called heavy tailed probability distributions. These distributions are
characterised by a high probability peak close to the point of origin. Moving away from the origin
in terms of events the probability rapidly declines forming some sort of ”tail”. Unlike it is the
case with most other distributions, this tail is not asymptotically converging against zero. Because
of this, heavy tailed distributions can - from a theoretical point of view - have an infinitely large
variance. Detailed discussions of these distributions can be found in the paper mentioned. The
next pargraphs focus on comparing the behaviour of the comparatively well investigated WalkSAT
solver with the behaviour of the hardware SAT solver engine.

Figure 5.5 on page 73 shows an approximation of the distribution of the runtimes required by
the WalkSAT software SAT solver to solve pseudo-randomly generated SAT instances consisting
of 100 variables and 370 clauses. The distribution was well as the following distributions was
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Figure 5.5: Approximated distribution of runtime of WalkSAT solver (X-axis) showing scaled
probability approximation (Y-axis)

generated using a kernel density estimation employing a Gaussian kernel function and a frequency-
independent smoothening function. The heavy tailed character of the distribution is clearly visible.
WalkSAT optionally exploits this distribution when solving larger instances by restarting with a
different seed after a processing time threshold is reached.

0

5e–06

1e–05

1.5e–05

2e–05

2.5e–05

20000 60000 100000 140000 180000

Figure 5.6: Peak area of approximated distribution of runtime of hardware SAT solver (X-axis)
showing scaled probability approximation (Y-axis)

Figure 5.6 on page 73 shows an approximation of the peak area of the distribution produced by
the hardware SAT solver engine using different probability multipliers. The three closely adjacent
peaks belong to the probability factors of 0.75, 0.875 and 1.0 respectively. The curves below
them belong to the higher factors in steps of 0.25 in increasing order. The distribution shows the
characteristic layout of a heavy tail distribution showing that the randomised hardware SAT solver
engine is in fact behaving comparatively to the randomised software SAT solver.

Figure 5.7 on page 74 shows an approximation of the beginning of the tail area of the distribution
produced by the hardware SAT solver engine. It shows the typical floating character encountered
in the tail areas of heavy tailed distribution. The many spikes visible especially in the right-hand
side of the graph are probably produced mainly because of two reasons. On the one hand, the
smoothening function used in the kernel density estimation is frequency-independent. This means
that the smoothening does not take into account the more chaotic character of the distribution
in the tail area. On the other hand many of the spikes might be produced by the periodical
parts of the measurement results promoting single events which would not be the case if a better
randomisation engine would have been used.
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Figure 5.7: Beginning of tail area of approximated distribution of runtime of hardware SAT solver
(X-axis) showing scaled probability approximation (Y-axis)
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Figure 5.8: Approximated distribution of runtime quotients SAT solvers (X-axis) showing scaled
probability approximation (Y-axis)

Since the peaks of the heavy tailed distributions produced by the hardware SAT solver engine
for different probability multipliers looked like scaled versions of each other, the idea came up to
search for some sort of invariant aspect regarding the distribution produced. As an experiment,
the runtime samples recorded from the hardware SAT solver engine as well as those recorded from
the WalkSAT solver were normalised by dividing the values in each group of 256 runtime samples
belonging to a particular SAT instance and solver configuration by the arithmetic mean of the
samples. It was expected to produce different heavy tailed distributions having a peak near 1.0
because this is the expectancy implied by dividing the samples by their airthmetic mean.

Figure 5.8 on page 74 shows an approximation of the resulting distributions. The single free-
standing curve is the distribution implied by the WalkSAT samples. Surprisingly, the probability
distributions implied by the normalised runtime samples produced by the hardware SAT solver are
nearly identical. This leads to the conclusion that the fraction of short or long runs, respectively,
observable during multiple runs on a particular SAT instance is not dependent on the global
base toggling probability used. In fact, the choice of this probability mainly seems to ”scale” the
hardness of a particular SAT instance regarding the hardware SAT solver engine.

The distribution also shows that the hardware SAT solver seems to produce more very short
runs compared to the software solver. This is likely due to the fact the the hardware solver is
able to toggle many variables in parallel in a single operation cycle whereas the algorithm used in
WalkSAT only flips a single variable in each iteration. Therefore the hardware SAT solver seems
to be able to approach some solutions faster than the WalkSAT solver.
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5.2.6 Globally applied simulated annealing

As described in Section 4.3.3, the simulated annealing based approach was unable to noticeably
increase the average performance of the hardware SAT solver and was therefore dropped again.
Results of the experiments carried out can be found in Appendix D.8.

The reason why the simulated annealing has shown good performance for some instances but
degraded performance for others might be found in the actual realisation the the simulated anneal-
ing. The selection bits generated using a dynamic probability distribution as described in Section
4.3.3 are still traveling through the selection bit register when the actual generator probability
already changed to a lower value. This means, that the effective toggling probability at different
positions in the register and therefore for different clauses participating in the instance, respec-
tively, is different. Especially at the beginning of the simulated annealing process, the probability
boost rapidly declines, so at the time the first bits having a high probability being set to 1 reach
the end of the register, the bits travelling through the start of the register are already having a
much lower probability for being set to 1.

Further increasing the speed the bits run through the selection bit register would reduce this
problem but this is not a real solution since the problem will reoccur when scaling the circuit to
larger instances because the possible speed the selection bits can be run through the register is
limited.

5.2.7 Locally probability driven circuits

The locally probability driven circuits described in Section 4.4 were mainly based on the idea to
take the actual distribution of the variables in the SAT instance into account rather than other
the theoretical average number of occurencies. Like the simulated annealing approach, this circuit
type showed performance imporvements for a couple of SAT instances tested but was unable to
increase the average performance (in fact the average performace was cut to half compared to the
globally probability driven approach). Appendix D.9 shows results for some experiments done with
this circuit type.

Because of the various reasons outlined in Section 4.4, this approach was dropped as well as the
simulated annealing approach. Unfortunately, the small amount of gathered measurement data
makes it impossible to come up with meaningful conclusions about the behaviour of this circuit
type. Further investigation including batch test series would be necessary to get presentable results
in this direction. However, this would only make sense, if a way would be found to compactly
implement this circuit type in a structured ASIC because otherwise the compilation time of the
circuit into a FPGA device would be required to be taken into account. This would make this
kind of circuit only suitable for very special cases involving large search times compared to the
necessary synthesis time.
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6 Conclusion and future work

Recapitulating the research and development carried out during the project it could be shown that
the techniques proposed in [COP06] are suitable to speed up the computation of SAT problems
in hardware by a full order of magnitude. Unfortunately, the original idea of investigating the
behaviour of the asynchronous circuit variants and their behaviour in relation to the Church-
Turing Hypothesis had to be dropped mainly due to the lack of necessary equipment and the
applying time restrictions for the project.

However, the various synchronous variants of the hardware SAT solver engine, which were de-
veloped, as well as the experimentation infrastructure built during the project, give plenty of room
for future research in this area. Especially the randomisation aspects as well as the emerging heavy
tailed runtime distributions shared by the hardware solvers as well as existing software solvers seem
to be of particular importance when trying to improve the performance of SAT solvers belonging
to this class of algorithms.

Some topics especially interesting for future research include the development of efficient strate-
gies to exploit the heavy tailed nature of the emerging runtime distributions. As shown in
[GSCK00], there are many ways to improve serialised software based algorithms based on the
assumption of having a heavy tailed runtime distribution. It would be interesting to explore the
possibilities to apply the proposed concepts to the parallelised hardware based algorithms and to
research new ways of exploitation of these distributions.

Another area of eventual improvement possibilities consists of the inclusion of additional heuris-
tics into the still comparatively simple hardware algorithm. Eventually it would be possible to
parallelise some of the already well understood heursitics used in software base complete as well
as incomplete SAT solver engines to be applied to the hardware SAT solver in an efficient and
logic-saving way.

Large-scale statistical analysis of the observed phase transition phenomena would be possible
either directly in hardware or by a software simulation. This way it could be explored whether SAT
solvers operating in a highly parallelised way are subject to the same complexity related behaviour
as more serialised algorithms. Research in this area could be combined with research on SAT
instances originating from specific problem domains (implying specific instance structures) as well
as the investigation of related NP-complete problems like graph colouring which are experiencing
similiar phase transition phenomena as shown in [Wal02a].

Finally, the asynchronous variants of the SAT solver circuits could be reapproached using appro-
priate laboratory equipment to gain insights in the behaviour of complex systems not belonging
to the class of state machine like systems as mentioned in the introduction. This topic would give
much room for fundamental research since these kinds of hardly modelable systems are still far
away from being fully understood.
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Appendix A

Infrastructure tools

A.1 Small instance unsatisfiability search tool

#include <stdio.h>

bool evaluate(unsigned int discardTerm1 , unsigned int discardTerm2 , unsigned int discardTerm3 ,
unsigned int discardTerm4 , unsigned int literalMask1 , unsigned int literalMask2 , unsigned
int literalMask3 , unsigned int literalMask4 , bool stateA , bool stateB , bool stateC , bool
stateD) {

bool result1;
bool result2;
bool result3;
bool result4;

switch (discardTerm1) {
case 0: result1 = ((( literalMask2 >> 3) == 1) ^ stateB) | ((( literalMask3 >> 3)

== 1) ^ stateC) | ((( literalMask4 >> 3) == 1) ^ stateD); break;
case 1: result1 = ((( literalMask1 >> 3) == 1) ^ stateA) | ((( literalMask3 >> 3)

== 1) ^ stateC) | ((( literalMask4 >> 3) == 1) ^ stateD); break;
case 2: result1 = ((( literalMask1 >> 3) == 1) ^ stateA) | ((( literalMask2 >> 3)

== 1) ^ stateB) | ((( literalMask4 >> 3) == 1) ^ stateD); break;
case 3: result1 = ((( literalMask1 >> 3) == 1) ^ stateA) | ((( literalMask2 >> 3)

== 1) ^ stateB) | ((( literalMask3 >> 3) == 1) ^ stateC); break;
}

switch (discardTerm2) {
case 0: result2 = (((( literalMask2 >> 2) & 1) == 1) ^ stateB) | ((((

literalMask3 >> 2) & 1) == 1) ^ stateC) | (((( literalMask4 >> 2) & 1) == 1)
^ stateD); break;

case 1: result2 = (((( literalMask1 >> 2) & 1) == 1) ^ stateA) | ((((
literalMask3 >> 2) & 1) == 1) ^ stateC) | (((( literalMask4 >> 2) & 1) == 1)
^ stateD); break;

case 2: result2 = (((( literalMask1 >> 2) & 1) == 1) ^ stateA) | ((((
literalMask2 >> 2) & 1) == 1) ^ stateB) | (((( literalMask4 >> 2) & 1) == 1)
^ stateD); break;

case 3: result2 = (((( literalMask1 >> 2) & 1) == 1) ^ stateA) | ((((
literalMask2 >> 2) & 1) == 1) ^ stateB) | (((( literalMask3 >> 2) & 1) == 1)
^ stateC); break;

}

switch (discardTerm3) {
case 0: result3 = (((( literalMask2 >> 1) & 1) == 1) ^ stateB) | ((((

literalMask3 >> 1) & 1) == 1) ^ stateC) | (((( literalMask4 >> 1) & 1) == 1)
^ stateD); break;

case 1: result3 = (((( literalMask1 >> 1) & 1) == 1) ^ stateA) | ((((
literalMask3 >> 1) & 1) == 1) ^ stateC) | (((( literalMask4 >> 1) & 1) == 1)
^ stateD); break;

case 2: result3 = (((( literalMask1 >> 1) & 1) == 1) ^ stateA) | ((((
literalMask2 >> 1) & 1) == 1) ^ stateB) | (((( literalMask4 >> 1) & 1) == 1)
^ stateD); break;

case 3: result3 = (((( literalMask1 >> 1) & 1) == 1) ^ stateA) | ((((
literalMask2 >> 1) & 1) == 1) ^ stateB) | (((( literalMask3 >> 1) & 1) == 1)
^ stateC); break;

}

switch (discardTerm4) {
case 0: result4 = ((( literalMask2 & 1) == 1) ^ stateB) | ((( literalMask3 & 1)

== 1) ^ stateC) | ((( literalMask4 & 1) == 1) ^ stateD); break;
case 1: result4 = ((( literalMask1 & 1) == 1) ^ stateA) | ((( literalMask3 & 1)

== 1) ^ stateC) | ((( literalMask4 & 1) == 1) ^ stateD); break;
case 2: result4 = ((( literalMask1 & 1) == 1) ^ stateA) | ((( literalMask2 & 1)

== 1) ^ stateB) | ((( literalMask4 & 1) == 1) ^ stateD); break;
case 3: result4 = ((( literalMask1 & 1) == 1) ^ stateA) | ((( literalMask2 & 1)
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== 1) ^ stateB) | ((( literalMask3 & 1) == 1) ^ stateC); break;
}

return result1 && result2 && result3 && result4;
}

void printSAT(unsigned int discardTerm1 , unsigned int discardTerm2 , unsigned int discardTerm3 ,
unsigned int discardTerm4 , unsigned int literalMask1 , unsigned int literalMask2 , unsigned
int literalMask3 , unsigned int literalMask4) {

switch (discardTerm1) {
case 0: printf("(%s,%s,%s) ", (( literalMask2 >> 3) == 1) ? "-B" : "B", ((

literalMask3 >> 3) == 1) ? "-C" : "C", (( literalMask4 >> 3) == 1) ? "-D" :
"D"); break;

case 1: printf("(%s,%s,%s) ", (( literalMask1 >> 3) == 1) ? "-A" : "A", ((
literalMask3 >> 3) == 1) ? "-C" : "C", (( literalMask4 >> 3) == 1) ? "-D" :
"D"); break;

case 2: printf("(%s,%s,%s) ", (( literalMask1 >> 3) == 1) ? "-A" : "A", ((
literalMask2 >> 3) == 1) ? "-B" : "B", (( literalMask4 >> 3) == 1) ? "-D" :
"D"); break;

case 3: printf("(%s,%s,%s) ", (( literalMask1 >> 3) == 1) ? "-A" : "A", ((
literalMask2 >> 3) == 1) ? "-B" : "B", (( literalMask3 >> 3) == 1) ? "-C" :
"C"); break;

}

switch (discardTerm2) {
case 0: printf("(%s,%s,%s) ", ((( literalMask2 >> 2) & 1) == 1) ? "-B" : "B",

((( literalMask3 >> 2) & 1) == 1) ? "-C" : "C", ((( literalMask4 >> 2) & 1)
== 1) ? "-D" : "D"); break;

case 1: printf("(%s,%s,%s) ", ((( literalMask1 >> 2) & 1) == 1) ? "-A" : "A",
((( literalMask3 >> 2) & 1) == 1) ? "-C" : "C", ((( literalMask4 >> 2) & 1)
== 1) ? "-D" : "D"); break;

case 2: printf("(%s,%s,%s) ", ((( literalMask1 >> 2) & 1) == 1) ? "-A" : "A",
((( literalMask2 >> 2) & 1) == 1) ? "-B" : "B", ((( literalMask4 >> 2) & 1)
== 1) ? "-D" : "D"); break;

case 3: printf("(%s,%s,%s) ", ((( literalMask1 >> 2) & 1) == 1) ? "-A" : "A",
((( literalMask2 >> 2) & 1) == 1) ? "-B" : "B", ((( literalMask3 >> 2) & 1)
== 1) ? "-C" : "C"); break;

}

switch (discardTerm3) {
case 0: printf("(%s,%s,%s) ", ((( literalMask2 >> 1) & 1) == 1) ? "-B" : "B",

((( literalMask3 >> 1) & 1) == 1) ? "-C" : "C", ((( literalMask4 >> 1) & 1)
== 1) ? "-D" : "D"); break;

case 1: printf("(%s,%s,%s) ", ((( literalMask1 >> 1) & 1) == 1) ? "-A" : "A",
((( literalMask3 >> 1) & 1) == 1) ? "-C" : "C", ((( literalMask4 >> 1) & 1)
== 1) ? "-D" : "D"); break;

case 2: printf("(%s,%s,%s) ", ((( literalMask1 >> 1) & 1) == 1) ? "-A" : "A",
((( literalMask2 >> 1) & 1) == 1) ? "-B" : "B", ((( literalMask4 >> 1) & 1)
== 1) ? "-D" : "D"); break;

case 3: printf("(%s,%s,%s) ", ((( literalMask1 >> 1) & 1) == 1) ? "-A" : "A",
((( literalMask2 >> 1) & 1) == 1) ? "-B" : "B", ((( literalMask3 >> 1) & 1)
== 1) ? "-C" : "C"); break;

}

switch (discardTerm4) {
case 0: printf("(%s,%s,%s)\n", (( literalMask2 & 1) == 1) ? "-B" : "B", ((

literalMask3 & 1) == 1) ? "-C" : "C", (( literalMask4 & 1) == 1) ? "-D" : "D
"); break;

case 1: printf("(%s,%s,%s)\n", (( literalMask1 & 1) == 1) ? "-A" : "A", ((
literalMask3 & 1) == 1) ? "-C" : "C", (( literalMask4 & 1) == 1) ? "-D" : "D
"); break;

case 2: printf("(%s,%s,%s)\n", (( literalMask1 & 1) == 1) ? "-A" : "A", ((
literalMask2 & 1) == 1) ? "-B" : "B", (( literalMask4 & 1) == 1) ? "-D" : "D
"); break;

case 3: printf("(%s,%s,%s)\n", (( literalMask1 & 1) == 1) ? "-A" : "A", ((
literalMask2 & 1) == 1) ? "-B" : "B", (( literalMask3 & 1) == 1) ? "-C" : "C
"); break;

}
}

void main() {
for (unsigned int discardSel = 0; discardSel < 256; discardSel ++) {

unsigned int discardTerm1 = discardSel >> 6;
unsigned int discardTerm2 = (discardSel >> 4) & 0x3;
unsigned int discardTerm3 = (discardSel >> 2) & 0x3;
unsigned int discardTerm4 = discardSel & 0x3;
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for (unsigned int literalSel = 0; literalSel < 4096; literalSel ++) {
unsigned int literalMask1 = literalSel >> 9;
unsigned int literalMask2 = (literalSel >> 6) & 0x7;
unsigned int literalMask3 = (literalSel >> 3) & 0x7;
unsigned int literalMask4 = literalSel & 0x7;

bool soluable = false;

for (unsigned int valueSel = 0; valueSel < 16; valueSel ++) {
bool stateA = (valueSel & 0x8) != 0;
bool stateB = (valueSel & 0x4) != 0;
bool stateC = (valueSel & 0x2) != 0;
bool stateD = (valueSel & 0x1) != 0;

soluable |= evaluate(discardTerm1 , discardTerm2 , discardTerm3 ,
discardTerm4 , literalMask1 , literalMask2 , literalMask3 ,
literalMask4 , stateA , stateB , stateC , stateD);

}

if (! soluable) {
printSAT(discardTerm1 , discardTerm2 , discardTerm3 , discardTerm4

, literalMask1 , literalMask2 , literalMask3 , literalMask4);
}

}
}

}

A.2 Seed generator

using System;
using System.Collections.Generic;
using System.Text;
using System.Security.Cryptography;

namespace GenProbSeed
{

class Program
{

static void Main(string [] args)
{

if (args.Length < 2)
{

Console.WriteLine("Usage: GenProbSeed.exe <bit count > <probability for one bit >
");

return;
}

int bitCount = Int32.Parse(args [0]);
double probFactor = Double.Parse(args [1]);

double baseValue = (double)((( long)(1)) << 48);
baseValue *= probFactor;
long oneLimit = (long)(Math.Floor(baseValue));

for (int index = 0; index < bitCount; index ++)
{

byte[] randomBytes = new byte [6];

RNGCryptoServiceProvider Gen = new RNGCryptoServiceProvider ();
Gen.GetBytes(randomBytes);

long randomNumber = randomBytes [0];
randomNumber = (randomNumber << 8) | randomBytes [1];
randomNumber = (randomNumber << 8) | randomBytes [2];
randomNumber = (randomNumber << 8) | randomBytes [3];
randomNumber = (randomNumber << 8) | randomBytes [4];
randomNumber = (randomNumber << 8) | randomBytes [5];

Console.Write(( randomNumber <= oneLimit) ? ’1’ : ’0’);
}

}
}

}
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A.3 Simulated annealing stepping table generator

using System;
using System.Collections.Generic;
using System.Text;

namespace GenExpTable
{

class Program
{

static void Main(string [] args)
{

if (args.Length < 6)
{

Console.WriteLine("Usage: GenExpTable.exe g|s <variable count > <clause count >")
;

Console.WriteLine("  <variables per clause > <global factor > <exponent divisor >"
);

return;
}

int variableCount = Int32.Parse(args [1]);
int clauseCount = Int32.Parse(args [2]);
int clauseLength = Int32.Parse(args [3]);
double globalFactor = Double.Parse(args [4]);
double exponentDivisor = Double.Parse(args [5]);

double averageOccurencies = (( double)(clauseCount * clauseLength)) / (( double)(
variableCount));

double variableClauseRatio = (( double)(clauseCount)) / (( double)(variableCount));

double baseFactor = globalFactor * (( double)(1024)) / averageOccurencies;
double exponentFactor = -variableClauseRatio / exponentDivisor;

int[] values = new int [100001];
for (int valueIndex = 0; valueIndex <= 100000; valueIndex ++)
{

values[valueIndex] = (int)(Math.Round(baseFactor * Math.Exp(exponentFactor * ((
double)(valueIndex)))));

if (( values[valueIndex] < 0) || (values[valueIndex] >= 1024))
{

Console.WriteLine("Table entry " + values[valueIndex ]. ToString () + " 
exceeds valid number range");

return;
}

}

if (args [0]. Trim().ToLower ().Equals("g"))
{

Console.WriteLine("DEPTH = 4096;");
Console.WriteLine("WIDTH = 16;");
Console.WriteLine("ADDRESS_RADIX = HEX;");
Console.WriteLine("DATA_RADIX = HEX;");
Console.WriteLine("CONTENT");
Console.WriteLine("BEGIN");
Console.WriteLine ();

uint lastValue = (uint)(values [0]);
uint currCount = 1;
uint address = 0;

for (int rleIndex = 1; rleIndex <= 100000; rleIndex ++)
{

if (( values[rleIndex] == lastValue) && (currCount < 63))
{

currCount ++;
}
else
{

uint memoryWord = (currCount << 10) | lastValue;
Console.WriteLine(address.ToString("X3") + " : " + memoryWord.ToString(

"X4") + ";");
lastValue = (uint)(values[rleIndex ]);
currCount = 1;
address ++;

if (lastValue == 0)
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{
break;

}
}

}

Console.WriteLine(address.ToString("X3") + " : 0000;");
Console.WriteLine ();
Console.WriteLine("END;");

}

if (args [0]. Trim().ToLower ().Equals("s"))
{

int limit = values [0] / 20;
int steepSequenceLength = -1;
int totalSequenceLength = -1;

for (int index = 0; index <= 100000; index ++)
{

if (( steepSequenceLength == -1) && (values[index] <= limit))
{

steepSequenceLength = index;
}

if (values[index] == 0)
{

totalSequenceLength = index;
break;

}
}

Console.WriteLine("Maximum probability boost:  " + values [0]. ToString ());
Console.WriteLine("Total sequence length:      " + totalSequenceLength.ToString

());
Console.WriteLine("High boost sequence length: " + steepSequenceLength.ToString

());
}

}
}

}

A.4 40-bit LFSR seed checking tool

#include <stdio.h>

#define SEED0 0ULL

#define SEEDA 0x9A62DD2287ULL
/* seed => "1001101001100010110111010010001010000111" */
#define SEEDB 0xAC75043ABDULL
/* seed => "1010110001110101000001000011101010111101" */
#define SEEDC 0x7629E20BB3ULL
/* seed => "0111011000101001111000100000101110110011" */
#define SEEDD 0xFD2C8274FCULL
/* seed => "1111110100101100100000100111010011111100" */
#define SEEDE 0xA6C2E4CE5ULL
/* seed => "0000101001101100001011100100110011100101" */
#define SEEDF 0x95DC2030C7ULL
/* seed => "1001010111011100001000000011000011000111" */
#define SEEDG 0x453E5F88E7ULL
/* seed => "0100010100111110010111111000100011100111" */
#define SEEDH 0x40903C3A21ULL
/* seed => "0100000010010000001111000011101000100001" */
#define SEEDI 0xDFF9944C8DULL
/* seed => "1101111111111001100101000100110010001101" */
#define SEEDJ 0x756CF011EBULL
/* seed => "0111010101101100111100000001000111101011" */

void checkseed(unsigned __int64 seed) {
unsigned __int64 lfsr = seed;
unsigned __int64 counter = 0;

do {
unsigned int tapbit1 = ((( unsigned int)(lfsr)) >> 19) & 1;
unsigned int tapbit2 = ((( unsigned int)(lfsr)) >> 21) & 1;
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lfsr = ((lfsr << 1) | (( unsigned __int64)(tapbit1 ^ tapbit2 ^ 1))) & 0
xFFFFFFFFFF;

counter ++;
} while (( counter != 0x100000000ULL) && (lfsr != seed));

printf("%.10 I64X\n", seed);
printf("%.10 I64X\n", lfsr);
printf("%I64u\n", counter);
printf("\n");

}

void main() {
checkseed(SEED0);
checkseed(SEEDA);
checkseed(SEEDB);
checkseed(SEEDC);
checkseed(SEEDD);
checkseed(SEEDE);
checkseed(SEEDF);
checkseed(SEEDG);
checkseed(SEEDH);
checkseed(SEEDI);
checkseed(SEEDJ);

}

A.5 Sleeping tool

using System;
using System.Collections.Generic;
using System.Text;
using System.Threading;

namespace Sleep
{

class Program
{

static void Main(string [] args)
{

if (args.Length != 1)
{

Console.WriteLine("Usage: Sleep.exe <milliseconds >");
}
else
{

Thread.Sleep(Int32.Parse(args [0]));
}

}
}

}

A.6 SAT instance generator version 1

using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;
using System.Security.Cryptography;

namespace SATGenerator
{

class Program
{

static void Main(string [] args)
{

if (args.Length != 3)
{

Console.WriteLine("Usage: SATGenerator.exe <clause length > <variable count > <
clause count >");

return;
}

int clauseLength = Int32.Parse(args [0]);
int varCount = Int32.Parse(args [1]);
int clauseCount = Int32.Parse(args [2]);
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DateTime timeStamp = DateTime.Now;
Console.WriteLine("c Automatically generated on " + timeStamp.ToShortDateString () +

" at " + timeStamp.ToShortTimeString ());
Console.WriteLine("p cnf " + varCount.ToString () + " " + clauseCount.ToString ());

StringBuilder outputData = null;

bool done = false;
while (!done)
{

BitArray checkFlags = new BitArray(varCount , false);
outputData = new StringBuilder ();

for (int index = 0; index < clauseCount; index ++)
{

BitArray localCheckFlags = new BitArray(varCount , false);

for (int subIndex = 0; subIndex < clauseLength; /* nothing */)
{

byte[] randomNumber = new byte [2];

RNGCryptoServiceProvider Gen = new RNGCryptoServiceProvider ();
Gen.GetBytes(randomNumber);

double rand = Convert.ToDouble(randomNumber [0]);
rand *= ((( double)(varCount - 1)) / 255.0);

int variable = Convert.ToInt32(rand);

if (! localCheckFlags.Get(variable))
{

checkFlags.Set(variable , true);
localCheckFlags.Set(variable , true);
if (randomNumber [1] >= 0x80)
{

outputData.Append("-");
}
outputData.Append (( variable + 1).ToString () + " ");
subIndex ++;

}
}

outputData.AppendLine("0");
}

int checkSum = 0;
for (int checkIndex = 0; checkIndex < varCount; checkIndex ++)
{

if (checkFlags.Get(checkIndex))
{

checkSum ++;
}

}

done = (checkSum == varCount);
}

Console.Write(outputData.ToString ());
// Console.WriteLine ("0");

}
}

}

A.7 SAT instance generator version 2

using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;
using System.Security.Cryptography;

namespace SATGenerator
{

class Program
{
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static void Main(string [] args)
{

if (args.Length != 3)
{

Console.WriteLine("Usage: SATGenerator.exe <clause length > <variable count > <
clause count >");

return;
}

int clauseLength = Int32.Parse(args [0]);
int varCount = Int32.Parse(args [1]);
int clauseCount = Int32.Parse(args [2]);

DateTime timeStamp = DateTime.Now;
Console.WriteLine("c Automatically generated on " + timeStamp.ToShortDateString () +

" at " + timeStamp.ToShortTimeString ());
Console.WriteLine("p cnf " + varCount.ToString () + " " + clauseCount.ToString ());

StringBuilder outputData = null;

bool done = false;
while (!done)
{

BitArray checkFlags = new BitArray(varCount , false);
outputData = new StringBuilder ();

for (int index = 0; index < clauseCount; index ++)
{

BitArray localCheckFlags = new BitArray(varCount , false);

for (int subIndex = 0; subIndex < clauseLength; /* nothing */)
{

byte[] randomNumber = new byte [6];

RNGCryptoServiceProvider Gen = new RNGCryptoServiceProvider ();
Gen.GetBytes(randomNumber);

long randomValue = 0;
randomValue = (randomValue << 8) | randomNumber [0];
randomValue = (randomValue << 8) | randomNumber [1];
randomValue = (randomValue << 8) | randomNumber [2];
randomValue = (randomValue << 8) | randomNumber [3];
randomValue = (randomValue << 8) | randomNumber [4];
byte signIndicator = randomNumber [5];

double rand = Convert.ToDouble(randomValue);
rand *= (double)(varCount);
rand /= (double)((( long)(1)) << 40);

int variable = Convert.ToInt32(Math.Floor(rand));

if (! localCheckFlags.Get(variable))
{

checkFlags.Set(variable , true);
localCheckFlags.Set(variable , true);
if (signIndicator >= 0x80)
{

outputData.Append("-");
}
outputData.Append (( variable + 1).ToString () + " ");
subIndex ++;

}
}

outputData.AppendLine("0");
}

int checkSum = 0;
for (int checkIndex = 0; checkIndex < varCount; checkIndex ++)
{

if (checkFlags.Get(checkIndex))
{

checkSum ++;
}

}

done = (checkSum == varCount);
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}

Console.Write(outputData.ToString ());
// Console.WriteLine ("0");

}
}

}
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VHDL Library

B.1 Term evaluators

B.1.1 Basic term evaluator

-- Generic term evaluator component for SAT instances in CNF

library ieee;
use ieee.std_logic_1164.all;

library work;

entity term_evaluator is
generic (

clause_length : integer range 2 to 100 := 3
);

port (
input : in std_logic_vector (1 to clause_length);
wrong_in : in std_logic_vector (1 to clause_length);
wrong_out : out std_logic_vector (1 to clause_length);
solved_in : in std_logic;
solved_out : out std_logic
);

end term_evaluator;

architecture term_evaluator_architecture of term_evaluator is
signal term_result : std_logic;
signal not_term_result : std_logic;

begin
process(input)

variable temp_result : std_logic;
begin

temp_result := input (1);
for index in 2 to clause_length loop

temp_result := temp_result or input(index);
end loop;
term_result <= temp_result;

end process;

not_term_result <= not(term_result);

process(wrong_in , not_term_result)
variable temp_wrong : std_logic_vector (1 to clause_length);

begin
for index in 1 to clause_length loop

temp_wrong(index) := wrong_in(index) or not_term_result;
end loop;
wrong_out <= temp_wrong;

end process;

solved_out <= solved_in and term_result;
end term_evaluator_architecture;

B.1.2 Probabilistic term evaluator

-- Generic probabilistic term evaluator component for SAT instances in CNF

library ieee;
use ieee.std_logic_1164.all;

library work;

91



Appendix B VHDL Library

entity term_evaluator_probabilistic is
generic (

clause_length : integer range 2 to 100 := 3
);

port (
input : in std_logic_vector (1 to clause_length);
wrong_in : in std_logic_vector (1 to clause_length);
wrong_sel : in std_logic_vector (1 to clause_length);
wrong_out : out std_logic_vector (1 to clause_length);
solved_in : in std_logic;
solved_out : out std_logic
);

end term_evaluator_probabilistic;

architecture term_evaluator_probabilistic_architecture of term_evaluator_probabilistic is
signal term_result : std_logic;
signal not_term_result : std_logic;

begin
process(input)

variable temp_result : std_logic;
begin

temp_result := input (1);
for index in 2 to clause_length loop

temp_result := temp_result or input(index);
end loop;
term_result <= temp_result;

end process;

not_term_result <= not(term_result);

process(wrong_in , wrong_sel , not_term_result)
variable temp_wrong : std_logic_vector (1 to clause_length);

begin
for index in 1 to clause_length loop

temp_wrong(index) := wrong_in(index) or (not_term_result and wrong_sel(index));
end loop;
wrong_out <= temp_wrong;

end process;

solved_out <= solved_in and term_result;
end term_evaluator_probabilistic_architecture;

B.1.3 Probabilistic term evaluator (buggy)

-- Generic probabilistic term evaluator component for SAT instances in CNF
--
-- Probability summing is erroneous , this is just included for completeness

library ieee;
use ieee.std_logic_1164.all;

library work;

entity term_evaluator_probabilistic_buggy is
generic (

clause_length : integer range 2 to 100 := 3
);

port (
input : in std_logic_vector (1 to clause_length);
wrong_in : in std_logic_vector (1 to clause_length);
wrong_sel : in std_logic_vector (1 to clause_length);
wrong_out : out std_logic_vector (1 to clause_length);
solved_in : in std_logic;
solved_out : out std_logic
);

end term_evaluator_probabilistic_buggy;

architecture term_evaluator_probabilistic_buggy_architecture of
term_evaluator_probabilistic_buggy is

signal term_result : std_logic;
signal not_term_result : std_logic;

begin
process(input)

variable temp_result : std_logic;
begin

temp_result := input (1);
for index in 2 to clause_length loop
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temp_result := temp_result or input(index);
end loop;
term_result <= temp_result;

end process;

not_term_result <= not(term_result);

process(wrong_in , wrong_sel , not_term_result)
variable temp_wrong : std_logic_vector (1 to clause_length);

begin
for index in 1 to clause_length loop

temp_wrong(index) := (wrong_in(index) or not_term_result) and wrong_sel(index);
end loop;
wrong_out <= temp_wrong;

end process;

solved_out <= solved_in and term_result;
end term_evaluator_probabilistic_buggy_architecture;

B.2 Variable sources

B.2.1 Basic asynchronous variable source

-- Asynchronous variable source component

library ieee;
use ieee.std_logic_1164.all;

library work;

entity variable_source_async is
generic (

delay_gates : natural := 0
);

port (
wrong_in : in std_logic;
wrong_not_in : in std_logic;
reset : in std_logic;
wrong_out : out std_logic;
wrong_not_out : out std_logic;
var_out : out std_logic;
var_not_out : out std_logic
);

end variable_source_async;

architecture variable_source_async_architecture of variable_source_async is
signal wrong_any : std_logic;
signal delay_values : std_logic_vector (0 to delay_gates);
signal new_value : std_logic;
signal output_value : std_logic;

begin
wrong_any <= wrong_in or wrong_not_in;

process(reset)
begin

delay_values (0) <= output_value and reset;

for index in 1 to delay_gates loop
delay_values(index) <= delay_values(index - 1) and reset;

end loop;
end process;

new_value <= delay_values(delay_gates) xor wrong_any;
output_value <= new_value and reset;

wrong_out <= ’0’;
wrong_not_out <= ’0’;

var_out <= output_value;
var_not_out <= not(output_value);

end variable_source_async_architecture;
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B.2.2 Asynchronous variable source hardened against compiler
optimisations

-- Asynchronous variable source component
-- Hardened against compiler optimisations

library ieee;
use ieee.std_logic_1164.all;

library work;

entity variable_source_async_hardened is
generic (

delay_gates : natural := 0
);

port (
wrong_in : in std_logic;
wrong_not_in : in std_logic;
reset : in std_logic;
zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
wrong_out : out std_logic;
wrong_not_out : out std_logic;
var_out : out std_logic;
var_not_out : out std_logic
);

end variable_source_async_hardened;

architecture variable_source_async_hardened_architecture of variable_source_async_hardened is
signal wrong_any_a : std_logic;
signal wrong_any_b : std_logic;
signal wrong_any : std_logic;
signal delay_values : std_logic_vector (0 to delay_gates);
signal new_value : std_logic;
signal output_value : std_logic;
signal var_out_effective : std_logic;
signal var_not_out_effective : std_logic;

begin
wrong_any_a <= wrong_in xor zero_a;
wrong_any_b <= wrong_not_in xor zero_a;
wrong_any <= wrong_any_a or wrong_any_b;

process(reset , output_value , delay_values)
begin

delay_values (0) <= output_value and reset;

for index in 1 to delay_gates loop
delay_values(index) <= delay_values(index - 1) and reset;

end loop;
end process;

new_value <= delay_values(delay_gates) xor wrong_any;
output_value <= new_value and reset;

wrong_out <= ’0’;
wrong_not_out <= ’0’;

var_out_effective <= output_value;
var_not_out_effective <= not(output_value);
var_out <= var_out_effective xor zero_b;
var_not_out <= var_not_out_effective xor zero_c;

end variable_source_async_hardened_architecture;

B.2.3 Basic synchronous variable source

-- Synchronous variable source component

library ieee;
use ieee.std_logic_1164.all;

library work;

entity variable_source_sync is
port (

wrong_in : in std_logic;
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wrong_not_in : in std_logic;
reset : in std_logic;
clock : in std_logic;
wrong_out : out std_logic;
wrong_not_out : out std_logic;
var_out : out std_logic;
var_not_out : out std_logic
);

end variable_source_sync;

architecture variable_source_sync_architecture of variable_source_sync is
signal wrong_any : std_logic;
signal buffer_input : std_logic;
signal buffer_feedback : std_logic;
signal new_value : std_logic;
signal output_value : std_logic;

begin
wrong_any <= wrong_in or wrong_not_in;

process(clock)
begin

if (rising_edge(clock)) then
buffer_input <= wrong_any;

end if;
end process;

process(clock)
begin

if (rising_edge(clock)) then
buffer_feedback <= output_value;

end if;
end process;

new_value <= buffer_feedback xor buffer_input;
output_value <= new_value and reset;

wrong_out <= ’0’;
wrong_not_out <= ’0’;

var_out <= output_value;
var_not_out <= not(output_value);

end variable_source_sync_architecture;

B.2.4 Synchronous variable source hardened against compiler
optimisations

-- Synchronous variable source component
-- Hardened against compiler optimisations

library ieee;
use ieee.std_logic_1164.all;

library work;

entity variable_source_sync_hardened is
port (

wrong_in : in std_logic;
wrong_not_in : in std_logic;
reset : in std_logic;
clock : in std_logic;
zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
wrong_out : out std_logic;
wrong_not_out : out std_logic;
var_out : out std_logic;
var_not_out : out std_logic
);

end variable_source_sync_hardened;

architecture variable_source_sync_hardened_architecture of variable_source_sync_hardened is
signal wrong_any_a : std_logic;
signal wrong_any_b : std_logic;
signal wrong_any : std_logic;
signal buffer_input : std_logic;
signal buffer_feedback : std_logic;
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signal new_value : std_logic;
signal output_value : std_logic;
signal var_out_effective : std_logic;
signal var_not_out_effective : std_logic;

begin
wrong_any_a <= wrong_in xor zero_a;
wrong_any_b <= wrong_not_in xor zero_a;
wrong_any <= wrong_any_a or wrong_any_b;

process(clock)
begin

if (rising_edge(clock)) then
buffer_input <= wrong_any;

end if;
end process;

process(clock)
begin

if (rising_edge(clock)) then
buffer_feedback <= output_value;

end if;
end process;

new_value <= buffer_feedback xor buffer_input;
output_value <= new_value and reset;

wrong_out <= ’0’;
wrong_not_out <= ’0’;

var_out_effective <= output_value;
var_not_out_effective <= not(output_value);
var_out <= var_out_effective xor zero_b;
var_not_out <= var_not_out_effective xor zero_c;

end variable_source_sync_hardened_architecture;

B.2.5 Synchronous variable source hardened against compiler
optimisations (compact)

-- Synchronous variable source component
-- Hardened against compiler optimisations
--
-- Slightly compacted version for better space - efficiency

library ieee;
use ieee.std_logic_1164.all;

library work;

entity variable_source_sync_hardened_compact is
port (

wrong_in : in std_logic;
wrong_not_in : in std_logic;
reset : in std_logic;
clock : in std_logic;
zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
wrong_out : out std_logic;
wrong_not_out : out std_logic;
var_out : out std_logic;
var_not_out : out std_logic
);

end variable_source_sync_hardened_compact;

architecture variable_source_sync_hardened_compact_architecture of
variable_source_sync_hardened_compact is

signal wrong_any_a : std_logic;
signal wrong_any_b : std_logic;
signal wrong_any : std_logic;
signal buffer_input : std_logic;
signal buffer_feedback : std_logic;
signal new_value : std_logic;
signal output_value : std_logic;
signal var_out_effective : std_logic;
signal var_not_out_effective : std_logic;

begin
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wrong_any_a <= wrong_in xor zero_a;
wrong_any_b <= wrong_not_in xor zero_a;
wrong_any <= wrong_any_a or wrong_any_b;

process(clock)
begin

if (rising_edge(clock)) then
buffer_input <= wrong_any and reset;

end if;
end process;

process(clock)
begin

if (rising_edge(clock)) then
buffer_feedback <= output_value and reset;

end if;
end process;

new_value <= buffer_feedback xor buffer_input;
output_value <= new_value;

wrong_out <= ’0’;
wrong_not_out <= ’0’;

var_out_effective <= output_value;
var_not_out_effective <= not(output_value);
var_out <= var_out_effective xor zero_b;
var_not_out <= var_not_out_effective xor zero_c;

end variable_source_sync_hardened_compact_architecture;

B.2.6 Locally probability driven variable source

-- Synchronous variable source component
-- Hardened against compiler optimisations
--
-- Experimental variable source employing locally probability driven search

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity variable_source_smart is
generic (

literal_count : integer range 1 to 31 := 1;
count_bits : integer range 1 to 5 := 1
);

port (
clock : in std_logic;
enabled : in std_logic;
zero : in std_logic;
clause_wrong : in std_logic_vector (( literal_count - 1) downto 0);
rand_bits : in std_logic_vector (5 downto 0);
variable_out : out std_logic
);

end variable_source_smart;

architecture variable_source_smart_architecture of variable_source_smart is
component modulo_lookup_table

generic (
output_range : integer range 1 to 32 := 1;
output_bits : integer range 1 to 5 := 1
);

port (
random_bits : in std_logic_vector (5 downto 0);
value : out std_logic_vector (( output_bits - 1) downto 0)
);

end component;

component lpm_compare
generic (

lpm_width : natural;
lpm_type : string;
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lpm_representation : string
);

port (
dataa : in std_logic_vector (( lpm_width - 1) downto 0);
datab : in std_logic_vector (( lpm_width - 1) downto 0);
AgB : out std_logic
);

end component;

signal wrong_count : std_logic_vector (count_bits downto 0);
signal random_value : std_logic_vector (( count_bits - 1) downto 0);
signal random_value_compare : std_logic_vector (count_bits downto 0);
signal toggle_variable : std_logic;
signal buffer_input : std_logic;
signal buffer_feedback : std_logic;
signal new_value : std_logic;
signal output_value : std_logic;

begin
process(clause_wrong)

variable input_sum : integer range 0 to literal_count;
begin

input_sum := 0;

for index in 0 to (literal_count - 1) loop
if (clause_wrong(index) = ’1’) then

input_sum := input_sum + 1;
end if;

end loop;

wrong_count <= std_logic_vector(To_unsigned(input_sum , count_bits + 1));
end process;

modulo_lookup_table_component : modulo_lookup_table
generic map (

output_range => literal_count ,
output_bits => count_bits
)

port map (
random_bits => rand_bits (5 downto 0),
value => random_value
);

random_value_compare <= ’0’ & random_value;

lpm_compare_component : lpm_compare
generic map (

lpm_width => (count_bits + 1),
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED"
)

port map (
dataa => wrong_count ,
datab => random_value_compare ,
AgB => toggle_variable
);

process(clock)
begin

if (rising_edge(clock)) then
buffer_input <= toggle_variable;

end if;
end process;

process(clock)
begin

if (rising_edge(clock)) then
buffer_feedback <= output_value;

end if;
end process;

new_value <= buffer_feedback xor buffer_input;
output_value <= new_value and enabled;
variable_out <= output_value xor zero;

end variable_source_smart_architecture;

B.2.7 Fast modulo computation for smart variable source
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-- Lookup table for fast modulo computations

library ieee;
use ieee.std_logic_1164.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity modulo_lookup_table is
generic (

output_range : integer range 1 to 32 := 1;
output_bits : integer range 1 to 5 := 1
);

port (
random_bits : in std_logic_vector (5 downto 0);
value : out std_logic_vector (( output_bits - 1) downto 0)
);

end modulo_lookup_table;

architecture modulo_lookup_table_architecture of modulo_lookup_table is
signal result : std_logic_vector (( output_bits - 1) downto 0);

begin
process(random_bits)
begin

case output_range is
when 1 =>

result (0) <= ’0’;
when 2 =>

result (0) <= random_bits (5);
when 4 =>

result (1 downto 0) <= random_bits (5 downto 4);
when 8 =>

result (2 downto 0) <= random_bits (5 downto 3);
when 16 =>

result (3 downto 0) <= random_bits (5 downto 2);
when 32 =>

result (4 downto 0) <= random_bits (5 downto 1);
when 3 =>

case random_bits is
when "000000" => result <= "00";
when "000001" => result <= "01";
when "000010" => result <= "10";
when "000011" => result <= "00";
when "000100" => result <= "01";

...

when "111110" => result <= "10";
when "111111" => result <= "00";

end case;

...

when 31 =>
case random_bits is

when "000000" => result <= "00000";

...

when "111111" => result <= "00001";
end case;

end case;
end process;

value <= result;
end modulo_lookup_table_architecture;

B.3 Fixed distribution bit sources

B.3.1 Bit source using single bit LFSR

-- Fixed distribution bit source
--
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-- Probability of an output bit being 0 is probability_factor / 1024
--
-- Basic LFSR generating one bit each clock cycle

library ieee;
use ieee.std_logic_1164.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity fixed_distribution_bit_source_basic_lfsr is
generic (

output_bits : integer range 1 to 65535 := 1;
probability_factor : bit_vector (9 downto 0) := "1010101010" -- 682
);

port (
reset : in std_logic;
clock : in std_logic;
bits : out std_logic_vector (( output_bits - 1) downto 0)
);

end fixed_distribution_bit_source_basic_lfsr;

architecture fixed_distribution_bit_source_basic_lfsr_architecture of
fixed_distribution_bit_source_basic_lfsr is

component lpm_compare
generic (

lpm_width : natural;
lpm_type : string;
lpm_representation : string;
lpm_hint : string
);

port (
dataa : in std_logic_vector (9 downto 0);
datab : in std_logic_vector (9 downto 0);
AgB : out std_logic
);

end component;

component lpm_shiftreg
generic (

lpm_type : string;
lpm_width : natural;
lpm_direction : string
);

port (
clock : in std_logic;
q : out std_logic_vector (( output_bits - 1) downto 0);
sset : in std_logic;
shiftin : in std_logic
);

end component;

component lfsr40_serial
generic (

output_bits : integer range 1 to 40
);

port (
reset : in std_logic;
clock : in std_logic;
value : out std_logic_vector (( output_bits - 1) downto 0)
);

end component;

signal random : std_logic_vector (9 downto 0);
signal factor : std_logic_vector (9 downto 0);
signal next_bit : std_logic;
signal output : std_logic_vector (( output_bits - 1) downto 0);

begin
lfsr40_serial_component : lfsr40_serial

generic map (
output_bits => 10
)

port map (
reset => reset ,
clock => clock ,
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value => random
);

factor <= To_stdlogicvector(probability_factor);

lpm_compare_component : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random ,
datab => factor ,
AgB => next_bit
);

lpm_shiftreg_component : lpm_shiftreg
generic map (

lpm_type => "LPM_SHIFTREG",
lpm_width => output_bits ,
lpm_direction => "LEFT"
)

port map (
clock => clock ,
sset => reset ,
shiftin => next_bit ,
q => output
);

bits <= output;
end fixed_distribution_bit_source_basic_lfsr_architecture;

B.3.2 Bit source using parallelised LFSR

-- Fixed distribution bit source
--
-- Probability of an output bit being 0 is probability_factor / 1024
--
-- Parallel LFSR generating 10 bits each clock cycle

library ieee;
use ieee.std_logic_1164.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity fixed_distribution_bit_source_parallel_lfsr is
generic (

output_bits : integer range 1 to 65535 := 1;
probability_factor : bit_vector (9 downto 0) := "1010101010" -- 682
);

port (
reset : in std_logic;
clock : in std_logic;
bits : out std_logic_vector (( output_bits - 1) downto 0)
);

end fixed_distribution_bit_source_parallel_lfsr;

architecture fixed_distribution_bit_source_parallel_lfsr_architecture of
fixed_distribution_bit_source_parallel_lfsr is

component lpm_compare
generic (

lpm_width : natural;
lpm_type : string;
lpm_representation : string;
lpm_hint : string
);

port (
dataa : in std_logic_vector (9 downto 0);
datab : in std_logic_vector (9 downto 0);
AgB : out std_logic
);

end component;
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component lpm_shiftreg
generic (

lpm_type : string;
lpm_width : natural;
lpm_direction : string
);

port (
clock : in std_logic;
q : out std_logic_vector (( output_bits - 1) downto 0);
sset : in std_logic;
shiftin : in std_logic
);

end component;

component lfsr40_parallel
generic (

output_bits : integer range 1 to 19
);

port (
reset : in std_logic;
clock : in std_logic;
value : out std_logic_vector (( output_bits - 1) downto 0)
);

end component;

signal random : std_logic_vector (9 downto 0);
signal factor : std_logic_vector (9 downto 0);
signal next_bit : std_logic;
signal output : std_logic_vector (( output_bits - 1) downto 0);

begin
lfsr40_parallel_component : lfsr40_parallel

generic map (
output_bits => 10
)

port map (
reset => reset ,
clock => clock ,
value => random
);

factor <= To_stdlogicvector(probability_factor);

lpm_compare_component : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random ,
datab => factor ,
AgB => next_bit
);

lpm_shiftreg_component : lpm_shiftreg
generic map (

lpm_type => "LPM_SHIFTREG",
lpm_width => output_bits ,
lpm_direction => "LEFT"
)

port map (
clock => clock ,
sset => reset ,
shiftin => next_bit ,
q => output
);

bits <= output;
end fixed_distribution_bit_source_parallel_lfsr_architecture;

B.3.3 Bit source using parallelised LFSR array

-- Fixed distribution bit source
--
-- Probability of an output bit being 0 is probability_factor / 1024
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--
-- Parallel LFSR array generating 100 bits each clock cycle

library ieee;
use ieee.std_logic_1164.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity fixed_distribution_bit_source_multi_lfsr is
generic (

output_bits : integer range 1 to 65535 := 1;
probability_factor : bit_vector (9 downto 0) := "1010101010" -- 682
);

port (
reset : in std_logic;
clock : in std_logic;
bits : out std_logic_vector (( output_bits - 1) downto 0)
);

end fixed_distribution_bit_source_multi_lfsr;

architecture fixed_distribution_bit_source_multi_lfsr_architecture of
fixed_distribution_bit_source_multi_lfsr is

component lpm_compare
generic (

lpm_width : natural;
lpm_type : string;
lpm_representation : string;
lpm_hint : string
);

port (
dataa : in std_logic_vector (9 downto 0);
datab : in std_logic_vector (9 downto 0);
AgB : out std_logic
);

end component;

component lpm_shiftreg
generic (

lpm_type : string;
lpm_width : natural;
lpm_direction : string
);

port (
data : in std_logic_vector (( output_bits - 1) downto 0);
clock : in std_logic;
load : in std_logic;
sclr : in std_logic;
q : out std_logic_vector (( output_bits - 1) downto 0)
);

end component;

component lfsr40_parallel_preseeded
generic (

output_bits : integer range 1 to 19;
seed : bit_vector (39 downto 0)
);

port (
reset : in std_logic;
clock : in std_logic;
value : out std_logic_vector (( output_bits - 1) downto 0)
);

end component;

signal invreset : std_logic;
signal random_a : std_logic_vector (9 downto 0);
signal random_b : std_logic_vector (9 downto 0);
signal random_c : std_logic_vector (9 downto 0);
signal random_d : std_logic_vector (9 downto 0);
signal random_e : std_logic_vector (9 downto 0);
signal random_f : std_logic_vector (9 downto 0);
signal random_g : std_logic_vector (9 downto 0);
signal random_h : std_logic_vector (9 downto 0);
signal random_i : std_logic_vector (9 downto 0);
signal random_j : std_logic_vector (9 downto 0);
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signal factor : std_logic_vector (9 downto 0);
signal next_bit_a : std_logic;
signal next_bit_b : std_logic;
signal next_bit_c : std_logic;
signal next_bit_d : std_logic;
signal next_bit_e : std_logic;
signal next_bit_f : std_logic;
signal next_bit_g : std_logic;
signal next_bit_h : std_logic;
signal next_bit_i : std_logic;
signal next_bit_j : std_logic;
signal next_bits : std_logic_vector (9 downto 0);
signal reginput : std_logic_vector (( output_bits - 1) downto 0);
signal regoutput : std_logic_vector (( output_bits - 1) downto 0);

begin
invreset <= not(reset);

lfsr40_parallel_preseeded_component_a : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1001101001100010110111010010001010000111"
)

port map (
reset => reset ,
clock => clock ,
value => random_a
);

lfsr40_parallel_preseeded_component_b : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1010110001110101000001000011101010111101"
)

port map (
reset => reset ,
clock => clock ,
value => random_b
);

lfsr40_parallel_preseeded_component_c : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0111011000101001111000100000101110110011"
)

port map (
reset => reset ,
clock => clock ,
value => random_c
);

lfsr40_parallel_preseeded_component_d : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1111110100101100100000100111010011111100"
)

port map (
reset => reset ,
clock => clock ,
value => random_d
);

lfsr40_parallel_preseeded_component_e : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0000101001101100001011100100110011100101"
)

port map (
reset => reset ,
clock => clock ,
value => random_e
);

lfsr40_parallel_preseeded_component_f : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1001010111011100001000000011000011000111"
)
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port map (
reset => reset ,
clock => clock ,
value => random_f
);

lfsr40_parallel_preseeded_component_g : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0100010100111110010111111000100011100111"
)

port map (
reset => reset ,
clock => clock ,
value => random_g
);

lfsr40_parallel_preseeded_component_h : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0100000010010000001111000011101000100001"
)

port map (
reset => reset ,
clock => clock ,
value => random_h
);

lfsr40_parallel_preseeded_component_i : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1101111111111001100101000100110010001101"
)

port map (
reset => reset ,
clock => clock ,
value => random_i
);

lfsr40_parallel_preseeded_component_j : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0111010101101100111100000001000111101011"
)

port map (
reset => reset ,
clock => clock ,
value => random_j
);

factor <= To_stdlogicvector(probability_factor);

lpm_compare_component_a : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_a ,
datab => factor ,
AgB => next_bit_a
);

lpm_compare_component_b : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_b ,
datab => factor ,
AgB => next_bit_b
);

105



Appendix B VHDL Library

lpm_compare_component_c : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_c ,
datab => factor ,
AgB => next_bit_c
);

lpm_compare_component_d : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_d ,
datab => factor ,
AgB => next_bit_d
);

lpm_compare_component_e : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_e ,
datab => factor ,
AgB => next_bit_e
);

lpm_compare_component_f : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_f ,
datab => factor ,
AgB => next_bit_f
);

lpm_compare_component_g : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_g ,
datab => factor ,
AgB => next_bit_g
);

lpm_compare_component_h : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_h ,
datab => factor ,
AgB => next_bit_h
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);

lpm_compare_component_i : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT=YES"
)

port map (
dataa => random_i ,
datab => factor ,
AgB => next_bit_i
);

lpm_compare_component_j : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT=YES"
)

port map (
dataa => random_j ,
datab => factor ,
AgB => next_bit_j
);

next_bits <= next_bit_a & next_bit_b & next_bit_c & next_bit_d & next_bit_e & next_bit_f &
next_bit_g & next_bit_h & next_bit_i & next_bit_j;

reginput <= regoutput (( output_bits - 1 - 10) downto 0) & next_bits;
bits <= regoutput;

lpm_shiftreg_component : lpm_shiftreg
generic map (

lpm_type => "LPM_SHIFTREG",
lpm_width => output_bits ,
lpm_direction => "LEFT"
)

port map (
data => reginput ,
clock => clock ,
load => invreset ,
sclr => reset ,
q => regoutput
);

end fixed_distribution_bit_source_multi_lfsr_architecture;

B.3.4 Bit source using parallelised LFSR array with shift register
preseeding

-- Fixed distribution bit source
--
-- Probability of an output bit being 0 is probability_factor / 1024
--
-- Parallel LFSR array generating 100 bits each clock cycle
-- Selection register is preseeded at startup to stabilise probabilites

library ieee;
use ieee.std_logic_1164.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity fixed_distribution_bit_source_multi_lfsr_preseeded is
generic (

output_bits : integer range 1 to 65535 := 1;
probability_factor : bit_vector (9 downto 0) := "1010101010"; -- 682
seed : bit_vector (1109 downto 0) := "0000 ..."
);

port (
reset : in std_logic;
clock : in std_logic;
bits : out std_logic_vector (( output_bits - 1) downto 0)
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);
end fixed_distribution_bit_source_multi_lfsr_preseeded;

architecture fixed_distribution_bit_source_multi_lfsr_preseeded_architecture of
fixed_distribution_bit_source_multi_lfsr_preseeded is

component lpm_compare
generic (

lpm_width : natural;
lpm_type : string;
lpm_representation : string;
lpm_hint : string
);

port (
dataa : in std_logic_vector (9 downto 0);
datab : in std_logic_vector (9 downto 0);
AgB : out std_logic
);

end component;

component lpm_shiftreg
generic (

lpm_type : string;
lpm_width : natural;
lpm_direction : string
);

port (
data : in std_logic_vector (( output_bits - 1) downto 0);
clock : in std_logic;
load : in std_logic;
q : out std_logic_vector (( output_bits - 1) downto 0)
);

end component;

component lfsr40_parallel_preseeded
generic (

output_bits : integer range 1 to 19;
seed : bit_vector (39 downto 0)
);

port (
reset : in std_logic;
clock : in std_logic;
value : out std_logic_vector (( output_bits - 1) downto 0)
);

end component;

signal random_a : std_logic_vector (9 downto 0);
signal random_b : std_logic_vector (9 downto 0);
signal random_c : std_logic_vector (9 downto 0);
signal random_d : std_logic_vector (9 downto 0);
signal random_e : std_logic_vector (9 downto 0);
signal random_f : std_logic_vector (9 downto 0);
signal random_g : std_logic_vector (9 downto 0);
signal random_h : std_logic_vector (9 downto 0);
signal random_i : std_logic_vector (9 downto 0);
signal random_j : std_logic_vector (9 downto 0);
signal factor : std_logic_vector (9 downto 0);
signal next_bit_a : std_logic;
signal next_bit_b : std_logic;
signal next_bit_c : std_logic;
signal next_bit_d : std_logic;
signal next_bit_e : std_logic;
signal next_bit_f : std_logic;
signal next_bit_g : std_logic;
signal next_bit_h : std_logic;
signal next_bit_i : std_logic;
signal next_bit_j : std_logic;
signal next_bits : std_logic_vector (9 downto 0);
signal reginput : std_logic_vector (( output_bits - 1) downto 0);
signal regoutput : std_logic_vector (( output_bits - 1) downto 0);

begin
lfsr40_parallel_preseeded_component_a : lfsr40_parallel_preseeded

generic map (
output_bits => 10,
seed => "1001101001100010110111010010001010000111"
)

port map (
reset => reset ,
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clock => clock ,
value => random_a
);

lfsr40_parallel_preseeded_component_b : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1010110001110101000001000011101010111101"
)

port map (
reset => reset ,
clock => clock ,
value => random_b
);

lfsr40_parallel_preseeded_component_c : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0111011000101001111000100000101110110011"
)

port map (
reset => reset ,
clock => clock ,
value => random_c
);

lfsr40_parallel_preseeded_component_d : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1111110100101100100000100111010011111100"
)

port map (
reset => reset ,
clock => clock ,
value => random_d
);

lfsr40_parallel_preseeded_component_e : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0000101001101100001011100100110011100101"
)

port map (
reset => reset ,
clock => clock ,
value => random_e
);

lfsr40_parallel_preseeded_component_f : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1001010111011100001000000011000011000111"
)

port map (
reset => reset ,
clock => clock ,
value => random_f
);

lfsr40_parallel_preseeded_component_g : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0100010100111110010111111000100011100111"
)

port map (
reset => reset ,
clock => clock ,
value => random_g
);

lfsr40_parallel_preseeded_component_h : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0100000010010000001111000011101000100001"
)

port map (
reset => reset ,
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clock => clock ,
value => random_h
);

lfsr40_parallel_preseeded_component_i : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1101111111111001100101000100110010001101"
)

port map (
reset => reset ,
clock => clock ,
value => random_i
);

lfsr40_parallel_preseeded_component_j : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0111010101101100111100000001000111101011"
)

port map (
reset => reset ,
clock => clock ,
value => random_j
);

factor <= To_stdlogicvector(probability_factor);

lpm_compare_component_a : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_a ,
datab => factor ,
AgB => next_bit_a
);

lpm_compare_component_b : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_b ,
datab => factor ,
AgB => next_bit_b
);

lpm_compare_component_c : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_c ,
datab => factor ,
AgB => next_bit_c
);

lpm_compare_component_d : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_d ,
datab => factor ,
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AgB => next_bit_d
);

lpm_compare_component_e : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_e ,
datab => factor ,
AgB => next_bit_e
);

lpm_compare_component_f : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_f ,
datab => factor ,
AgB => next_bit_f
);

lpm_compare_component_g : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_g ,
datab => factor ,
AgB => next_bit_g
);

lpm_compare_component_h : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_h ,
datab => factor ,
AgB => next_bit_h
);

lpm_compare_component_i : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_i ,
datab => factor ,
AgB => next_bit_i
);

lpm_compare_component_j : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT=YES"
)

port map (
dataa => random_j ,
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datab => factor ,
AgB => next_bit_j
);

next_bits <= next_bit_a & next_bit_b & next_bit_c & next_bit_d & next_bit_e & next_bit_f &
next_bit_g & next_bit_h & next_bit_i & next_bit_j;

reginput <= (regoutput (( output_bits - 1 - 10) downto 0) & next_bits) when (reset = ’0’) else
To_stdlogicvector(seed);

bits <= regoutput;

lpm_shiftreg_component : lpm_shiftreg
generic map (

lpm_type => "LPM_SHIFTREG",
lpm_width => output_bits ,
lpm_direction => "LEFT"
)

port map (
data => reginput ,
clock => clock ,
load => ’1’,
q => regoutput
);

end fixed_distribution_bit_source_multi_lfsr_preseeded_architecture;

B.3.5 Bit source supporting dynamic probabilities using simulated
annealing

-- Fixed distribution bit source
--
-- Probability of an output bit being 0 is probability_factor / 1024
--
-- Modified version for experiments with simulated annealing

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity fixed_distribution_bit_source_simulated_annealing is
generic (

output_bits : integer range 1 to 65535 := 1;
probability_factor : bit_vector (9 downto 0) := "1010101010" -- 682
);

port (
reset : in std_logic;
clock : in std_logic;
bits : out std_logic_vector (( output_bits - 1) downto 0)
);

end fixed_distribution_bit_source_simulated_annealing;

architecture fixed_distribution_bit_source_simulated_annealing_architecture of
fixed_distribution_bit_source_simulated_annealing is

component lpm_compare
generic (

lpm_width : natural;
lpm_type : string;
lpm_representation : string;
lpm_hint : string
);

port (
dataa : in std_logic_vector (9 downto 0);
datab : in std_logic_vector (9 downto 0);
AgB : out std_logic
);

end component;

component lpm_shiftreg
generic (

lpm_type : string;
lpm_width : natural;
lpm_direction : string
);
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port (
data : in std_logic_vector (( output_bits - 1) downto 0);
clock : in std_logic;
load : in std_logic;
sclr : in std_logic;
q : out std_logic_vector (( output_bits - 1) downto 0)
);

end component;

component lfsr40_parallel_preseeded
generic (

output_bits : integer range 1 to 19;
seed : bit_vector (39 downto 0)
);

port (
reset : in std_logic;
clock : in std_logic;
value : out std_logic_vector (( output_bits - 1) downto 0)
);

end component;

component rom_simulated_annealing_table
port (

clock : in std_logic;
address : in std_logic_vector (11 downto 0);
q : out std_logic_vector (15 downto 0)
);

end component;

signal invreset : std_logic;
signal random_a : std_logic_vector (9 downto 0);
signal random_b : std_logic_vector (9 downto 0);
signal random_c : std_logic_vector (9 downto 0);
signal random_d : std_logic_vector (9 downto 0);
signal random_e : std_logic_vector (9 downto 0);
signal random_f : std_logic_vector (9 downto 0);
signal random_g : std_logic_vector (9 downto 0);
signal random_h : std_logic_vector (9 downto 0);
signal random_i : std_logic_vector (9 downto 0);
signal random_j : std_logic_vector (9 downto 0);
signal factor : std_logic_vector (9 downto 0);
signal next_bit_a : std_logic;
signal next_bit_b : std_logic;
signal next_bit_c : std_logic;
signal next_bit_d : std_logic;
signal next_bit_e : std_logic;
signal next_bit_f : std_logic;
signal next_bit_g : std_logic;
signal next_bit_h : std_logic;
signal next_bit_i : std_logic;
signal next_bit_j : std_logic;
signal next_bits : std_logic_vector (9 downto 0);
signal reginput : std_logic_vector (( output_bits - 1) downto 0);
signal regoutput : std_logic_vector (( output_bits - 1) downto 0);
signal next_address : std_logic_vector (11 downto 0);
signal rom_data : std_logic_vector (15 downto 0);

begin
invreset <= not(reset);

lfsr40_parallel_preseeded_component_a : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1001101001100010110111010010001010000111"
)

port map (
reset => reset ,
clock => clock ,
value => random_a
);

lfsr40_parallel_preseeded_component_b : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1010110001110101000001000011101010111101"
)

port map (
reset => reset ,
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clock => clock ,
value => random_b
);

lfsr40_parallel_preseeded_component_c : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0111011000101001111000100000101110110011"
)

port map (
reset => reset ,
clock => clock ,
value => random_c
);

lfsr40_parallel_preseeded_component_d : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1111110100101100100000100111010011111100"
)

port map (
reset => reset ,
clock => clock ,
value => random_d
);

lfsr40_parallel_preseeded_component_e : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0000101001101100001011100100110011100101"
)

port map (
reset => reset ,
clock => clock ,
value => random_e
);

lfsr40_parallel_preseeded_component_f : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1001010111011100001000000011000011000111"
)

port map (
reset => reset ,
clock => clock ,
value => random_f
);

lfsr40_parallel_preseeded_component_g : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0100010100111110010111111000100011100111"
)

port map (
reset => reset ,
clock => clock ,
value => random_g
);

lfsr40_parallel_preseeded_component_h : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0100000010010000001111000011101000100001"
)

port map (
reset => reset ,
clock => clock ,
value => random_h
);

lfsr40_parallel_preseeded_component_i : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "1101111111111001100101000100110010001101"
)

port map (
reset => reset ,
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clock => clock ,
value => random_i
);

lfsr40_parallel_preseeded_component_j : lfsr40_parallel_preseeded
generic map (

output_bits => 10,
seed => "0111010101101100111100000001000111101011"
)

port map (
reset => reset ,
clock => clock ,
value => random_j
);

rom_component : rom_simulated_annealing_table
port map (

clock => clock ,
address => next_address ,
q => rom_data
);

process(clock)
variable current_address : integer range 0 to 4096;
variable effective_factor : integer range 0 to 1023;
variable base_factor : integer range 0 to 1023;
variable boost_factor : integer range 0 to 1023;
variable rle_counter : integer range 0 to 63;

begin
base_factor := To_integer(unsigned(To_stdlogicvector(probability_factor)));

if (rising_edge(clock)) then
if (reset = ’1’) then

current_address := 0;
next_address <= To_stdlogicvector("000000000000");

boost_factor := To_integer(unsigned(rom_data (9 downto 0)));
rle_counter := To_integer(unsigned(rom_data (15 downto 10)));

else
if (rle_counter = 1) then

current_address := current_address + 1;
rle_counter := 0;

elsif (rle_counter = 0) then
boost_factor := To_integer(unsigned(rom_data (9 downto 0)));
rle_counter := To_integer(unsigned(rom_data (15 downto 10)));

else
rle_counter := rle_counter - 1;

end if;

next_address <= std_logic_vector(To_unsigned(current_address , 12));
end if;

effective_factor := base_factor - boost_factor;
factor <= std_logic_vector(To_unsigned(effective_factor , 10));

end if;
end process;

lpm_compare_component_a : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_a ,
datab => factor ,
AgB => next_bit_a
);

lpm_compare_component_b : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)
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port map (
dataa => random_b ,
datab => factor ,
AgB => next_bit_b
);

lpm_compare_component_c : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_c ,
datab => factor ,
AgB => next_bit_c
);

lpm_compare_component_d : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_d ,
datab => factor ,
AgB => next_bit_d
);

lpm_compare_component_e : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_e ,
datab => factor ,
AgB => next_bit_e
);

lpm_compare_component_f : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_f ,
datab => factor ,
AgB => next_bit_f
);

lpm_compare_component_g : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => random_g ,
datab => factor ,
AgB => next_bit_g
);

lpm_compare_component_h : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
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)
port map (

dataa => random_h ,
datab => factor ,
AgB => next_bit_h
);

lpm_compare_component_i : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT=YES"
)

port map (
dataa => random_i ,
datab => factor ,
AgB => next_bit_i
);

lpm_compare_component_j : lpm_compare
generic map (

lpm_width => 10,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT=YES"
)

port map (
dataa => random_j ,
datab => factor ,
AgB => next_bit_j
);

next_bits <= next_bit_a & next_bit_b & next_bit_c & next_bit_d & next_bit_e & next_bit_f &
next_bit_g & next_bit_h & next_bit_i & next_bit_j;

reginput <= regoutput (( output_bits - 1 - 10) downto 0) & next_bits;
bits <= regoutput;

lpm_shiftreg_component : lpm_shiftreg
generic map (

lpm_type => "LPM_SHIFTREG",
lpm_width => output_bits ,
lpm_direction => "LEFT"
)

port map (
data => reginput ,
clock => clock ,
load => invreset ,
sclr => reset ,
q => regoutput
);

end fixed_distribution_bit_source_simulated_annealing_architecture;

B.3.6 ROM interface for simulated annealing stepping tables

-- ROM interface providing stepping table for simulated annealing

library ieee;
use ieee.std_logic_1164.all;

library altera_mf;
use altera_mf.all;

entity rom_simulated_annealing_table is
port (

address : in std_logic_vector (11 downto 0);
clock : in std_logic;
q : out std_logic_vector (15 downto 0)
);

end rom_simulated_annealing_table;

architecture SYN of rom_simulated_annealing_table is
component altsyncram

generic (
address_aclr_a : string;
init_file : string;
intended_device_family : string;
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lpm_type : string;
numwords_a : natural;
operation_mode : string;
outdata_aclr_a : string;
outdata_reg_a : string;
power_up_uninitialized : string;
widthad_a : natural;
width_a : natural;
width_byteena_a : natural
);

port (
clock0 : in std_logic;
address_a : in std_logic_vector (11 downto 0);
q_a : out std_logic_vector (15 downto 0)
);

end component;

signal output_word : std_logic_vector (15 downto 0);
begin

altsyncram_component : altsyncram
generic map (

address_aclr_a => "NONE",
init_file => "sa_table.mif",
intended_device_family => "Cyclone",
lpm_type => "altsyncram",
numwords_a => 4096,
operation_mode => "ROM",
outdata_aclr_a => "NONE",
outdata_reg_a => "UNREGISTERED",
power_up_uninitialized => "FALSE",
widthad_a => 12,
width_a => 16,
width_byteena_a => 1
)

port map (
clock0 => clock ,
address_a => address ,
q_a => output_word
);

q <= output_word (15 downto 0);
end SYN;

B.4 Pseudo-random random number generators

B.4.1 Single bit LFSR (40-bit)

-- 40-bit linear feedback shift register
--
-- Taps: 19, 21
-- Period: 1 090 921 693 057
--
-- BEWARE: This implementation is buggy!
--
-- The characteristic polynomial of this LFSR is f(x) = x^40 + x^21 + x^19
-- This is obviously not irreducible leading to a period dependant
-- on the seed used to initialise the LFSR
--
-- Parameters from http :// sciencezero .4hv.org/science/lfsr.htm

library ieee;
use ieee.std_logic_1164.all;

library work;

entity lfsr40_serial is
generic (

output_bits : integer range 1 to 40 := 10
);

port (
reset : in std_logic;
clock : in std_logic;
value : out std_logic_vector (( output_bits - 1) downto 0)
);

end lfsr40_serial;
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architecture lfsr40_serial_architecture of lfsr40_serial is
signal tap1 : std_logic;
signal tap2 : std_logic;
signal nextbit : std_logic;
signal shiftin : std_logic;
signal vector : std_logic_vector (39 downto 0);

begin
tap1 <= vector (18);
tap2 <= vector (20);
nextbit <= tap1 xnor tap2;
shiftin <= nextbit and not(reset);

process(clock)
begin

if (rising_edge(clock)) then
vector <= vector (38 downto 0) & shiftin;

end if;
end process;

value <= vector (39 downto (39 - output_bits + 1));
end lfsr40_serial_architecture;

B.4.2 Parallelised LFSR (40-bit)

-- 40-bit linear feedback shift register
--
-- Taps: 19, 21
-- Period: 1 090 921 693 057
--
-- BEWARE: This implementation is buggy!
--
-- The characteristic polynomial of this LFSR is f(x) = x^40 + x^21 + x^19
-- This is obviously not irreducible leading to a period dependant
-- on the seed used to initialise the LFSR
--
-- Parameters from http :// sciencezero .4hv.org/science/lfsr.htm

library ieee;
use ieee.std_logic_1164.all;

library work;

entity lfsr40_parallel is
generic (

output_bits : integer range 1 to 19 := 10
);

port (
reset : in std_logic;
clock : in std_logic;
value : out std_logic_vector (( output_bits - 1) downto 0)
);

end lfsr40_parallel;

architecture lfsr40_parallel_architecture of lfsr40_parallel is
signal zerobits : std_logic_vector (39 downto 0);
signal tap1bits : std_logic_vector (( output_bits - 1) downto 0);
signal tap2bits : std_logic_vector (( output_bits - 1) downto 0);
signal nextbits : std_logic_vector (( output_bits - 1) downto 0);
signal shiftinbits : std_logic_vector (( output_bits - 1) downto 0);
signal vector : std_logic_vector (39 downto 0);

begin
zerobits <= "0000000000000000000000000000000000000000";
tap1bits <= vector (18 downto (18 - (output_bits - 1)));
tap2bits <= vector (20 downto (20 - (output_bits - 1)));
nextbits <= tap1bits xnor tap2bits;
shiftinbits <= nextbits when reset = ’0’ else zerobits (( output_bits - 1) downto 0);

process(clock)
begin

if (rising_edge(clock)) then
vector <= vector ((39 - output_bits) downto 0) & shiftinbits;

end if;
end process;

value <= vector (39 downto (39 - output_bits + 1));
end lfsr40_parallel_architecture;
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B.4.3 Parallelised LFSR supporting variable seed (40-bit)

-- 40-bit linear feedback shift register
--
-- Taps: 19, 21
-- Period: 1 090 921 693 057
--
-- BEWARE: This implementation is buggy!
--
-- The characteristic polynomial of this LFSR is f(x) = x^40 + x^21 + x^19
-- This is obviously not irreducible leading to a period dependant
-- on the seed used to initialise the LFSR
--
-- Parameters from http :// sciencezero .4hv.org/science/lfsr.htm

library ieee;
use ieee.std_logic_1164.all;

library work;

entity lfsr40_parallel_preseeded is
generic (

output_bits : integer range 1 to 19 := 10;
seed : bit_vector (39 downto 0) := "0000000000000000000000000000000000000000"
);

port (
reset : in std_logic;
clock : in std_logic;
value : out std_logic_vector (( output_bits - 1) downto 0)
);

end lfsr40_parallel_preseeded;

architecture lfsr40_parallel_preseeded_architecture of lfsr40_parallel_preseeded is
signal tap1bits : std_logic_vector (( output_bits - 1) downto 0);
signal tap2bits : std_logic_vector (( output_bits - 1) downto 0);
signal nextbits : std_logic_vector (( output_bits - 1) downto 0);
signal vector : std_logic_vector (39 downto 0);

begin
tap1bits <= vector (18 downto (18 - (output_bits - 1)));
tap2bits <= vector (20 downto (20 - (output_bits - 1)));
nextbits <= tap1bits xnor tap2bits;

process(clock)
begin

if (rising_edge(clock)) then
if (reset = ’1’) then

vector <= To_stdlogicvector(seed);
else

vector <= vector ((39 - output_bits) downto 0) & nextbits;
end if;

end if;
end process;

value <= vector (39 downto (39 - output_bits + 1));
end lfsr40_parallel_preseeded_architecture;

B.4.4 Parallelised LFSR supporting variable seed (41-bit)

-- 41-bit linear feedback shift register
--
-- Taps: 41, 38
--
-- Parameters from Xilinx application note about LFSR techniques

library ieee;
use ieee.std_logic_1164.all;

library work;

entity lfsr41_parallel_preseeded is
generic (

output_bits : integer range 1 to 37 := 10;
seed : bit_vector (40 downto 0) := "00000000000000000000000000000000000000000"
);

port (
clock : in std_logic;
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enabled : in std_logic;
output : out std_logic_vector (( output_bits - 1) downto 0)
);

end lfsr41_parallel_preseeded;

architecture lfsr41_parallel_preseeded_architecture of lfsr41_parallel_preseeded is
signal tap1bits : std_logic_vector (( output_bits - 1) downto 0);
signal tap2bits : std_logic_vector (( output_bits - 1) downto 0);
signal nextbits : std_logic_vector (( output_bits - 1) downto 0);
signal vector : std_logic_vector (40 downto 0);

begin
tap1bits <= vector (40 downto (40 - (output_bits - 1)));
tap2bits <= vector (37 downto (37 - (output_bits - 1)));
nextbits <= tap1bits xnor tap2bits;

process(clock)
begin

if (rising_edge(clock)) then
if (enabled = ’0’) then

vector <= To_stdlogicvector(seed);
else

vector <= vector ((40 - output_bits) downto 0) & nextbits;
end if;

end if;
end process;

output <= vector (40 downto (40 - (output_bits - 1)));
end lfsr41_parallel_preseeded_architecture;

B.5 Support circuitry

B.5.1 Delayed startup controller for single testruns

-- Delayed startup controller
--
-- Automatically initiates circuit startup and shutdown
-- during unattended test runs

library ieee;
use ieee.std_logic_1164.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity delayed_startup_controller_single is
port (

reset : out std_logic;
clock : in std_logic
);

end delayed_startup_controller_single;

architecture delayed_startup_controller_single_architecture of
delayed_startup_controller_single is

component lpm_ff
generic (

lpm_width : natural;
lpm_type : string;
lpm_fftype : string
);

port (
sclr : in std_logic;
clock : in std_logic;
q : out std_logic_vector (0 downto 0);
data : in std_logic_vector (0 downto 0);
sset : in std_logic
);

end component;

component lpm_counter
generic (

lpm_width : natural;
lpm_type : string;
lpm_direction : string
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);
port (

sclr : in std_logic;
clock : in std_logic;
q : out std_logic_vector (31 downto 0);
cnt_en : in std_logic
);

end component;

component lpm_compare
generic (

lpm_width : natural;
lpm_type : string;
lpm_representation : string;
lpm_hint : string
);

port (
dataa : in std_logic_vector (31 downto 0);
datab : in std_logic_vector (31 downto 0);
AgeB : out std_logic
);

end component;

signal activation_timeout_reached : std_logic;
signal deactivation_timeout_reached : std_logic;
signal activated : std_logic_vector (0 to 0);
signal deactivated : std_logic_vector (0 to 0);
signal counter_delay_value : std_logic_vector (31 downto 0);
signal counter_hold_value : std_logic_vector (31 downto 0);
signal comparator_delay_bits : bit_vector (31 downto 0);
signal comparator_delay_value : std_logic_vector (31 downto 0);
signal comparator_hold_bits : bit_vector (31 downto 0);
signal comparator_hold_value : std_logic_vector (31 downto 0);

begin
lpm_ff_activation : lpm_ff

generic map (
lpm_width => 1,
lpm_type => "LPM_FF",
lpm_fftype => "DFF"
)

port map (
clock => clock ,
data => activated ,
sset => activation_timeout_reached ,
q => activated
);

lpm_ff_deactivation : lpm_ff
generic map (

lpm_width => 1,
lpm_type => "LPM_FF",
lpm_fftype => "DFF"
)

port map (
clock => clock ,
data => deactivated ,
sset => deactivation_timeout_reached ,
q => deactivated
);

lpm_counter_delay : lpm_counter
generic map (

lpm_width => 32,
lpm_type => "LPM_COUNTER",
lpm_direction => "UP"
)

port map (
clock => clock ,
q => counter_delay_value
);

lpm_counter_hold : lpm_counter
generic map (

lpm_width => 32,
lpm_type => "LPM_COUNTER",
lpm_direction => "UP"
)
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port map (
clock => clock ,
cnt_en => activated (0),
q => counter_hold_value
);

comparator_delay_bits (31 downto 0) <= "00000100010001000110000001110000"; -- 5 seconds at
14.318 MHz

comparator_delay_value <= To_stdlogicvector(comparator_delay_bits);

lpm_compare_delay : lpm_compare
generic map (

lpm_width => 32,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => counter_delay_value ,
datab => comparator_delay_value ,
AgeB => activation_timeout_reached
);

comparator_hold_bits (31 downto 0) <= "00000000000000000000000001100100"; -- 100 clock cycles
comparator_hold_value <= To_stdlogicvector(comparator_hold_bits);

lpm_compare_hold : lpm_compare
generic map (

lpm_width => 32,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT=YES"
)

port map (
dataa => counter_hold_value ,
datab => comparator_hold_value ,
AgeB => deactivation_timeout_reached
);

reset <= not(activated (0)) or deactivated (0);
end delayed_startup_controller_single_architecture;

B.5.2 Delayed startup controller for batch testruns

-- Delayed startup controller
--
-- Automatically initiates circuit startup and shutdown
-- during unattended test runs
--
-- Modified version for multiple runs on a single SAT instance

library ieee;
use ieee.std_logic_1164.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity delayed_startup_controller_series is
port (

reset : out std_logic;
clock : in std_logic
);

end delayed_startup_controller_series;

architecture delayed_startup_controller_series_architecture of
delayed_startup_controller_series is

component lpm_ff
generic (

lpm_width : natural;
lpm_type : string;
lpm_fftype : string
);

port (
sclr : in std_logic;
clock : in std_logic;
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q : out std_logic_vector (0 downto 0);
data : in std_logic_vector (0 downto 0);
sset : in std_logic
);

end component;

component lpm_counter
generic (

lpm_width : natural;
lpm_type : string;
lpm_direction : string
);

port (
sclr : in std_logic;
clock : in std_logic;
q : out std_logic_vector (31 downto 0);
cnt_en : in std_logic
);

end component;

component lpm_compare
generic (

lpm_width : natural;
lpm_type : string;
lpm_representation : string;
lpm_hint : string
);

port (
dataa : in std_logic_vector (31 downto 0);
datab : in std_logic_vector (31 downto 0);
AgeB : out std_logic
);

end component;

signal activation_timeout_reached : std_logic;
signal deactivation_timeout_reached : std_logic;
signal activated : std_logic_vector (0 to 0);
signal deactivated : std_logic_vector (0 to 0);
signal counter_delay_value : std_logic_vector (31 downto 0);
signal counter_hold_value : std_logic_vector (31 downto 0);
signal comparator_delay_bits : bit_vector (31 downto 0);
signal comparator_delay_value : std_logic_vector (31 downto 0);
signal comparator_hold_bits : bit_vector (31 downto 0);
signal comparator_hold_value : std_logic_vector (31 downto 0);

begin
lpm_ff_activation : lpm_ff

generic map (
lpm_width => 1,
lpm_type => "LPM_FF",
lpm_fftype => "DFF"
)

port map (
clock => clock ,
data => activated ,
sset => activation_timeout_reached ,
q => activated
);

lpm_ff_deactivation : lpm_ff
generic map (

lpm_width => 1,
lpm_type => "LPM_FF",
lpm_fftype => "DFF"
)

port map (
clock => clock ,
data => deactivated ,
sset => deactivation_timeout_reached ,
q => deactivated
);

lpm_counter_delay : lpm_counter
generic map (

lpm_width => 32,
lpm_type => "LPM_COUNTER",
lpm_direction => "UP"
)
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port map (
clock => clock ,
q => counter_delay_value
);

lpm_counter_hold : lpm_counter
generic map (

lpm_width => 32,
lpm_type => "LPM_COUNTER",
lpm_direction => "UP"
)

port map (
clock => clock ,
cnt_en => activated (0),
q => counter_hold_value
);

comparator_delay_bits (31 downto 0) <= "00000100010001000110000001110000"; -- 5 seconds at
14.318 MHz

comparator_delay_value <= To_stdlogicvector(comparator_delay_bits);

lpm_compare_delay : lpm_compare
generic map (

lpm_width => 32,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => counter_delay_value ,
datab => comparator_delay_value ,
AgeB => activation_timeout_reached
);

comparator_hold_bits (31 downto 0) <= "00000000000000000000000001100100"; -- 100 clock cycles
comparator_hold_value <= To_stdlogicvector(comparator_hold_bits);

lpm_compare_hold : lpm_compare
generic map (

lpm_width => 32,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT=YES"
)

port map (
dataa => counter_hold_value ,
datab => comparator_hold_value ,
AgeB => deactivation_timeout_reached
);

reset <= not(deactivated (0));
end delayed_startup_controller_series_architecture;

B.5.3 Timeout controller for single testruns

-- Timeout controller
--
-- Eliminates problems produced by bouncing or floating reset signals
-- and guarantees precise measurement timeouts

library ieee;
use ieee.std_logic_1164.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity timeout_controller_single is
generic (

timeout_cycles : bit_vector (31 downto 0) := "00000100010001000110000001110000" -- 5
seconds at 14.318 MHz

);
port (

reset_in : in std_logic;
reset_out : out std_logic;
clock : in std_logic
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);
end timeout_controller_single;

architecture timeout_controller_single_architecture of timeout_controller_single is
component lpm_ff

generic (
lpm_width : natural;
lpm_type : string;
lpm_fftype : string
);

port (
sclr : in std_logic;
clock : in std_logic;
q : out std_logic_vector (0 downto 0);
data : in std_logic_vector (0 downto 0);
sset : in std_logic
);

end component;

component lpm_counter
generic (

lpm_width : natural;
lpm_type : string;
lpm_direction : string
);

port (
sclr : in std_logic;
clock : in std_logic;
q : out std_logic_vector (31 downto 0);
cnt_en : in std_logic
);

end component;

component lpm_compare
generic (

lpm_width : natural;
lpm_type : string;
lpm_representation : string;
lpm_hint : string
);

port (
dataa : in std_logic_vector (31 downto 0);
datab : in std_logic_vector (31 downto 0);
AgeB : out std_logic
);

end component;

signal timeout_reached : std_logic;
signal inv_reset_in : std_logic;
signal inv_reset_out : std_logic_vector (0 to 0);
signal counter_value : std_logic_vector (31 downto 0);
signal comparator_bits : bit_vector (31 downto 0);
signal comparator_value : std_logic_vector (31 downto 0);

begin
inv_reset_in <= not(reset_in);

lpm_ff_component : lpm_ff
generic map (

lpm_width => 1,
lpm_type => "LPM_FF",
lpm_fftype => "DFF"
)

port map (
sclr => timeout_reached ,
clock => clock ,
data => inv_reset_out ,
sset => inv_reset_in ,
q => inv_reset_out
);

lpm_counter_component : lpm_counter
generic map (

lpm_width => 32,
lpm_type => "LPM_COUNTER",
lpm_direction => "UP"
)

port map (
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sclr => timeout_reached ,
clock => clock ,
cnt_en => inv_reset_out (0),
q => counter_value
);

comparator_bits (31 downto 0) <= timeout_cycles;
comparator_value <= To_stdlogicvector(comparator_bits);

lpm_compare_component : lpm_compare
generic map (

lpm_width => 32,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT=YES"
)

port map (
dataa => counter_value ,
datab => comparator_value ,
AgeB => timeout_reached
);

reset_out <= not(inv_reset_out (0));
end timeout_controller_single_architecture;

B.5.4 Timeout controller for batch testruns

-- Timeout controller
--
-- Eliminates problems produced by bouncing or floating reset signals
-- and guarantees precise measurement timeouts
--
-- Modified version for multiple runs on a single SAT instance

library ieee;
use ieee.std_logic_1164.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity timeout_controller_series is
generic (

timeout_cycles : bit_vector (31 downto 0) := "00000100010001000110000001110000" -- 5
seconds at 14.318 MHz

);
port (

reset_in : in std_logic;
reset_out : out std_logic;
clock : in std_logic
);

end timeout_controller_series;

architecture timeout_controller_series_architecture of timeout_controller_series is
component lpm_counter

generic (
lpm_width : natural;
lpm_type : string;
lpm_direction : string
);

port (
sclr : in std_logic;
clock : in std_logic;
q : out std_logic_vector (31 downto 0);
cnt_en : in std_logic
);

end component;

component lpm_compare
generic (

lpm_width : natural;
lpm_type : string;
lpm_representation : string;
lpm_hint : string
);

port (
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dataa : in std_logic_vector (31 downto 0);
datab : in std_logic_vector (31 downto 0);
AgeB : out std_logic
);

end component;

signal counter_enabled : std_logic;
signal timeout_reached : std_logic;
signal clear_counter : std_logic;
signal counter_value : std_logic_vector (31 downto 0);
signal comparator_bits : bit_vector (31 downto 0);
signal comparator_value : std_logic_vector (31 downto 0);

begin
lpm_counter_component : lpm_counter

generic map (
lpm_width => 32,
lpm_type => "LPM_COUNTER",
lpm_direction => "UP"
)

port map (
sclr => clear_counter ,
clock => clock ,
cnt_en => counter_enabled ,
q => counter_value
);

comparator_bits (31 downto 0) <= timeout_cycles;
comparator_value <= To_stdlogicvector(comparator_bits);

lpm_compare_component : lpm_compare
generic map (

lpm_width => 32,
lpm_type => "LPM_COMPARE",
lpm_representation => "UNSIGNED",
lpm_hint => "ONE_INPUT_IS_CONSTANT = YES"
)

port map (
dataa => counter_value ,
datab => comparator_value ,
AgeB => timeout_reached
);

process(clock)
variable reset_state : std_logic;

begin
if (rising_edge(clock)) then

if (reset_in = ’1’) then
reset_state := ’1’;
reset_out <= ’1’;
counter_enabled <= ’0’;
clear_counter <= ’1’;

elsif (reset_state = ’1’) then
reset_state := ’0’;
reset_out <= ’0’;
counter_enabled <= ’1’;
clear_counter <= ’0’;

elsif (timeout_reached = ’1’) then
reset_out <= ’1’;
counter_enabled <= ’0’;
clear_counter <= ’0’;

else
reset_out <= ’0’;
counter_enabled <= ’1’;
clear_counter <= ’0’;

end if;
end if;

end process;
end timeout_controller_series_architecture;

B.5.5 Performance counter

-- Performance counter
--
-- Counts the number of clock cycles the SAT solver needs to stabilise on a result

library ieee;
use ieee.std_logic_1164.all;
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library lpm;
use lpm.lpm_components.all;

library work;

entity performance_counter is
port (

sclr : in std_logic;
clock : in std_logic;
reset : in std_logic;
solved : in std_logic;
value : out std_logic_vector (31 downto 0)
);

end performance_counter;

architecture performance_counter_architecture of performance_counter is
component lpm_counter

generic (
lpm_width : natural;
lpm_type : string;
lpm_direction : string
);

port (
sclr : in std_logic;
clock : in std_logic;
q : out std_logic_vector (31 downto 0);
cnt_en : in std_logic
);

end component;

signal counter_enable : std_logic;
signal output : std_logic_vector (31 downto 0);

begin
counter_enable <= reset nor solved;

lpm_counter_component : lpm_counter
generic map (

lpm_width => 32,
lpm_type => "LPM_COUNTER",
lpm_direction => "UP"
)

port map (
sclr => sclr ,
clock => clock ,
cnt_en => counter_enable ,
q => output
);

value <= output;
end performance_counter_architecture;

B.5.6 Memory controller for single testruns

-- Memory controller
--
-- Writes result data to attached memory block

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity memory_controller_single is
generic (

variable_count : integer range 1 to 4000 := 1
);

port (
reset : in std_logic;
clock : in std_logic;
variables : in std_logic_vector (1 to variable_count);
solved : in std_logic;
performance : in std_logic_vector (31 downto 0);
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data : out std_logic_vector (31 downto 0);
address : out std_logic_vector (6 downto 0);
write_enable : out std_logic
);

end memory_controller_single;

architecture memory_controller_single_architecture of memory_controller_single is
signal variable_buffer : std_logic_vector (0 to (variable_count + 32 - 1));
signal solved_buffer : std_logic;
signal write_address : std_logic_vector (6 downto 0);

begin
process(clock)

variable bits : integer range 96 to 4096;
variable slices : integer range 3 to 125;
variable current_slice : integer range 0 to 127;
variable offset : integer range 0 to (4096 - 32);

begin
bits := 96 + variable_count;
slices := bits / 32;
if ((bits mod 32) /= 0) then

slices := slices + 1;
end if;

if (rising_edge(clock)) then
if (reset = ’1’) then

current_slice := To_integer(unsigned(write_address));
current_slice := current_slice + 1;
if (current_slice >= slices) then

current_slice := 0;
end if;

if (current_slice = 0) then
data <= std_logic_vector(To_unsigned(variable_count , 32));

elsif (current_slice = 1) then
data <= performance;

elsif (current_slice = 2) then
if (solved_buffer = ’1’) then

data <= "00000000000000000000000000000001";
else

data <= "00000000000000000000000000000000";
end if;

else
offset := (current_slice - 3) * 32;
for index in 0 to 31 loop

data (31 - index) <= variable_buffer(offset + index);
end loop;

end if;

write_address <= STD_LOGIC_VECTOR(To_unsigned(current_slice , 7));
address <= write_address;

else
variable_buffer <= variables & "00000000000000000000000000000000";
solved_buffer <= solved;

end if;
end if;

end process;

write_enable <= reset;
end memory_controller_single_architecture;

B.5.7 Memory controller for batch testruns

-- Memory controller
--
-- Writes result data of single instance test series to attached memory block

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library lpm;
use lpm.lpm_components.all;

library work;

entity memory_controller_series is
generic (
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variable_count : integer range 1 to 4000 := 1
);

port (
reset : in std_logic;
clock : in std_logic;
variables : in std_logic_vector (1 to variable_count);
solved : in std_logic;
performance : in std_logic_vector (31 downto 0);
data : out std_logic_vector (31 downto 0);
address : out std_logic_vector (8 downto 0);
write_enable : out std_logic;
restart : out std_logic
);

end memory_controller_series;

architecture memory_controller_series_architecture of memory_controller_series is
signal write_data : std_logic_vector (31 downto 0);
signal write_address : std_logic_vector (8 downto 0);
signal restart_cycle : std_logic;

begin
process(clock)

variable current_slot : integer range 0 to 511;
variable checksum : std_logic_vector (31 downto 0);
variable write_checksum : std_logic;
variable result_written : std_logic;

begin
if (rising_edge(clock)) then

if (reset = ’1’) then
write_data <= "00000000000000000000000000000000";
write_address <= "000000000";
current_slot := 0;
checksum := "00000000000000000000000000000000";
write_checksum := ’0’;
result_written := ’0’;
restart_cycle <= ’1’;

elsif (write_checksum = ’1’) then
write_data <= checksum;
write_address <= std_logic_vector(To_unsigned(current_slot , 9));
restart_cycle <= ’0’;

elsif (( solved = ’1’) and (result_written = ’0’)) then
write_data <= solved & performance (30 downto 0);
write_address <= std_logic_vector(To_unsigned(current_slot , 9));
checksum := (checksum (23 downto 0) & checksum (31 downto 24)) xor (solved &

performance (30 downto 0));
result_written := ’1’;
restart_cycle <= ’1’;

current_slot := current_slot + 1;
if (current_slot >= 256) then

write_checksum := ’1’;
end if;

elsif (solved = ’0’) then
result_written := ’0’;
restart_cycle <= ’0’;

end if;
end if;

end process;

data <= write_data;
address <= write_address;
write_enable <= ’1’;
restart <= restart_cycle;

end memory_controller_series_architecture;

B.5.8 RAM interface (4K)

-- RAM interface providing 4K SRAM accessable by host computer

library ieee;
use ieee.std_logic_1164.all;

library altera_mf;
use altera_mf.all;

entity ram_interface_4k is
port (

address : in std_logic_vector (6 downto 0);
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clock : in std_logic;
data : in std_logic_vector (31 downto 0);
wren : in std_logic := ’1’;
q : out std_logic_vector (31 downto 0)
);

end ram_interface_4k;

architecture SYN of ram_interface_4k is
component altsyncram

generic (
address_aclr_a : string;
indata_aclr_a : string;
intended_device_family : string;
lpm_hint : string;
lpm_type : string;
numwords_a : natural;
operation_mode : string;
outdata_aclr_a : string;
outdata_reg_a : string;
power_up_uninitialized : string;
widthad_a : natural;
width_a : natural;
width_byteena_a : natural;
wrcontrol_aclr_a : string
);

port (
wren_a : in std_logic;
clock0 : in std_logic;
address_a : in std_logic_vector (6 downto 0);
q_a : out std_logic_vector (31 downto 0);
data_a : in std_logic_vector (31 downto 0)
);

end component;

signal output_word : std_logic_vector (31 downto 0);
begin

altsyncram_component : altsyncram
generic map (

address_aclr_a => "NONE",
indata_aclr_a => "NONE",
intended_device_family => "Cyclone",
lpm_hint => "ENABLE_RUNTIME_MOD = YES , INSTANCE_NAME = RSLT",
lpm_type => "altsyncram",
numwords_a => 128,
operation_mode => "SINGLE_PORT",
outdata_aclr_a => "NONE",
outdata_reg_a => "UNREGISTERED",
power_up_uninitialized => "FALSE",
widthad_a => 7,
width_a => 32,
width_byteena_a => 1,
wrcontrol_aclr_a => "NONE"
)

PORT MAP (
wren_a => wren ,
clock0 => clock ,
address_a => address ,
data_a => data ,
q_a => output_word
);

q <= output_word (31 downto 0);
end SYN;

B.5.9 RAM interface (16K)

-- RAM interface providing 16K SRAM accessable by host computer

library ieee;
use ieee.std_logic_1164.all;

library altera_mf;
use altera_mf.all;

entity ram_interface_16k is
port (
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address : in std_logic_vector (8 downto 0);
clock : in std_logic;
data : in std_logic_vector (31 downto 0);
wren : in std_logic := ’1’;
q : out std_logic_vector (31 downto 0)
);

end ram_interface_16k;

architecture SYN of ram_interface_16k is
component altsyncram

generic (
address_aclr_a : string;
indata_aclr_a : string;
intended_device_family : string;
lpm_hint : string;
lpm_type : string;
numwords_a : natural;
operation_mode : string;
outdata_aclr_a : string;
outdata_reg_a : string;
power_up_uninitialized : string;
widthad_a : natural;
width_a : natural;
width_byteena_a : natural;
wrcontrol_aclr_a : string
);

port (
wren_a : in std_logic;
clock0 : in std_logic;
address_a : in std_logic_vector (8 downto 0);
q_a : out std_logic_vector (31 downto 0);
data_a : in std_logic_vector (31 downto 0)
);

end component;

signal output_word : std_logic_vector (31 downto 0);
begin

altsyncram_component : altsyncram
generic map (

address_aclr_a => "NONE",
indata_aclr_a => "NONE",
intended_device_family => "Cyclone",
lpm_hint => "ENABLE_RUNTIME_MOD = YES , INSTANCE_NAME = RSLT",
lpm_type => "altsyncram",
numwords_a => 512,
operation_mode => "SINGLE_PORT",
outdata_aclr_a => "NONE",
outdata_reg_a => "UNREGISTERED",
power_up_uninitialized => "FALSE",
widthad_a => 9,
width_a => 32,
width_byteena_a => 1,
wrcontrol_aclr_a => "NONE"
)

PORT MAP (
wren_a => wren ,
clock0 => clock ,
address_a => address ,
data_a => data ,
q_a => output_word
);

q <= output_word (31 downto 0);
end SYN;
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Top level circuit setups

C.1 Basic asynchronous circuitry

-- Main module used in experiments with
-- basic asynchronous circuits
--
-- Number of variables is set to 10
-- Timeout is set to 71590000 clock cycles

library ieee;
use ieee.std_logic_1164.all;

library work;

entity Sample is
port (

zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
clock_base : in std_logic;
counter_reset : in std_logic;
stabiliser : inout std_logic
);

end Sample;

architecture bdf_type of Sample is
component sat_solver

port(
reset : in std_logic;
zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
output : out std_logic_vector (1 to 10);
solved : out std_logic
);

end component;

component delayed_startup_controller_single
port(

clock : in std_logic;
reset : out std_logic
);

end component;

component timeout_controller_single
generic (

timeout_cycles : bit_vector (31 downto 0)
);

port(
reset_in : in std_logic;
clock : in std_logic;
reset_out : out std_logic
);

end component;

component performance_counter
port(

sclr : in std_logic;
clock : in std_logic;
reset : in std_logic;
solved : in std_logic;
value : out std_logic_vector (31 downto 0)
);
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end component;

component memory_controller_single
generic (

variable_count : integer
);

port(
reset : in std_logic;
clock : in std_logic;
solved : in std_logic;
performance : in std_logic_vector (31 downto 0);
variables : in std_logic_vector (1 to 10);
write_enable : out std_logic;
address : out std_logic_vector (6 downto 0);
data : out std_logic_vector (31 downto 0)
);

end component;

component ram_interface_4k
port(

wren : in std_logic;
clock : in std_logic;
address : in std_logic_vector (6 downto 0);
data : in std_logic_vector (31 downto 0);
q : out std_logic_vector (31 downto 0)
);

end component;

component opndrn
port(

A_IN : in std_logic;
A_OUT : out std_logic
);

end component;

signal solver_reset : std_logic;
signal global_reset : std_logic;
signal clear_counter : std_logic;
signal solution_found : std_logic;
signal performance_count : std_logic_vector (31 downto 0);
signal truth_assignment : std_logic_vector (1 to 10);
signal memory_write_enable : std_logic;
signal memory_address : std_logic_vector (6 downto 0);
signal memory_data : std_logic_vector (31 downto 0);

begin
sat_solver_instance : sat_solver

port map(
reset => solver_reset ,
zero_a => zero_a ,
zero_b => zero_b ,
zero_c => zero_c ,
solved => solution_found ,
output => truth_assignment
);

delayed_startup_controller_instance : delayed_startup_controller_single
port map(

clock => clock_base ,
reset => global_reset
);

clear_counter <= not(counter_reset);

timeout_controller_instance : timeout_controller_single
generic map(

timeout_cycles => "00000100010001000110000001110000"
)

port map(
reset_in => global_reset ,
clock => clock_base ,
reset_out => solver_reset
);

performance_counter_instance : performance_counter
port map(

sclr => clear_counter ,
clock => clock_base ,
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reset => solver_reset ,
solved => stabiliser ,
value => performance_count
);

memory_controller_instance : memory_controller_single
generic map(

variable_count => 10
)

port map(
reset => solver_reset ,
clock => clock_base ,
solved => stabiliser ,
performance => performance_count ,
variables => truth_assignment ,
write_enable => memory_write_enable ,
address => memory_address ,
data => memory_data
);

memory_wrapper : ram_interface_4k
port map(

wren => memory_write_enable ,
clock => clock_base ,
address => memory_address ,
data => memory_data
);

tri_state_buffer : opndrn
port map(

A_IN => solution_found ,
A_OUT => stabiliser
);

end;

C.2 Basic synchronous circuitry

-- Main module used in experiments with
-- basic synchronous circuits
--
-- Number of variables is set to 10
-- Timeout is set to 71590000 clock cycles

library ieee;
use ieee.std_logic_1164.all;

library work;

entity Sample is
port (

zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
clock_base : in std_logic;
counter_reset : in std_logic
);

end Sample;

architecture bdf_type of Sample is
component sat_solver

port(
reset : in std_logic;
clock : in std_logic;
zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
output : out std_logic_vector (1 to 10);
solved : out std_logic
);

end component;

component delayed_startup_controller_single
port(

clock : in std_logic;
reset : out std_logic
);
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end component;

component timeout_controller_single
generic (

timeout_cycles : bit_vector (31 downto 0)
);

port(
reset_in : in std_logic;
clock : in std_logic;
reset_out : out std_logic
);

end component;

component performance_counter
port(

sclr : in std_logic;
clock : in std_logic;
reset : in std_logic;
solved : in std_logic;
value : out std_logic_vector (31 downto 0)
);

end component;

component memory_controller_single
generic (

variable_count : integer
);

port(
reset : in std_logic;
clock : in std_logic;
solved : in std_logic;
performance : in std_logic_vector (31 downto 0);
variables : in std_logic_vector (1 to 10);
write_enable : out std_logic;
address : out std_logic_vector (6 downto 0);
data : out std_logic_vector (31 downto 0)
);

end component;

component ram_interface_4k
port(

wren : in std_logic;
clock : in std_logic;
address : in std_logic_vector (6 downto 0);
data : in std_logic_vector (31 downto 0);
q : out std_logic_vector (31 downto 0)
);

end component;

signal solver_reset : std_logic;
signal global_reset : std_logic;
signal clear_counter : std_logic;
signal solution_found : std_logic;
signal performance_count : std_logic_vector (31 downto 0);
signal truth_assignment : std_logic_vector (1 to 10);
signal memory_write_enable : std_logic;
signal memory_address : std_logic_vector (6 downto 0);
signal memory_data : std_logic_vector (31 downto 0);

begin
sat_solver_instance : sat_solver

port map(
reset => solver_reset ,
clock => clock_base ,
zero_a => zero_a ,
zero_b => zero_b ,
zero_c => zero_c ,
solved => solution_found ,
output => truth_assignment
);

delayed_startup_controller_instance : delayed_startup_controller_single
port map(

clock => clock_base ,
reset => global_reset
);

clear_counter <= not(counter_reset);
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timeout_controller_instance : timeout_controller_single
generic map(

timeout_cycles => "00000100010001000110000001110000"
)

port map(
reset_in => global_reset ,
clock => clock_base ,
reset_out => solver_reset
);

performance_counter_instance : performance_counter
port map(

sclr => clear_counter ,
clock => clock_base ,
reset => solver_reset ,
solved => solution_found ,
value => performance_count
);

memory_controller_instance : memory_controller_single
generic map(

variable_count => 10
)

port map(
reset => solver_reset ,
clock => clock_base ,
solved => solution_found ,
performance => performance_count ,
variables => truth_assignment ,
write_enable => memory_write_enable ,
address => memory_address ,
data => memory_data
);

memory_wrapper : ram_interface_4k
port map(

wren => memory_write_enable ,
clock => clock_base ,
address => memory_address ,
data => memory_data
);

end;

C.3 Basic probability driven asynchronous circuitry

-- Main module used in experiments with
-- early globally probability driven circuits
--
-- Number of variables is set to 10
-- Number of clauses is set to 50
-- Timeout is set to 71590000 clock cycles
-- Base probability for a selection bit issued is set to 0.3340

library ieee;
use ieee.std_logic_1164.all;

library work;

entity Sample is
port (

zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
clock_base : in std_logic;
counter_reset : in std_logic
);

end Sample;

architecture bdf_type of Sample is
component sat_solver

port(
reset : in std_logic;
clock : in std_logic;
zero_a : in std_logic;
zero_b : in std_logic;

139



Appendix C Top level circuit setups

zero_c : in std_logic;
wrong_sel : in std_logic_vector (149 downto 0);
output : out std_logic_vector (1 to 10);
solved : out std_logic
);

end component;

component delayed_startup_controller_single
port(

clock : in std_logic;
reset : out std_logic
);

end component;

component timeout_controller_single
generic (

timeout_cycles : bit_vector (31 downto 0)
);

port(
reset_in : in std_logic;
clock : in std_logic;
reset_out : out std_logic
);

end component;

component fixed_distribution_bit_source_basic_lfsr
generic (

output_bits : integer;
probability_factor : bit_vector (9 downto 0)
);

port(
reset : in std_logic;
clock : in std_logic;
bits : out std_logic_vector (149 downto 0)
);

end component;

component performance_counter
port(

sclr : in std_logic;
clock : in std_logic;
reset : in std_logic;
solved : in std_logic;
value : out std_logic_vector (31 downto 0)
);

end component;

component memory_controller_single
generic (

variable_count : integer
);

port(
reset : in std_logic;
clock : in std_logic;
solved : in std_logic;
performance : in std_logic_vector (31 downto 0);
variables : in std_logic_vector (1 to 10);
write_enable : out std_logic;
address : out std_logic_vector (6 downto 0);
data : out std_logic_vector (31 downto 0)
);

end component;

component ram_interface_4k
port(

wren : in std_logic;
clock : in std_logic;
address : in std_logic_vector (6 downto 0);
data : in std_logic_vector (31 downto 0);
q : out std_logic_vector (31 downto 0)
);

end component;

signal solver_reset : std_logic;
signal wrong_selection_bits : std_logic_vector (149 downto 0);
signal global_reset : std_logic;
signal clear_counter : std_logic;
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signal solution_found : std_logic;
signal performance_count : std_logic_vector (31 downto 0);
signal truth_assignment : std_logic_vector (1 to 10);
signal memory_write_enable : std_logic;
signal memory_address : std_logic_vector (6 downto 0);
signal memory_data : std_logic_vector (31 downto 0);

begin
sat_solver_instance : sat_solver

port map(
reset => solver_reset ,
clock => clock_base ,
zero_a => zero_a ,
zero_b => zero_b ,
zero_c => zero_c ,
wrong_sel => wrong_selection_bits ,
solved => solution_found ,
output => truth_assignment
);

delayed_startup_controller_instance : delayed_startup_controller_single
port map(

clock => clock_base ,
reset => global_reset
);

clear_counter <= not(counter_reset);

timeout_controller_instance : timeout_controller_single
generic map(

timeout_cycles => "00000100010001000110000001110000"
)

port map(
reset_in => global_reset ,
clock => clock_base ,
reset_out => solver_reset
);

selection_bit_source_instance : fixed_distribution_bit_source_basic_lfsr
generic map(

output_bits => 150,
probability_factor => "1010101010"
)

port map(
reset => solver_reset ,
clock => clock_base ,
bits => wrong_selection_bits
);

performance_counter_instance : performance_counter
port map(

sclr => clear_counter ,
clock => clock_base ,
reset => solver_reset ,
solved => solution_found ,
value => performance_count
);

memory_controller_instance : memory_controller_single
generic map(

variable_count => 10
)

port map(
reset => solver_reset ,
clock => clock_base ,
solved => solution_found ,
performance => performance_count ,
variables => truth_assignment ,
write_enable => memory_write_enable ,
address => memory_address ,
data => memory_data
);

memory_wrapper : ram_interface_4k
port map(

wren => memory_write_enable ,
clock => clock_base ,
address => memory_address ,
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data => memory_data
);

end;

C.4 Template for globally probability driven circuitry

-- Main module used in most experiments with
-- globally probability driven circuits
--
-- Number of variables is set to 100
-- Number of clauses is set to 370
-- Timeout is set to 71590000 clock cycles
-- Base probability for a selection bit issued is set to 0.3340

library ieee;
use ieee.std_logic_1164.all;

library work;

entity Sample is
port (

zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
clock_base : in std_logic;
counter_reset : in std_logic
);

end Sample;

architecture bdf_type of Sample is
component sat_solver

port(
reset : in std_logic;
clock : in std_logic;
zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
wrong_sel : in std_logic_vector (1109 downto 0);
output : out std_logic_vector (1 to 100);
solved : out std_logic
);

end component;

component delayed_startup_controller_single
port(

clock : in std_logic;
reset : out std_logic
);

end component;

component timeout_controller_single
generic (

timeout_cycles : bit_vector (31 downto 0)
);

port(
reset_in : in std_logic;
clock : in std_logic;
reset_out : out std_logic
);

end component;

component fixed_distribution_bit_source_multi_lfsr
generic (

output_bits : integer;
probability_factor : bit_vector (9 downto 0)
);

port(
reset : in std_logic;
clock : in std_logic;
bits : out std_logic_vector (1109 downto 0)
);

end component;

component performance_counter
port(

sclr : in std_logic;
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clock : in std_logic;
reset : in std_logic;
solved : in std_logic;
value : out std_logic_vector (31 downto 0)
);

end component;

component memory_controller_single
generic (

variable_count : integer
);

port(
reset : in std_logic;
clock : in std_logic;
solved : in std_logic;
performance : in std_logic_vector (31 downto 0);
variables : in std_logic_vector (1 to 100);
write_enable : out std_logic;
address : out std_logic_vector (6 downto 0);
data : out std_logic_vector (31 downto 0)
);

end component;

component ram_interface_4k
port(

wren : in std_logic;
clock : in std_logic;
address : in std_logic_vector (6 downto 0);
data : in std_logic_vector (31 downto 0);
q : out std_logic_vector (31 downto 0)
);

end component;

signal solver_reset : std_logic;
signal wrong_selection_bits : std_logic_vector (1109 downto 0);
signal global_reset : std_logic;
signal clear_counter : std_logic;
signal solution_found : std_logic;
signal performance_count : std_logic_vector (31 downto 0);
signal truth_assignment : std_logic_vector (1 to 100);
signal memory_write_enable : std_logic;
signal memory_address : std_logic_vector (6 downto 0);
signal memory_data : std_logic_vector (31 downto 0);

begin
sat_solver_instance : sat_solver

port map(
reset => solver_reset ,
clock => clock_base ,
zero_a => zero_a ,
zero_b => zero_b ,
zero_c => zero_c ,
wrong_sel => wrong_selection_bits ,
solved => solution_found ,
output => truth_assignment
);

delayed_startup_controller_instance : delayed_startup_controller_single
port map(

clock => clock_base ,
reset => global_reset
);

clear_counter <= not(counter_reset);

timeout_controller_instance : timeout_controller_single
generic map(

timeout_cycles => "00000100010001000110000001110000"
)

port map(
reset_in => global_reset ,
clock => clock_base ,
reset_out => solver_reset
);

selection_bit_source_instance : fixed_distribution_bit_source_multi_lfsr
generic map(

output_bits => 1110,
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probability_factor => "1010101010"
)

port map(
reset => solver_reset ,
clock => clock_base ,
bits => wrong_selection_bits
);

performance_counter_instance : performance_counter
port map(

sclr => clear_counter ,
clock => clock_base ,
reset => solver_reset ,
solved => solution_found ,
value => performance_count
);

memory_controller_instance : memory_controller_single
generic map(

variable_count => 100
)

port map(
reset => solver_reset ,
clock => clock_base ,
solved => solution_found ,
performance => performance_count ,
variables => truth_assignment ,
write_enable => memory_write_enable ,
address => memory_address ,
data => memory_data
);

memory_wrapper : ram_interface_4k
port map(

wren => memory_write_enable ,
clock => clock_base ,
address => memory_address ,
data => memory_data
);

end;

C.5 Template for single instance batch testruns

-- Main module used in runtime variance experiments
--
-- Number of variables is set to 100
-- Number of clauses is set to 370
-- Timeout is set to 71590000 clock cycles
-- Base probability for a selection bit issued is set to 0.0908
-- Selection bit source is preseeded according base probability

library ieee;
use ieee.std_logic_1164.all;

library work;

entity Sample is
port (

zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
clock_base : in std_logic;
counter_reset : in std_logic
);

end Sample;

architecture bdf_type of Sample is
component sat_solver

port(
reset : in std_logic;
clock : in std_logic;
zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
wrong_sel : in std_logic_vector (1109 downto 0);
output : out std_logic_vector (1 to 100);
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solved : out std_logic
);

end component;

component delayed_startup_controller_series
port(

clock : in std_logic;
reset : out std_logic
);

end component;

component timeout_controller_series
generic (

timeout_cycles : bit_vector (31 downto 0)
);

port(
reset_in : in std_logic;
clock : in std_logic;
reset_out : out std_logic
);

end component;

component fixed_distribution_bit_source_multi_lfsr_preseeded
generic (

output_bits : integer;
probability_factor : bit_vector (9 downto 0);
seed : bit_vector (1109 downto 0)
);

port(
reset : in std_logic;
clock : in std_logic;
bits : out std_logic_vector (1109 downto 0)
);

end component;

component performance_counter
port(

sclr : in std_logic;
clock : in std_logic;
reset : in std_logic;
solved : in std_logic;
value : out std_logic_vector (31 downto 0)
);

end component;

component memory_controller_series
generic (

variable_count : integer
);

port(
reset : in std_logic;
clock : in std_logic;
solved : in std_logic;
performance : in std_logic_vector (31 downto 0);
variables : in std_logic_vector (1 to 100);
write_enable : out std_logic;
address : out std_logic_vector (8 downto 0);
data : out std_logic_vector (31 downto 0);
restart : out std_logic
);

end component;

component ram_interface_16k
port(

wren : in std_logic;
clock : in std_logic;
address : in std_logic_vector (8 downto 0);
data : in std_logic_vector (31 downto 0);
q : out std_logic_vector (31 downto 0)
);

end component;

signal global_reset : std_logic;
signal restart_cycle : std_logic;
signal solver_reset : std_logic;

signal wrong_selection_bits : std_logic_vector (1109 downto 0);

145



Appendix C Top level circuit setups

signal solution_found : std_logic;
signal performance_count : std_logic_vector (31 downto 0);
signal truth_assignment : std_logic_vector (1 to 100);
signal memory_write_enable : std_logic;
signal memory_address : std_logic_vector (8 downto 0);
signal memory_data : std_logic_vector (31 downto 0);

begin
sat_solver_instance : sat_solver

port map(
reset => solver_reset ,
clock => clock_base ,
zero_a => zero_a ,
zero_b => zero_b ,
zero_c => zero_c ,
wrong_sel => wrong_selection_bits ,
solved => solution_found ,
output => truth_assignment
);

delayed_startup_controller_instance : delayed_startup_controller_series
port map(

clock => clock_base ,
reset => global_reset
);

timeout_controller_instance : timeout_controller_series
generic map(

timeout_cycles => "00000100010001000110000001110000"
)

port map(
reset_in => restart_cycle ,
clock => clock_base ,
reset_out => solver_reset
);

selection_bit_source_instance : fixed_distribution_bit_source_multi_lfsr_preseeded
generic map(

output_bits => 1110,
probability_factor => "1110100011",
seed => "


"

)
port map(

reset => global_reset ,
clock => clock_base ,
bits => wrong_selection_bits
);

performance_counter_instance : performance_counter
port map(

sclr => restart_cycle ,
clock => clock_base ,
reset => solver_reset ,
solved => solution_found ,
value => performance_count
);

memory_controller_instance : memory_controller_series
generic map(

variable_count => 100
)

port map(
reset => global_reset ,
clock => clock_base ,
solved => solution_found ,
performance => performance_count ,
variables => truth_assignment ,
write_enable => memory_write_enable ,
address => memory_address ,
data => memory_data ,
restart => restart_cycle
);

memory_wrapper : ram_interface_16k
port map(

wren => memory_write_enable ,
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clock => clock_base ,
address => memory_address ,
data => memory_data
);

end;

C.6 Template for simulated annealing experiments

-- Main module used in experiments with
-- simulated annealing techniques
--
-- Number of variables is set to 100
-- Number of clauses is set to 370
-- Timeout is set to 71590000 clock cycles
-- Base probability for a selection bit issued is set to 0.0791

library ieee;
use ieee.std_logic_1164.all;

library work;

entity Sample is
port (

zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
clock_base : in std_logic;
counter_reset : in std_logic
);

end Sample;

architecture bdf_type of Sample is
component sat_solver

port(
reset : in std_logic;
clock : in std_logic;
zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
wrong_sel : in std_logic_vector (1109 downto 0);
output : out std_logic_vector (1 to 100);
solved : out std_logic
);

end component;

component delayed_startup_controller_single
port(

clock : in std_logic;
reset : out std_logic
);

end component;

component timeout_controller_single
generic (

timeout_cycles : bit_vector (31 downto 0)
);

port(
reset_in : in std_logic;
clock : in std_logic;
reset_out : out std_logic
);

end component;

component fixed_distribution_bit_source_simulated_annealing
generic (

output_bits : integer;
probability_factor : bit_vector (9 downto 0)
);

port(
reset : in std_logic;
clock : in std_logic;
bits : out std_logic_vector (1109 downto 0)
);

end component;

component performance_counter
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port(
sclr : in std_logic;
clock : in std_logic;
reset : in std_logic;
solved : in std_logic;
value : out std_logic_vector (31 downto 0)
);

end component;

component memory_controller_single
generic (

variable_count : integer
);

port(
reset : in std_logic;
clock : in std_logic;
solved : in std_logic;
performance : in std_logic_vector (31 downto 0);
variables : in std_logic_vector (1 to 100);
write_enable : out std_logic;
address : out std_logic_vector (6 downto 0);
data : out std_logic_vector (31 downto 0)
);

end component;

component ram_interface_4k
port(

wren : in std_logic;
clock : in std_logic;
address : in std_logic_vector (6 downto 0);
data : in std_logic_vector (31 downto 0);
q : out std_logic_vector (31 downto 0)
);

end component;

signal solver_reset : std_logic;
signal wrong_selection_bits : std_logic_vector (1109 downto 0);
signal global_reset : std_logic;
signal clear_counter : std_logic;
signal solution_found : std_logic;
signal performance_count : std_logic_vector (31 downto 0);
signal truth_assignment : std_logic_vector (1 to 100);
signal memory_write_enable : std_logic;
signal memory_address : std_logic_vector (6 downto 0);
signal memory_data : std_logic_vector (31 downto 0);

begin
sat_solver_instance : sat_solver

port map(
reset => solver_reset ,
clock => clock_base ,
zero_a => zero_a ,
zero_b => zero_b ,
zero_c => zero_c ,
wrong_sel => wrong_selection_bits ,
solved => solution_found ,
output => truth_assignment
);

delayed_startup_controller_instance : delayed_startup_controller_single
port map(

clock => clock_base ,
reset => global_reset
);

clear_counter <= not(counter_reset);

timeout_controller_instance : timeout_controller_single
generic map(

timeout_cycles => "00000100010001000110000001110000"
)

port map(
reset_in => global_reset ,
clock => clock_base ,
reset_out => solver_reset
);

selection_bit_source_instance : fixed_distribution_bit_source_simulated_annealing
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generic map(
output_bits => 1110,
probability_factor => "1110101111"
)

port map(
reset => solver_reset ,
clock => clock_base ,
bits => wrong_selection_bits
);

performance_counter_instance : performance_counter
port map(

sclr => clear_counter ,
clock => clock_base ,
reset => solver_reset ,
solved => solution_found ,
value => performance_count
);

memory_controller_instance : memory_controller_single
generic map(

variable_count => 100
)

port map(
reset => solver_reset ,
clock => clock_base ,
solved => solution_found ,
performance => performance_count ,
variables => truth_assignment ,
write_enable => memory_write_enable ,
address => memory_address ,
data => memory_data
);

memory_wrapper : ram_interface_4k
port map(

wren => memory_write_enable ,
clock => clock_base ,
address => memory_address ,
data => memory_data
);

end;

C.7 Template for locally probability driven circuitry

-- Main module used in experiments with
-- locally probability driven circuits
--
-- Number of variables is set to 100
-- Timeout is set to 71590000 clock cycles

library ieee;
use ieee.std_logic_1164.all;

library work;

entity Sample is
port (

zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
clock_base : in std_logic;
counter_reset : in std_logic
);

end Sample;

architecture bdf_type of Sample is
component sat_solver

port(
reset : in std_logic;
clock : in std_logic;
zero_a : in std_logic;
zero_b : in std_logic;
zero_c : in std_logic;
output : out std_logic_vector (1 to 100);
solved : out std_logic
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);
end component;

component delayed_startup_controller_single
port(

clock : in std_logic;
reset : out std_logic
);

end component;

component timeout_controller_single
generic (

timeout_cycles : bit_vector (31 downto 0)
);

port(
reset_in : in std_logic;
clock : in std_logic;
reset_out : out std_logic
);

end component;

component performance_counter
port(

sclr : in std_logic;
clock : in std_logic;
reset : in std_logic;
solved : in std_logic;
value : out std_logic_vector (31 downto 0)
);

end component;

component memory_controller_single
generic (

variable_count : integer
);

port(
reset : in std_logic;
clock : in std_logic;
solved : in std_logic;
performance : in std_logic_vector (31 downto 0);
variables : in std_logic_vector (1 to 100);
write_enable : out std_logic;
address : out std_logic_vector (6 downto 0);
data : out std_logic_vector (31 downto 0)
);

end component;

component ram_interface_4k
port(

wren : in std_logic;
clock : in std_logic;
address : in std_logic_vector (6 downto 0);
data : in std_logic_vector (31 downto 0);
q : out std_logic_vector (31 downto 0)
);

end component;

signal solver_reset : std_logic;
signal global_reset : std_logic;
signal clear_counter : std_logic;
signal solution_found : std_logic;
signal performance_count : std_logic_vector (31 downto 0);
signal truth_assignment : std_logic_vector (1 to 100);
signal memory_write_enable : std_logic;
signal memory_address : std_logic_vector (6 downto 0);
signal memory_data : std_logic_vector (31 downto 0);

begin
sat_solver_instance : sat_solver

port map(
reset => solver_reset ,
clock => clock_base ,
zero_a => zero_a ,
zero_b => zero_b ,
zero_c => zero_c ,
solved => solution_found ,
output => truth_assignment
);
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delayed_startup_controller_instance : delayed_startup_controller_single
port map(

clock => clock_base ,
reset => global_reset
);

clear_counter <= not(counter_reset);

timeout_controller_instance : timeout_controller_single
generic map(

timeout_cycles => "00000100010001000110000001110000"
)

port map(
reset_in => global_reset ,
clock => clock_base ,
reset_out => solver_reset
);

performance_counter_instance : performance_counter
port map(

sclr => clear_counter ,
clock => clock_base ,
reset => solver_reset ,
solved => solution_found ,
value => performance_count
);

memory_controller_instance : memory_controller_single
generic map(

variable_count => 100
)

port map(
reset => solver_reset ,
clock => clock_base ,
solved => solution_found ,
performance => performance_count ,
variables => truth_assignment ,
write_enable => memory_write_enable ,
address => memory_address ,
data => memory_data
);

memory_wrapper : ram_interface_4k
port map(

wren => memory_write_enable ,
clock => clock_base ,
address => memory_address ,
data => memory_data
);

end;
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Result tables of experiments

D.1 Automated experiments on small SAT instances
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Table D.1: Performance of early circuit variants on SAT instances consisting of 10 variables and
30 clauses
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D.1 Automated experiments on small SAT instances
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Table D.2: Performance of early circuit variants on SAT instances consisting of 10 variables and
40 clauses
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Appendix D Result tables of experiments
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Table D.3: Performance of early circuit variants on SAT instances consisting of 10 variables and
50 clauses
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D.1 Automated experiments on small SAT instances

F
u
ll
y

d
e
t
e
r
m

in
is

t
ic

c
ir

c
u
it

P
r
o
b
a
b
il
it
y

d
r
iv

e
n

c
ir

c
u
it

A
s
y
n
c
h
r
o
n
o
u
s

c
ir

c
u
it

Tag

Satisfiable

MiniSatsolution

Solutionfound

Finaltruthassignment

Solutionsatisfiesinstance

Iterations

Solutionfound

Finaltruthassignment

Solutionsatisfiesinstance

Iterations

Solutionfound

Finaltruthassignment

Solutionsatisfiesinstance

Iterations

0
0
1

N
o

N
o

1
1
0
1
1
0
1
1
1
1

N
o

N
o

1
1
0
0
0
0
0
0
1
0

N
o

N
o

0
0
0
1
1
0
0
0
1
1

N
o

0
0
2

N
o

N
o

1
1
1
1
1
1
1
1
1
1

N
o

N
o

0
1
1
0
1
0
0
1
0
0

N
o

N
o

1
1
1
1
0
0
1
0
0
1

N
o

0
0
3

Y
e
s

0
1
1
0
0
0
1
0
0
1
0

N
o

1
1
1
0
1
0
1
1
0
1

N
o

Y
e
s

0
1
1
0
0
0
1
0
0
1

Y
e
s

1
4
6
0

N
o

0
1
1
0
1
1
0
0
1
0

N
o

0
0
4

N
o

N
o

1
1
1
1
1
1
1
1
1
1

N
o

N
o

0
0
0
1
1
1
0
1
1
0

N
o

N
o

1
0
1
1
0
1
0
1
0
1

N
o

0
0
5

N
o

N
o

0
1
1
1
1
1
1
1
1
1

N
o

N
o

0
0
0
1
1
1
0
0
1
1

N
o

N
o

0
1
1
1
0
1
0
0
0
1

N
o

0
0
6

N
o

N
o

0
0
1
0
0
1
1
1
1
1

N
o

N
o

1
1
0
1
1
0
1
1
1
0

N
o

N
o

0
0
1
0
1
0
0
1
1
0

N
o

0
0
7

N
o

N
o

0
1
1
1
1
1
0
1
1
1

N
o

N
o

0
1
1
1
1
1
0
0
0
0

N
o

N
o

1
0
0
0
1
0
0
1
0
0

N
o

0
0
8

N
o

N
o

1
1
1
1
1
0
0
1
1
1

N
o

N
o

0
0
0
0
0
0
0
1
1
1

N
o

N
o

0
0
1
1
0
1
0
1
0
1

N
o

0
0
9

N
o

N
o

1
1
1
1
1
1
1
1
0
0

N
o

N
o

0
1
0
0
0
0
1
1
0
0

N
o

N
o

0
1
1
0
0
0
1
0
1
0

N
o

0
1
0

N
o

N
o

0
0
1
1
1
0
1
1
1
0

N
o

N
o

1
1
1
0
1
0
0
0
0
1

N
o

N
o

0
1
1
1
1
0
1
1
1
0

N
o

0
1
1

N
o

N
o

1
1
1
1
0
1
1
1
1
0

N
o

N
o

0
1
1
1
1
0
1
1
1
1

N
o

N
o

1
0
1
1
1
0
1
0
1
0

N
o

0
1
2

N
o

N
o

1
1
1
1
1
1
1
1
1
1

N
o

N
o

1
1
0
1
1
0
0
0
0
1

N
o

N
o

1
1
1
0
1
0
0
0
1
0

N
o

0
1
3

N
o

N
o

0
1
1
1
1
1
1
1
1
0

N
o

N
o

1
1
0
1
1
1
0
1
1
0

N
o

N
o

1
0
1
0
1
1
0
0
1
1

N
o

0
1
4

N
o

N
o

1
1
1
1
1
1
1
0
1
1

N
o

N
o

1
0
0
1
0
1
1
0
1
1

N
o

N
o

0
1
0
1
1
0
0
0
0
1

N
o

0
1
5

N
o

N
o

1
1
1
1
1
1
1
0
1
0

N
o

N
o

1
0
1
1
0
1
1
1
1
1

N
o

N
o

1
0
0
0
0
1
1
1
1
1

N
o

0
1
6

N
o

N
o

1
1
0
1
0
1
0
1
1
0

N
o

N
o

0
1
1
1
1
0
0
0
1
0

N
o

N
o

0
0
1
1
0
0
0
1
1
0

N
o

0
1
7

N
o

N
o

1
1
1
1
1
1
1
1
1
0

N
o

N
o

1
1
1
0
0
1
1
1
0
0

N
o

N
o

0
0
1
0
1
1
0
0
1
1

N
o

0
1
8

Y
e
s

0
0
0
1
0
0
1
0
0
0
0

N
o

1
1
0
1
0
1
1
1
1
1

N
o

Y
e
s

0
0
0
1
0
0
1
0
0
0

Y
e
s

1
1
1
3

N
o

0
1
0
0
1
1
1
1
0
0

N
o

0
1
9

Y
e
s

1
1
1
1
1
1
1
1
1
1
0

Y
e
s

1
1
1
1
1
1
1
1
1
1

Y
e
s

0
Y
e
s

1
1
1
1
1
1
1
1
1
1

Y
e
s

0
N

o
1
1
0
0
1
1
1
1
1
1

N
o

0
2
0

N
o

N
o

1
1
1
1
1
1
1
1
1
1

N
o

N
o

0
1
0
1
1
0
1
0
1
1

N
o

N
o

1
0
0
1
1
1
0
0
1
1

N
o

0
2
1

N
o

N
o

1
1
1
1
1
1
1
1
1
1

N
o

N
o

0
1
1
0
1
1
0
1
0
1

N
o

N
o

0
1
0
0
0
0
1
0
0
0

N
o

0
2
2

Y
e
s

0
0
0
1
0
1
0
1
0
1
0

N
o

1
0
1
1
1
1
1
1
1
1

N
o

Y
e
s

0
0
0
1
0
1
0
1
0
1

Y
e
s

5
1
2

N
o

0
0
1
0
0
0
1
0
0
1

N
o

0
2
3

Y
e
s

0
0
0
0
0
1
1
1
0
0
0

N
o

1
1
0
1
1
1
1
0
1
0

N
o

Y
e
s

0
0
0
0
0
1
1
1
0
0

Y
e
s

8
4
8
2

N
o

1
1
0
0
1
1
0
1
0
1

N
o

0
2
4

Y
e
s

0
1
1
1
0
1
1
0
1
0
0

N
o

0
1
1
1
1
1
1
1
1
1

N
o

Y
e
s

0
1
1
1
0
1
1
0
1
1

Y
e
s

3
9
8
9

N
o

1
0
0
0
1
1
0
0
1
1

N
o

0
2
5

N
o

N
o

1
1
1
1
1
1
1
1
1
1

N
o

N
o

0
1
0
1
1
0
0
1
0
1

N
o

N
o

1
1
0
0
1
0
1
0
1
0

N
o

0
2
6

N
o

N
o

0
1
1
1
1
1
1
1
1
0

N
o

N
o

0
1
0
1
0
0
0
1
0
0

N
o

N
o

1
0
1
0
1
0
1
0
1
0

N
o

0
2
7

N
o

N
o

1
1
1
1
1
1
1
1
1
1

N
o

N
o

0
0
1
0
1
0
0
1
1
0

N
o

N
o

1
1
0
1
1
1
1
0
1
0

N
o

0
2
8

N
o

N
o

1
1
1
1
1
1
1
1
1
0

N
o

N
o

0
1
1
1
0
0
0
0
1
0

N
o

N
o

1
1
0
1
1
0
1
1
0
0

N
o

0
2
9

N
o

N
o

1
1
1
0
1
1
1
1
0
1

N
o

N
o

0
1
1
1
0
1
1
0
0
1

N
o

N
o

0
0
1
1
1
1
1
1
0
1

N
o

0
3
0

N
o

N
o

0
1
1
1
1
1
1
1
1
1

N
o

N
o

0
0
1
0
1
1
1
0
1
0

N
o

N
o

1
1
0
0
0
1
1
0
1
0

N
o

Table D.4: Performance of early circuit variants on SAT instances consisting of 10 variables and
60 clauses
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Appendix D Result tables of experiments
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Table D.5: Performance of early circuit variants on SAT instances consisting of 10 variables and
70 clauses
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D.1 Automated experiments on small SAT instances
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Table D.6: Performance of early circuit variants on SAT instances consisting of 10 variables and
80 clauses
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D.2 Experiments using fixed toggling probabilities
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Table D.7: Performance of SAT circuits using fixed toggling probabilities
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Appendix D Result tables of experiments

D.3 Experiments using derived toggling probabilities

FPGA Solver MiniSat
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000 57293 3784 15344 56183 2721 50254 7122 57444 159250 2519040
001 449 1590 358 1250 1997 1048 2734 355 1692 568296
002 214161 103317 276531 125309 170288 1229639 256752 1159660 6926 1311044
003 13391 24386 16346 45065 47822 40078 121980 484129 58420 3598812
004 729090 35032 94865 5099 163958 462868 253997 4201344 5472710 13498924
005 53572 2128 26419 1941 2319 10899 26004 50749 240762 2073964
006 25935 11893 101512 45603 135103 176123 17789 1037645 614514 3780780
007 105346 210857 1095696 1046408 1365045 3033203 3759066 476407 6827247 4623352
008 200 185 539 1140 210 131 1575 1463 2756 1630848
009 8041981 492930 2072110 9948698 5246431 71590001 9322171 39950682 71590001 4527228
010 1321 589 1487 2936 3559 11458 740 10008 15211 834584
011 56399 20698 558489 346593 525291 1421882 217043 2401771 128255 290940
012 8919 108921 226072 107769 778239 436159 511869 1094984 6097624 942340
013 1076 9198 16207 8263 1430 54071 21352 39952 52863 926816
014 51914 283161 1294157 178936 2637863 192242 15427150 22883418 41187274 970888
015 295 49779 70633 205002 25465 346 10454 170949 14357 3653660
016 2745 9021 14077 5797 3639 1069 4413 31651 17910 324800
017 63241 176582 27005 1985 2831 76913 44246 172369 6935 3867540
018 39608 9029 17338 53770 4540 35259 22955 48646 87281 1108792
019 2260 364 348 163 453 1233 4937 148 5143 286816
020 1417 1063 3156 612 361 5471 899 2736 4166 395696
021 368560 382525 642981 1122140 2314387 1058126 2135958 4423893 12425030 3449324
022 15692734 506700 699707 2470792 7601270 8887972 37414205 58842974 43396643 4331364
023 69257 33613 161164 86276 25595 53236 71767 136716 501562 971036
024 145086 4732 49156 601 84918 79985 55125 63428 265367 8340416
025 58982 5377 379166 272421 480892 209231 644300 1720943 89456 1459468
026 368 1107 505 1124 632 216 992 2242 1796 1136504
027 12593 5651 657 28566 75702 98726 303377 234056 197144 588580
028 4922 3354 4968 9239 1350 226 4789 1544 5124 2514512
029 38327 27103 7376 65788 5122 656 46347 210562 31757 522896
030 2611 8361 2156 7442 71919 9276 111415 14844 157979 726344
031 6826 1465 8422 21420 18354 11328 37624 2977 4037 3216612
032 19405 2851 5774 15462 12337 32571 31066 60661 95170 477396
033 17855 33613 2094 4992 17828 14173 2343 37304 13971 206388
034 10730 30370 94858 7309 2918 89137 99106 74064 159232 1727576
035 59709 21014 5336 8111 9632 25093 126698 129162 210299 1914168
036 44529 29401 207858 115037 177914 333755 665485 295886 389284 534384
037 18162 103438 20779 104986 9711 616461 851241 1227467 2000699 1929980
038 10920 4759 6082 6138 6919 16012 2943 12108 32178 1480052
039 31927 24116 33055 40990 37799 45366 181116 26305 1067752 1311956
040 6607 34358 57131 1448 12516 6944 88904 178364 191014 2746300
041 106025 829576 104846 328854 822582 2127369 3832861 4583998 21406539 7170496
042 328332 203390 173685 24872 774446 615381 1573122 250541 507910 3414768
043 38516 125753 33689 2301 20333 180131 460824 84837 1037730 504656
044 104616 714868 2252538 1333978 3596895 1083316 6988364 22796895 28158882 1058380
045 7047 288204 120483 145738 38290 129473 532120 132174 1680063 2374568
046 17551 1498 27948 25522 88413 56772 25034 22003 273630 1648524
047 381865 70142 750751 105251 870488 46987 675073 1574406 5628528 7809788
048 26721 21643 35693 50038 148002 37003 1840 391576 13664 852516
049 22460 8537 51521 377 2065 28764 70640 946239 300950 605992
Sum 27123856 5082026 11869068 18595735 28448794 94724033 87069927 172754679 252834687 116760104
Mean 542477 101641 237381 371915 568976 1894481 1741399 3455094 5056694 2335202

Table D.8: Performance of SAT circuits using derived toggling probabilities

D.4 Results of insufficient randomisation
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D.5 Comparision of different randomisation engines

FPGA Solver MiniSat
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000 120681 7792 61072 105641 226620 112568 937064 2519040
001 1627 1904 1544 2229 1080 2071 5410 568296
002 1085935 71590001 134865 7314572 3179527 71590001 71590001 1311044
003 2983 4990 10333 5712 15808 61264 1015166 3598812
004 43783 122515 160646 1299004 1573646 31115549 15957392 13498924
005 103951 9482 38582 27395 129477 66213 1480881 2073964
006 752055 1035191 306911 948976 1467257 2463013 71590001 3780780
007 71590001 5929593 2651023 6279693 71590001 71590001 71590001 4623352
008 7801 2907 10905 1291 1439 5687 40995 1630848
009 71590001 71590001 26659268 71590001 71590001 71590001 71590001 4527228
010 12794 6536 13646 6040 1834 71286 36429 834584
011 5268891 530682 1289726 1250446 228791 39246692 71590001 290940
012 778997 134369 179677 1014619 3564668 692763 71590001 942340
013 21199 58294 22881 17530 4348 159722 501583 926816
014 71590001 8767855 6754938 5213967 13330252 71590001 71590001 970888
015 671890 109522 26341 147203 170214 881244 6846156 3653660
016 386368 42489 23993 16410 89709 116860 1709595 324800
017 123164 455443 295927 5694 43256 10486016 128875 3867540
018 71590001 785661 311989 37167 447083 18949 202040 1108792
019 8160 5928 1131 1346 2098 3237 3398 286816
020 9719 2914 2275 8434 3566 3978 7007 395696
021 71590001 71590001 9103567 20711878 42016397 71590001 71590001 3449324
022 71590001 71590001 71590001 71590001 71590001 71590001 71590001 4331364
023 166491 54709 318798 79474 38630 751539 19911605 971036
024 32368 133573 73268 260204 1573824 3037874 6970030 8340416
025 71590001 2684369 4244526 7256959 11562566 22468021 71590001 1459468
026 2157 2264 1416 1396 1426 1093 5606 1136504
027 5136 5691 10638 6225 22041 441625 2103358 588580
028 1625 2417 1600 1939 14938 13029 3484 2514512
029 47091 58452 20620 48604 109002 2678014 3758851 522896
030 42248 74283 15010 3077 77320 965885 1874664 726344
031 3166 54241 36907 30205 20401 25059 214371 3216612
032 376876 69914 67453 135237 17892 328997 18354942 477396
033 38449 42234 5208 26222 169677 60618 108632 206388
034 429831 10382 73330 108352 234292 83063 4005348 1727576
035 406258 68361 126046 24712 138564 85033 2190912 1914168
036 177625 203149 140474 184074 480375 1305818 17177511 534384
037 634260 283972 643943 168208 2606217 5665751 17419018 1929980
038 227557 54720 32721 12888 86289 5209 1313412 1480052
039 343577 37879 542955 278802 200736 2721412 16295345 1311956
040 454674 497728 22435 7282 88430 326888 5870778 2746300
041 11267797 12895233 21006399 13745768 29252078 71590001 71590001 7170496
042 650915 40458 375208 2114 1386734 18244623 26893727 3414768
043 71590001 2805040 4678375 4917855 1255948 21697221 71590001 504656
044 71590001 71590001 14558764 39471867 35015747 61998453 71590001 1058380
045 71590001 213941 12687531 43650716 4092635 71590001 71590001 2374568
046 174423 41270 3626 165731 37233 131227 8008048 1648524
047 574552 309138 782297 4542396 826357 6392668 71590001 7809788
048 919911 339487 5823 72012 92301 1260471 7626734 852516
049 191977 42704 5415 37241 489205 1419125 3233922 605992

Table D.9: Performance of SAT circuits using derived toggling probabilities with insufficient ran-
domisation engine

D.5 Comparision of different randomisation engines
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Appendix D Result tables of experiments

Factor 1.0 Factor 2.0 MiniSat
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000 59047 120681 15344 344988 61072 7122 2519040
001 7692 1627 358 4426 1544 2734 568296
002 1085935 276531 35306933 134865 256752 1311044
003 14878 2983 16346 18072 10333 121980 3598812
004 20141 43783 94865 515886 160646 253997 13498924
005 3788 103951 26419 117734 38582 26004 2073964
006 752055 101512 561480 306911 17789 3780780
007 1095696 2651023 3759066 4623352
008 16343 7801 539 12892 10905 1575 1630848
009 2072110 26659268 9322171 4527228
010 31670 12794 1487 2700 13646 740 834584
011 19962154 5268891 558489 1852993 1289726 217043 290940
012 77679 778997 226072 889843 179677 511869 942340
013 10006 21199 16207 58600 22881 21352 926816
014 1294157 31873865 6754938 15427150 970888
015 255037 671890 70633 24488 26341 10454 3653660
016 1643442 386368 14077 2818 23993 4413 324800
017 9511726 123164 27005 793546 295927 44246 3867540
018 17338 632421 311989 22955 1108792
019 14709 8160 348 7461 1131 4937 286816
020 21798 9719 3156 2616 2275 899 395696
021 642981 9103567 2135958 3449324
022 699707 37414205 4331364
023 1434229 166491 161164 199730 318798 71767 971036
024 580518 32368 49156 36823 73268 55125 8340416
025 379166 1324652 4244526 644300 1459468
026 1669 2157 505 2004 1416 992 1136504
027 34213 5136 657 34101 10638 303377 588580
028 7797 1625 4968 7210 1600 4789 2514512
029 36844 47091 7376 6996 20620 46347 522896
030 13487 42248 2156 292258 15010 111415 726344
031 1060909 3166 8422 11321 36907 37624 3216612
032 2544804 376876 5774 107934 67453 31066 477396
033 295686 38449 2094 125554 5208 2343 206388
034 480833 429831 94858 407569 73330 99106 1727576
035 1959931 406258 5336 933983 126046 126698 1914168
036 2447005 177625 207858 3639346 140474 665485 534384
037 5292101 634260 20779 4053724 643943 851241 1929980
038 304272 227557 6082 235673 32721 2943 1480052
039 860153 343577 33055 1549517 542955 181116 1311956
040 1124972 454674 57131 29949 22435 88904 2746300
041 11267797 104846 21006399 3832861 7170496
042 2047548 650915 173685 122728 375208 1573122 3414768
043 33689 448144 4678375 460824 504656
044 2252538 14558764 6988364 1058380
045 120483 12687531 532120 2374568
046 661202 174423 27948 334883 3626 25034 1648524
047 574552 750751 667958 782297 675073 7809788
048 3057787 919911 35693 934544 5823 1840 852516
049 99301 191977 51521 17648 5415 70640 605992

Table D.10: Performance of SAT circuits using different randomisation engines
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D.6 Phase transition experiments

D.6 Phase transition experiments

n 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Point
5 922 932 916 911 862 855 839 834 806 775 742 756 718 5.618

10 944 930 909 912 865 842 811 779 737 677 645 635 574 4.959
15 962 941 930 889 849 811 803 732 680 641 584 565 460 4.666
20 971 965 944 917 875 818 759 682 672 589 536 480 404 4.563
25 983 970 938 911 876 825 771 670 607 560 447 411 339 4.454
30 985 989 958 920 887 818 753 662 594 540 445 380 312 4.441
35 990 978 959 931 873 819 758 679 536 462 397 343 251 4.351
40 995 991 970 951 898 818 762 658 591 462 373 307 223 4.372
45 999 996 971 945 888 842 750 608 521 433 317 254 183 4.324
50 998 992 981 947 911 850 758 638 500 424 342 221 188 4.310
55 999 994 984 972 903 858 772 624 522 396 311 232 146 4.316
60 1000 994 991 967 907 846 770 619 513 385 274 200 120 4.308
65 1000 997 991 973 921 872 747 627 501 400 248 161 104 4.305
70 1000 997 990 977 915 860 707 611 468 335 231 146 91 4.278
75 1000 998 990 974 922 839 721 586 439 331 196 161 62 4.259
80 1000 998 997 984 943 865 780 589 469 331 206 99 77 4.273
85 1000 1000 999 988 954 895 797 668 467 336 223 134 72 4.287
90 1000 1000 996 986 953 885 755 611 463 292 168 90 54 4.274
95 1000 1000 996 986 938 849 722 553 402 236 148 101 42 4.236

100 999 999 997 978 939 851 705 516 366 222 122 65 32 4.213
105 1000 1000 997 988 934 821 685 510 331 201 96 43 33 4.205
110 1000 1000 994 983 952 859 688 484 368 207 98 48 20 4.199
115 1000 1000 1000 991 967 890 736 543 332 210 121 49 22 4.220
120 1000 1000 1000 995 977 911 782 563 387 235 126 57 16 4.237
125 1000 1000 1000 996 989 934 829 636 399 234 129 67 27 4.258
130 1000 1000 1000 997 982 916 831 632 400 203 114 50 9 4.257
135 1000 1000 999 991 975 878 722 547 306 159 82 29 14 4.217
140 1000 1000 1000 988 947 839 676 421 239 131 45 17 6 4.171
145 1000 1000 998 986 909 775 606 351 158 85 24 13 1 4.141
150 1000 1000 994 969 899 737 531 305 142 64 29 11 2 4.113
155 1000 999 995 971 878 708 459 252 109 36 17 7 3 4.085
160 1000 999 993 941 863 644 396 200 97 30 13 2 0 4.059
165 1000 1000 992 965 807 624 403 170 72 34 6 2 1 4.056
170 1000 998 988 935 816 593 352 181 70 19 4 4 0 4.039
175 1000 999 991 933 824 571 361 153 62 15 3 0 1 4.035
180 1000 1000 993 952 817 584 321 167 68 20 0 1 0 4.032
185 1000 999 991 941 799 577 318 162 74 14 6 1 1 4.029
190 1000 1000 990 955 816 578 333 150 48 16 5 0 1 4.032
195 1000 1000 993 966 817 610 377 161 68 22 6 0 0 4.047
200 1000 1000 997 966 871 635 349 166 63 24 2 2 0 4.047
205 1000 1000 999 975 861 651 403 168 61 15 1 0 0 4.061
210 1000 1000 998 970 896 702 418 193 68 27 9 2 0 4.072
215 1000 1000 998 992 922 768 453 224 75 25 5 4 0 4.088
220 1000 1000 1000 996 929 794 540 252 94 26 7 1 0 4.113
225 1000 1000 998 997 967 838 588 297 96 34 6 1 0 4.130
230 1000 1000 1000 998 973 872 663 327 122 49 8 2 0 4.148
235 1000 1000 1000 1000 987 918 713 391 155 49 14 4 0 4.167
240 1000 1000 1000 1000 992 953 780 501 175 76 17 3 1 4.198
245 1000 1000 1000 1000 997 967 844 526 229 79 18 2 0 4.210
250 1000 1000 1000 1000 1000 991 866 621 276 85 27 6 1 4.234

Table D.11: Fraction of satisfiable random SAT instances regarding ratios of clauses to variables
with approximated phase transition points (Part 1)
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Appendix D Result tables of experiments

n 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 Point
5 678 666 656 595 592 562 556 526 519 446 454 423 419 5.618

10 561 514 489 481 410 361 318 288 281 242 217 220 169 4.959
15 456 396 353 298 272 225 223 190 142 131 114 90 79 4.666
20 388 326 254 230 182 151 122 118 87 84 65 56 45 4.563
25 338 242 200 161 133 84 85 66 55 31 22 16 14 4.454
30 255 170 160 115 86 67 61 36 24 25 18 13 9 4.441
35 195 142 109 70 50 41 31 23 17 10 9 4 6 4.351
40 164 117 106 71 38 39 24 16 11 9 4 1 1 4.372
45 145 89 57 46 31 21 12 4 6 3 3 2 1 4.324
50 130 83 50 45 23 15 12 10 2 2 0 0 0 4.310
55 96 60 37 21 17 8 4 4 2 3 0 0 1 4.316
60 90 45 31 17 10 2 4 2 1 0 0 0 0 4.308
65 69 35 17 20 7 4 4 0 1 0 0 0 0 4.305
70 49 27 21 11 4 0 0 0 1 0 0 0 0 4.278
75 35 18 16 5 2 3 2 0 0 0 0 0 0 4.259
80 37 30 9 5 3 2 0 0 0 0 0 0 0 4.273
85 25 16 7 6 2 1 0 0 0 0 0 0 0 4.287
90 24 8 7 0 3 0 0 1 0 1 0 0 0 4.274
95 24 6 5 3 0 0 0 0 0 0 0 0 0 4.236

100 14 7 4 4 2 0 0 0 0 0 0 0 0 4.213
105 12 5 3 2 2 0 0 0 0 0 0 0 0 4.205
110 12 3 0 0 0 1 0 0 0 0 0 0 0 4.199
115 10 6 0 0 0 0 0 0 0 0 0 0 0 4.220
120 13 4 2 1 0 0 0 0 0 0 0 0 0 4.237
125 10 4 1 0 0 0 0 0 0 0 0 0 0 4.258
130 6 4 1 0 0 0 0 0 0 0 0 0 0 4.257
135 1 1 0 0 1 0 0 0 0 0 0 0 0 4.217
140 1 0 1 0 0 0 0 0 0 0 0 0 0 4.171
145 3 1 0 0 0 0 0 0 0 0 0 0 0 4.141
150 1 0 0 0 0 0 0 0 0 0 0 0 0 4.113
155 0 0 0 0 0 0 0 0 0 0 0 0 0 4.085
160 0 0 0 0 0 0 0 0 0 0 0 0 0 4.059
165 0 0 0 0 0 0 0 0 0 0 0 0 0 4.056
170 0 0 0 0 0 0 0 0 0 0 0 0 0 4.039
175 0 0 0 0 0 0 0 0 0 0 0 0 0 4.035
180 0 0 0 0 0 0 0 0 0 0 0 0 0 4.032
185 0 0 0 0 0 0 0 0 0 0 0 0 0 4.029
190 0 0 0 0 0 0 0 0 0 0 0 0 0 4.032
195 0 0 0 0 0 0 0 0 0 0 0 0 0 4.047
200 0 0 0 0 0 0 0 0 0 0 0 0 0 4.047
205 0 0 0 0 0 0 0 0 0 0 0 0 0 4.061
210 0 0 0 0 0 0 0 0 0 0 0 0 0 4.072
215 0 0 0 0 0 0 0 0 0 0 0 0 0 4.088
220 0 0 0 0 0 0 0 0 0 0 0 0 0 4.113
225 0 0 0 0 0 0 0 0 0 0 0 0 0 4.130
230 0 0 0 0 0 0 0 0 0 0 0 0 0 4.148
235 0 0 0 0 0 0 0 0 0 0 0 0 0 4.167
240 0 0 0 0 0 0 0 0 0 0 0 0 0 4.198
245 1 0 0 0 0 0 0 0 0 0 0 0 0 4.210
250 0 0 0 0 0 0 0 0 0 0 0 0 0 4.234

Table D.12: Fraction of satisfiable random SAT instances regarding ratios of clauses to variables
with approximated phase transition points (Part 2)
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D.7 Runtime statistics

D.7 Runtime statistics
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Appendix D Result tables of experiments

Factor 0.750 MiniSat
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000 185 121777 20764 21489 21531 2519040
001 89 5853 941 881 882 568296
002 5203 829325 145593 161153 161469 24 116 1311044
003 222 301059 39043 41354 41435 3598812
004 5542 1429957 239369 253528 254025 40 108 13498924
005 82 173418 23777 24123 24170 2073964
006 253 468697 82499 82526 82687 3780780
007 8173 1257313 305438 213581 213999 32 112 4623352
008 99 5953 1192 1032 1034 1630848
009 4527228
010 119 34675 4214 4487 4496 834584
011 4798 905584 167660 164564 164887 26 150 290940
012 1575 562843 130560 116211 116439 108 92 942340
013 190 81141 13056 13956 13983 94 151 926816
014 970888
015 204 294214 45005 44564 44651 3653660
016 102 46762 8292 7988 8004 324800
017 141 395910 51199 57395 57507 3867540
018 116 90992 20293 18108 18143 1108792
019 102 5412 1130 951 953 286816
020 87 9323 1950 1804 1808 395696
021 950 1676916 437746 416819 417635 28 114 3449324
022 4331364
023 283 223600 44982 45037 45125 971036
024 106 602385 64408 74333 74479 8340416
025 460 648075 132619 127729 127979 33 112 1459468
026 94 4802 970 732 733 1136504
027 119 204985 35341 33253 33318 588580
028 157 14396 2857 2559 2564 2514512
029 161 143613 29981 27330 27383 522896
030 132 81417 15524 14716 14745 726344
031 155 57586 8662 9240 9258 3216612
032 212 106034 18400 18784 18821 477396
033 219 68167 9988 10221 10241 206388
034 335 191640 36488 35194 35263 1727576
035 134 87955 14381 13932 13959 1914168
036 254 413873 90713 85238 85405 153 80 534384
037 379 522149 104676 100881 101078 1929980
038 192 47707 6306 6138 6150 1480052
039 2762 425937 67066 68021 68154 64 96 1311956
040 193 134666 26850 24903 24952 2746300
041 3357 1304092 286259 305247 305845 24 116 7170496
042 901 733711 173227 168352 168682 124 66 3414768
043 474 535984 97453 111070 111288 54 124 504656
044 1058380
045 2513 783214 154832 144038 144320 59 117 2374568
046 153 143317 24971 24535 24583 1648524
047 17145 1028410 675567 267811 268335 19 120 7809788
048 154 158873 26357 26231 26283 852516
049 262 156316 31339 28588 28644 605992
Sum 59538 17520028 3919937 116760104
Mean 1294 380870 85216 2335202

Table D.13: Runtime statistics of hardware SAT solver engine (Probability multiplier 0.750)
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D.7 Runtime statistics

Factor 0.875 MiniSat
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000 112 131212 22045 22104 22147 2519040
001 46 5018 889 795 796 568296
002 1162 889437 181847 170035 170368 26 115 1311044
003 519 298004 44924 56211 56321 88 84 3598812
004 3667 1055974 278790 259631 260140 28 114 13498924
005 114 86633 23441 21631 21673 80 88 2073964
006 609 493945 80753 82692 82854 20 152 3780780
007 1454 3537574 641443 794964 796521 40 108 4623352
008 67 5188 1115 918 919 1630848
009 4527228
010 138 20788 3653 3717 3724 834584
011 1976 988636 163108 126289 126536 22 117 290940
012 1396 824758 200320 179397 179748 82 87 942340
013 488 63405 12535 11807 11830 926816
014 970888
015 313 284264 42035 44586 44674 3653660
016 128 43426 7503 7219 7233 324800
017 128 322346 56581 53171 53275 3867540
018 131 143542 18423 19710 19748 1108792
019 53 4515 1054 929 931 286816
020 85 9060 1649 1532 1535 395696
021 2960 2306120 638071 611748 612946 8 130 3449324
022 4331364
023 283 244416 54003 50620 50720 52 117 971036
024 413 469210 75086 75551 75699 42 111 8340416
025 2473 1280030 185689 174516 174858 120 68 1459468
026 50 4140 792 688 690 1136504
027 245 196559 39586 38247 38322 588580
028 135 17276 2661 2534 2539 2514512
029 425 126196 27652 24109 24156 522896
030 113 79549 15129 15519 15549 726344
031 106 40849 8580 8401 8417 3216612
032 142 124259 17178 18395 18431 477396
033 145 86416 10501 10681 10702 206388
034 496 190299 32814 34337 34405 1727576
035 68 77421 16569 16238 16269 1914168
036 2351 445344 91540 90248 90425 10 141 534384
037 1618 604919 117145 101953 102153 90 90 1929980
038 101 50582 7796 8210 8226 1480052
039 254 392587 69208 66609 66740 1311956
040 255 310219 36489 36463 36535 2746300
041 8390 2115869 409969 421428 422253 6 138 7170496
042 2047 1419471 182878 187427 187794 69 96 3414768
043 446 508600 77308 80894 81053 504656
044 1058380
045 1004 681377 129855 129071 129324 36 140 2374568
046 238 155121 25226 25132 25181 92 82 1648524
047 8486 3306536 607194 402963 403752 5 126 7809788
048 121 123470 26871 24402 24450 852516
049 529 211570 35839 36527 36598 605992
Sum 46480 24776130 4723737 116760104
Mean 1010 538612 102690 2335202

Table D.14: Runtime statistics of hardware SAT solver engine (Probability multiplier 0.875)
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Appendix D Result tables of experiments

Factor 1.000 MiniSat
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000 180 116897 24134 23826 23873 2519040
001 50 4212 832 735 736 568296
002 1527 1494971 198440 164127 164449 156 50 1311044
003 240 213368 43572 44377 44464 3598812
004 2231 1588525 273383 340637 341305 39 115 13498924
005 164 148479 25421 23760 23806 2073964
006 107 543223 89260 88651 88825 3780780
007 33739 1444742 687937 395771 396547 9 126 4623352
008 72 4409 981 836 838 1630848
009 4527228
010 73 19914 3740 3314 3321 834584
011 9875 1488552 298767 312884 313497 18 119 290940
012 1053 872891 149587 153081 153381 64 96 942340
013 69 63766 12303 11569 11592 926816
014 970888
015 392 195124 39590 38034 38109 91 106 3653660
016 133 50655 7515 7516 7531 324800
017 105 308623 60419 60494 60612 3867540
018 280 97623 22631 20301 20341 1108792
019 69 4210 914 744 746 286816
020 53 8718 1607 1415 1418 395696
021 36600 1462818 588800 438158 439017 19 126 3449324
022 4331364
023 914 276786 47470 45455 45544 105 132 971036
024 441 539979 89571 102435 102636 84 86 8340416
025 721 792455 137472 127386 127636 104 76 1459468
026 38 4256 795 644 645 1136504
027 422 300887 40235 38416 38491 156 50 588580
028 65 11715 2625 2192 2197 2514512
029 122 136486 28745 25963 26014 522896
030 155 107765 16687 16975 17008 726344
031 81 57094 8901 7926 7941 3216612
032 144 124265 17420 18154 18189 477396
033 104 83631 9417 10566 10587 206388
034 110 253136 39171 45725 45815 158 49 1727576
035 114 66877 13197 12143 12166 1914168
036 507 428915 85623 75840 75989 24 216 534384
037 739 890267 131069 136050 136317 102 77 1929980
038 152 43179 7355 6582 6595 1480052
039 264 391940 80495 76878 77028 3 183 1311956
040 102 208942 29438 29950 30008 2746300
041 12526 2615921 446953 401110 401895 118 69 7170496
042 167 1259526 219516 226606 227050 94 81 3414768
043 1786 587007 128901 110502 110719 96 80 504656
044 1058380
045 4940 699482 169218 159207 159519 18 148 2374568
046 113 185898 21236 22412 22456 1648524
047 7022 1178212 311566 275741 276281 21 119 7809788
048 187 146156 26236 26484 26536 852516
049 184 165123 33975 33536 33601 182 61 605992
Sum 119132 21687620 4673121 116760104
Mean 2590 471470 101590 2335202

Table D.15: Runtime statistics of hardware SAT solver engine (Probability multiplier 1.000)
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D.7 Runtime statistics

Factor 1.250 MiniSat

T
a
g

M
in

im
u
m

M
a
x
im

u
m

A
v
e
ra

g
e

S
ta

n
d
a
rd

d
e
v
ia

ti
o
n

S
a
m

p
le

d
e
v
ia

ti
o
n

P
e
ri

o
d

st
a
rt

P
e
ri

o
d

le
n
g
th

P
e
n
ti

u
m

IV
C

P
U

C
y
c
le

s

000 117 119753 23603 22515 22559 68 174 2519040
001 52 3808 725 644 646 568296
002 672 1244858 215854 240515 240986 6 156 1311044
003 235 387486 55350 56422 56533 3598812
004 35556 1467677 515232 423286 424115 19 120 13498924
005 263 172329 32020 31090 31151 2073964
006 158 553346 98908 100167 100364 3780780
007 48499 5310638 667529 600803 601980 32 123 4623352
008 61 5180 957 881 883 1630848
009 4527228
010 34 25430 3784 3542 3549 834584
011 2524 1208636 250477 233092 233549 130 63 290940
012 350 777625 165267 154780 155083 111 132 942340
013 87 96606 12537 13192 13217 926816
014 970888
015 139 255366 52866 48577 48672 3653660
016 108 43351 8062 7123 7137 324800
017 113 480345 66515 71277 71417 3867540
018 212 104539 23327 22139 22182 1108792
019 31 4415 847 698 700 286816
020 21 8260 1479 1345 1348 395696
021 13435 3887920 772745 749916 751385 10 128 3449324
022 4331364
023 436 724308 50632 62476 62598 156 86 971036
024 286 407531 77592 75694 75842 8340416
025 3697 1396597 234397 208001 208409 30 116 1459468
026 31 3842 658 585 586 1136504
027 320 225543 48633 45948 46038 182 37 588580
028 69 12671 2684 2616 2621 2514512
029 362 217921 37219 36744 36816 522896
030 111 82689 17322 17479 17514 726344
031 152 48717 8933 9382 9401 3216612
032 330 98819 19775 18341 18377 477396
033 106 62154 11815 11759 11782 206388
034 307 227348 42784 42410 42493 1727576
035 83 72927 16908 14779 14808 1914168
036 1089 454829 111193 104391 104595 34 111 534384
037 287 1150960 135138 139356 139629 1929980
038 142 60761 7952 8524 8541 1480052
039 282 503129 78476 72512 72654 97 99 1311956
040 113 162164 34027 31086 31147 2746300
041 35314 3186874 1303721 929527 931347 3 128 7170496
042 2586 882014 244910 217823 218249 48 104 3414768
043 104 698084 124613 133996 134258 42 210 504656
044 1058380
045 1649 765240 200687 196538 196923 63 100 2374568
046 64 141683 25361 24313 24361 1648524
047 7104 956209 329408 281943 282496 4 133 7809788
048 168 161057 25242 26485 26537 852516
049 128 268392 39549 40532 40611 605992
Sum 157987 29130031 6197713 116760104
Mean 3435 633262 134733 2335202

Table D.16: Runtime statistics of hardware SAT solver engine (Probability multiplier 1.250)
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Appendix D Result tables of experiments

Factor 1.500 MiniSat
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000 126 162600 28105 27683 27738 2519040
001 49 3476 622 563 564 568296
002 354 1957530 336549 328011 328653 142 57 1311044
003 175 320606 60403 58759 58874 3598812
004 11211 2279537 402533 443193 444061 32 112 13498924
005 214 193788 33829 30869 30930 38 187 2073964
006 2742 473027 152295 155057 155361 40 108 3780780
007 8261 3883699 893227 898225 899984 48 104 4623352
008 38 5231 924 883 884 1630848
009 4527228
010 58 22243 4171 4320 4329 834584
011 2374 1582931 345898 319484 320110 12 122 290940
012 1215 1305263 232138 258037 258543 17 124 942340
013 112 81548 14850 14934 14963 926816
014 970888
015 523 324464 57765 56055 56164 3653660
016 66 56239 9320 9294 9313 324800
017 74 399849 73089 72109 72250 3867540
018 183 144155 27725 28310 28365 1108792
019 35 4198 838 699 700 286816
020 36 8999 1451 1479 1482 395696
021 61116 3147246 719413 423358 424188 16 120 3449324
022 4331364
023 407 699420 73626 90113 90290 971036
024 89 588837 101486 99151 99345 8340416
025 840 1305394 320523 298521 299106 39 112 1459468
026 38 2946 583 472 473 1136504
027 145 347579 54118 51908 52010 588580
028 44 14520 2274 2259 2263 2514512
029 175 201604 42792 41643 41724 522896
030 121 141557 21448 22442 22486 726344
031 84 60817 10432 10870 10891 3216612
032 131 136564 21573 22577 22622 477396
033 78 71930 12455 11241 11263 206388
034 62 304599 57616 53576 53681 25 179 1727576
035 41 105178 18192 18192 18227 1914168
036 232 802472 129649 129678 129932 534384
037 118 921636 166243 171354 171690 1929980
038 84 48428 9589 9054 9072 1480052
039 95 559646 115048 112955 113176 14 147 1311956
040 473 228161 36264 34402 34469 2746300
041 57804 2819358 717771 562504 563606 20 119 7170496
042 801 1587899 304884 261639 262151 94 87 3414768
043 857 932039 183704 164928 165251 504656
044 1058380
045 483 1017519 288382 239562 240031 40 108 2374568
046 188 195759 34204 34336 34403 1648524
047 7427 2715269 892323 493641 494608 40 108 7809788
048 200 174708 34510 33801 33867 852516
049 886 457406 52349 56985 57097 605992
Sum 160865 32797874 7097183 116760104
Mean 3497 712997 154287 2335202

Table D.17: Runtime statistics of hardware SAT solver engine (Probability multiplier 1.500)
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D.7 Runtime statistics

Factor 1.750 MiniSat
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000 202 289539 39904 41119 41200 2519040
001 30 2643 611 521 522 568296
002 28284 1771959 518315 447356 448232 10 128 1311044
003 255 407213 80038 78244 78397 3598812
004 5505 1810272 738371 561028 562127 76 90 13498924
005 199 232615 47513 44609 44696 2073964
006 119 1438163 195354 193213 193591 3780780
007 1542 5553701 1567975 1596822 1599950 16 120 4623352
008 41 5209 848 790 791 1630848
009 4527228
010 49 44601 5617 5697 5708 834584
011 19946 2505971 1950885 485110 486061 24 116 290940
012 5455 2731290 348246 373003 373733 180 40 942340
013 87 100628 16785 17256 17290 926816
014 970888
015 137 376158 73863 67618 67750 198 29 3653660
016 52 79613 12835 13426 13452 324800
017 271 707424 126776 127166 127415 24 116 3867540
018 298 291731 39664 40634 40713 1108792
019 27 3452 795 665 666 286816
020 30 9339 1345 1375 1377 395696
021 62936 4706681 1596668 1393473 1396202 16 120 3449324
022 4331364
023 959 431691 95425 96415 96603 63 105 971036
024 141 699669 136675 120671 120908 88 156 8340416
025 2098 1886272 357141 336407 337066 74 91 1459468
026 57 3029 639 524 525 1136504
027 545 359867 71654 66099 66229 588580
028 71 14378 3025 2607 2612 2514512
029 95 366791 63034 61147 61267 522896
030 129 265415 29936 34350 34417 726344
031 63 77935 13956 13588 13615 3216612
032 175 191906 32450 33876 33942 477396
033 69 79020 15822 15788 15819 206388
034 314 545579 66795 68086 68219 1727576
035 201 140147 28271 26469 26521 1914168
036 7196 642011 120713 127396 127645 11 140 534384
037 2159 1310331 262907 255227 255727 108 84 1929980
038 71 62128 10259 9928 9947 1480052
039 3025 987337 207973 222187 222623 59 102 1311956
040 104 198168 42382 39894 39972 2746300
041 16498 3787458 1308286 1121443 1123640 1 128 7170496
042 3650 2853986 457579 474577 475507 49 116 3414768
043 937 1289321 237994 198735 199124 112 72 504656
044 1058380
045 1830 1284805 359321 318785 319410 21 134 2374568
046 158 309883 48502 49671 49769 1648524
047 16649 2826268 1338933 794001 795556 27 119 7809788
048 192 297860 43396 41285 41366 852516
049 185 341524 64494 56057 56166 605992
Sum 183036 44320981 12779971 116760104
Mean 3979 963500 277825 2335202

Table D.18: Runtime statistics of hardware SAT solver engine (Probability multiplier 1.750)
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Appendix D Result tables of experiments

Factor 2.000 MiniSat
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000 183 235614 52495 51206 51307 2519040
001 26 4166 767 718 719 568296
002 417 4621328 757409 683262 684600 66 95 1311044
003 314 763693 145153 145454 145739 3598812
004 15764 4567792 1027014 1070708 1072806 28 114 13498924
005 44 363357 71726 65357 65485 2073964
006 9904 1447572 342989 293133 293707 2 148 3780780
007 337648 12985324 3876251 4275098 4283472 7 126 4623352
008 40 6683 1019 998 1000 1630848
009 4527228
010 91 40671 6269 6285 6298 834584
011 16377 4734165 739541 777348 778870 24 116 290940
012 31008 2285455 593978 474072 475000 33 112 942340
013 198 128729 24874 24452 24500 926816
014 970888
015 158 1003979 115788 114777 115002 3653660
016 50 77913 13508 14007 14035 324800
017 1830 1097993 173452 169744 170077 3867540
018 378 287886 56216 51570 51671 1108792
019 30 5888 869 825 827 286816
020 46 12596 1795 1819 1823 395696
021 71820 11798371 2125594 2942682 2948446 40 108 3449324
022 4331364
023 734 562281 136851 124036 124278 12 122 971036
024 44 1570144 194527 203435 203834 8340416
025 35816 2863242 538715 504386 505374 48 108 1459468
026 28 3136 686 572 573 1136504
027 383 453430 86762 79304 79459 588580
028 105 19498 3667 3613 3620 2514512
029 88 486948 78047 75371 75519 522896
030 161 276183 41186 41974 42056 726344
031 213 124138 18569 19473 19511 3216612
032 655 300521 48267 52763 52866 168 44 477396
033 68 89825 20956 18839 18876 206388
034 629 707243 116426 131370 131628 176 40 1727576
035 61 236702 35688 40229 40308 1914168
036 624 1434173 207742 221324 221757 23 183 534384
037 2775 2330584 373103 378173 378914 80 90 1929980
038 81 80168 16878 15963 15995 1480052
039 563 1237806 284323 253138 253633 141 64 1311956
040 82 352324 64944 59038 59154 2746300
041 24016 6247951 2063372 589328 590482 28 114 7170496
042 6634 3593828 867829 831787 833417 14 132 3414768
043 11699 2324491 399481 360260 360966 76 90 504656
044 1058380
045 10192 2901855 567430 434055 434905 72 92 2374568
046 664 410798 64882 63422 63546 1648524
047 15069 6425412 1115677 673116 674434 24 116 7809788
048 249 347505 57289 60812 60931 852516
049 206 500767 91746 89843 90019 605992
Sum 598165 82350128 17621750 116760104
Mean 13004 1790220 383082 2335202

Table D.19: Runtime statistics of hardware SAT solver engine (Probability multiplier 2.000)
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D.7 Runtime statistics

Factor 2.250 MiniSat
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000 728 462013 97021 100538 100735 88 84 2519040
001 24 3867 810 722 723 568296
002 3111 6126290 1421616 1313284 1315857 72 92 1311044
003 202 1032596 215665 203485 203883 3598812
004 3243 8697340 1414539 2524755 2529701 41 108 13498924
005 702 1077274 134117 147171 147460 2073964
006 4365 2490780 513157 475591 476522 111 92 3780780
007 216784 10250416 2147887 2041730 2045730 6 125 4623352
008 31 5130 1233 1106 1108 1630848
009 4527228
010 98 53953 9488 9416 9435 834584
011 45785 6902373 1846640 1636415 1639621 66 95 290940
012 15584 5160931 1323881 1275937 1278436 83 88 942340
013 225 204254 30953 29898 29956 926816
014 970888
015 499 892396 155120 161873 162190 3653660
016 54 143279 22914 23027 23072 324800
017 216 1633373 303247 290556 291125 3867540
018 1067 716286 90165 100099 100296 1108792
019 26 6086 897 918 920 286816
020 30 13527 1998 1921 1925 395696
021 72876 20168577 5004335 4006013 4013860 2 130 3449324
022 4331364
023 2278 1600548 217153 201734 202129 971036
024 597 1238701 307064 295749 296329 114 71 8340416
025 3319 3899152 931431 840001 841647 27 125 1459468
026 29 3427 736 708 709 1136504
027 605 962449 141466 136517 136784 588580
028 40 23734 4443 4477 4486 2514512
029 774 963040 128818 134448 134711 522896
030 53 282965 57807 58185 58299 726344
031 256 144841 25438 25257 25307 3216612
032 105 509982 62682 67003 67135 477396
033 77 154095 31255 28793 28850 206388
034 504 934702 170316 165001 165324 56 197 1727576
035 326 362852 54481 56702 56813 1914168
036 5843 1687193 322946 232254 232709 48 104 534384
037 4043 3423239 623139 673116 674435 1929980
038 89 175151 17538 18884 18921 1480052
039 1094 3029616 419602 497319 498294 118 69 1311956
040 508 686794 85131 103266 103468 10 124 2746300
041 116085 10822132 3127957 2948189 2953964 25 116 7170496
042 26370 2575866 1366787 505136 506125 24 117 3414768
043 1183 3991294 699889 686780 688125 20 144 504656
044 1058380
045 6260 6580168 1084083 1377152 1379849 6 125 2374568
046 1289 693786 111293 112588 112808 1648524
047 2065764 14330874 12430658 1171293 1173588 6 125 7809788
048 452 510454 85616 87093 87263 852516
049 869 750144 153651 161956 162273 38 109 605992
Sum 2604462 126377940 37397061 116760104
Mean 56619 2747347 812980 2335202

Table D.20: Runtime statistics of hardware SAT solver engine (Probability multiplier 2.250)
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Appendix D Result tables of experiments

Factor 2.500 MiniSat
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000 65 1010531 127269 142608 142887 2519040
001 35 6832 1059 1070 1072 568296
002 58372 13271216 2998527 3073338 3079358 3 128 1311044
003 3443 2347592 374352 370352 371077 3598812
004 939 25529290 3265927 4683531 4692705 40 123 13498924
005 620 745053 180342 165422 165746 2073964
006 6867 4594137 961902 830325 831951 8 149 3780780
007 1205826 53954612 26925341 25722366 25772753 6 126 4623352
008 30 6979 1471 1327 1329 1630848
009 4527228
010 67 100376 13930 14666 14695 834584
011 11352 9823508 2787136 3171959 3178173 16 120 290940
012 94774 7537282 1415516 1408893 1411653 8 124 942340
013 1111 239706 46026 43520 43605 926816
014 970888
015 126 1325621 298546 273196 273731 86 160 3653660
016 143 262021 36115 38462 38538 324800
017 592 2467455 431372 438822 439681 3867540
018 250 1310152 145752 159084 159396 1108792
019 26 6816 1265 1189 1192 286816
020 28 15752 2767 2634 2640 395696
021 548469 32512152 10275968 9653731 9672641 16 120 3449324
022 4331364
023 1421 2262351 370549 387565 388324 971036
024 3796 3899179 651923 674955 676277 163 48 8340416
025 97 7484129 1575917 1718454 1721820 22 117 1459468
026 26 6591 819 781 782 1136504
027 2388 1937485 288778 292080 292652 4 236 588580
028 57 46583 6095 6049 6061 2514512
029 2357 1323111 230093 220595 221027 522896
030 225 361877 86408 72813 72956 726344
031 160 250954 35487 36282 36353 3216612
032 42 566739 99531 102036 102236 477396
033 106 297509 42745 41730 41812 206388
034 775 1603790 299090 276595 277136 1727576
035 311 528638 91340 90042 90218 1914168
036 2119 4585410 656096 688678 690027 126 65 534384
037 76068 2713198 2009362 340626 341293 22 117 1929980
038 210 149761 27397 24450 24498 1480052
039 968 5312958 805760 747171 748635 5 137 1311956
040 69 1766888 164494 172201 172539 2746300
041 97253 25279349 5752853 7351960 7366361 1 132 7170496
042 126697 12071392 1657182 1532371 1535373 6 128 3414768
043 4916 6869204 1458867 1463674 1466542 9 124 504656
044 1058380
045 100637 11530928 2049190 1886767 1890463 50 105 2374568
046 1571 1247880 207137 205375 205777 1648524
047 498014 13491655 4498869 3726642 3733942 24 116 7809788
048 459 674893 129448 140862 141138 852516
049 77 1305270 246235 231610 232064 605992
Sum 2853954 264634805 73732248 116760104
Mean 62042 5752931 1602875 2335202

Table D.21: Runtime statistics of hardware SAT solver engine (Probability multiplier 2.500)
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D.7 Runtime statistics

WalkSAT (flip counts)
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000 53 1351 308 230 230
001 34 514 130 76 76
002 47 3924 604 532 533
003 51 1853 389 326 327
004 53 5902 831 821 822
005 48 2715 334 298 299
006 38 2069 430 361 361
007 41 5795 810 803 804
008 36 1190 150 119 119
009 48 10248 1470 1465 1468
010 38 1409 235 192 193
011 41 2681 564 458 459
012 43 3675 500 443 444
013 31 2394 323 263 263
014 75 5994 1166 969 971
015 41 2185 431 352 353
016 39 2893 344 342 343
017 53 1611 391 300 300
018 55 1889 315 253 254
019 28 572 130 82 82
020 29 669 146 100 100
021 48 3741 730 677 678
022 74 11574 1781 1761 1764
023 39 1848 342 266 267
024 71 3038 505 429 430
025 60 4012 650 645 646
026 27 733 142 100 100
027 53 2905 507 464 465
028 30 782 192 131 132
029 57 1846 381 298 299
030 43 1356 293 232 232
031 37 1023 238 184 184
032 37 1615 323 242 243
033 32 1450 274 195 195
034 38 2400 443 364 365
035 40 2252 318 290 291
036 32 2793 507 465 466
037 39 2266 464 380 381
038 35 1871 267 251 252
039 56 2083 425 346 347
040 55 1980 374 278 278
041 64 2519 655 486 487
042 50 2588 598 505 506
043 78 2699 521 420 420
044 43 5638 994 839 841
045 56 4696 800 781 782
046 42 2225 375 309 309
047 100 5960 996 963 965
048 52 1582 366 292 293
049 45 1864 403 347 348
Sum 2355 142872 24870
Mean 47 2857 497

Table D.22: Runtime statistics of WalkSAT solver engine (flip counts)
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Appendix D Result tables of experiments

WalkSAT (cycle counts) MiniSat

T
a
g

M
in

im
u
m

M
a
x
im

u
m

A
v
e
ra

g
e

S
ta

n
d
a
rd

d
e
v
ia

ti
o
n

S
a
m

p
le

d
e
v
ia

ti
o
n

P
e
n
ti

u
m

IV
C

P
U

C
y
c
le

s

000 106676 3073664 567357 427382 428220 2519040
001 58244 875524 238492 136830 137098 568296
002 86260 6852716 1065362 922039 923845 1311044
003 92028 3196996 696830 568500 569614 3598812
004 103736 10302092 1489766 1441433 1444257 13498924
005 89144 4578644 602977 517292 518305 2073964
006 70548 3739552 772736 645254 646518 3780780
007 77392 9926096 1452258 1444226 1447055 4623352
008 68716 2065456 277385 210808 211221 1630848
009 92408 22542804 2678697 2822745 2828275 4527228
010 73780 2392796 434383 344768 345443 834584
011 83028 5890440 1020016 832767 834398 290940
012 85872 6305592 897067 772522 774035 942340
013 61504 3974656 571774 449770 450651 926816
014 149876 9767768 2047770 1671740 1675015 970888
015 73384 3693372 775746 621303 622520 3653660
016 74324 5020216 620482 597212 598382 324800
017 100172 2784772 705054 526819 527851 3867540
018 104472 3707568 566145 452651 453538 1108792
019 53184 991656 237057 142231 142509 286816
020 55364 1155320 271886 184140 184500 395696
021 117600 6770776 1313742 1197745 1200092 3449324
022 135380 20767852 3095510 3036393 3042341 4331364
023 70016 3378896 621241 478325 479262 971036
024 130588 5334148 926732 786028 787568 8340416
025 116536 7204444 1182068 1156373 1158638 1459468
026 50600 1329288 269811 186394 186759 1136504
027 97336 5507124 907561 824632 826248 588580
028 56096 1379928 348048 229196 229645 2514512
029 107888 3561828 680362 526380 527412 522896
030 80980 2707624 532076 415393 416206 726344
031 70320 1803944 434070 325702 326340 3216612
032 79460 2750376 571330 414817 415629 477396
033 66700 2512200 487856 334623 335278 206388
034 70264 3962204 786320 622462 623681 1727576
035 72932 3622452 581084 513288 514293 1914168
036 66452 4875160 904824 817819 819421 534384
037 73840 3970092 822434 654591 655874 1929980
038 66260 3170024 481293 437929 438787 1480052
039 105768 3685088 766964 602304 603484 1311956
040 103004 3648244 672589 489340 490299 2746300
041 117788 4236292 1178246 860700 862386 7170496
042 96436 5276216 1086507 925320 927133 3414768
043 137524 4668076 933915 735543 736984 504656
044 84568 9848636 1776433 1478196 1481092 1058380
045 109636 7824140 1412944 1361212 1363878 2374568
046 84080 3857048 686077 550798 551877 1648524
047 180320 10503240 1775237 1685919 1689222 7809788
048 98736 2743340 648706 508720 509717 852516
049 81356 3244732 717222 610302 611497 605992
Sum 4488576 256981112 44590441 116760104
Mean 89772 5139622 891809 2335202

Table D.23: Runtime statistics of WalkSAT solver engine (cycle counts)
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D.8 Dynamic probability calculation using simulated annealing

D.8 Dynamic probability calculation using simulated
annealing
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Appendix D Result tables of experiments

F
P

G
A

S
o
lv

e
r

M
in

iS
a
t

Tag

Boostfactor0.25,5K

Boostfactor0.25,10K

Boostfactor0.50,5K

Boostfactor0.50,10K

Boostfactor0.75,5K

Boostfactor0.75,10K

Boostfactor1.00,5K

Boostfactor1.00,10K

Boostfactor1.25,5K

Boostfactor1.25,10K

Minimumwithoutboost

PentiumIVCPUCycles

0
0
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2
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0
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1
4
2
0
2
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1
4
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4
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5
8

1
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8
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9
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1
0
4
4

0
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6
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7

5
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4

1
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0
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9
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5
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9
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7
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7

7
7
7
6
6

2
5
6
9
5

2
4
7
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5

1
3
3
9
1

3
5
9
8
8
1
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0
0
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1
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8
1
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2
3
7
4
8
9

3
5
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0
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3
3
5
4
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5

4
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5
2
1

1
1
9
3
3
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7
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6
2
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1
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5
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9
6
7

1
1
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9
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0
9
9
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9
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9
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4

0
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9
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9
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0
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0
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0
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1
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1
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2
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0
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3
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0
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Table D.24: Performance of SAT circuits using simulated annealing approach (Part 1)
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D.8 Dynamic probability calculation using simulated annealing
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Boostfactor0.25,5K

Boostfactor0.25,10K

Boostfactor0.50,5K
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Boostfactor0.75,5K
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Table D.25: Performance of SAT circuits using simulated annealing approach (Part 2)
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D.9 Performance results of locally probability driven circuits
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Table D.26: Performance of SAT circuits using locally probability driven approach (Part 1)
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0
7
3

1
5
7
4
4
0
6

5
6
2
8
5
2
8

4
3
4
0
1
2

7
8
0
9
7
8
8

0
4
8

2
6
7
2
1

2
1
6
4
3

3
5
6
9
3

5
0
0
3
8

1
4
8
0
0
2

3
7
0
0
3

1
8
4
0

3
9
1
5
7
6

1
3
6
6
4

1
2
7
8

8
5
2
5
1
6

0
4
9

2
2
4
6
0

8
5
3
7

5
1
5
2
1

3
7
7

2
0
6
5

2
8
7
6
4

7
0
6
4
0

9
4
6
2
3
9

3
0
0
9
5
0

3
9
4
4
4

6
0
5
9
9
2

S
u
m

2
7
1
2
3
8
5
6

5
0
8
2
0
2
6

1
1
8
6
9
0
6
8

1
8
5
9
5
7
3
5

2
8
4
4
8
7
9
4

9
4
7
2
4
0
3
3

8
7
0
6
9
9
2
7

1
7
2
7
5
4
6
7
9

2
5
2
8
3
4
6
8
7

1
1
3
3
3
5
4
6

1
1
6
7
6
0
1
0
4

M
e
a
n

5
4
2
4
7
7

1
0
1
6
4
1

2
3
7
3
8
1

3
7
1
9
1
5

5
6
8
9
7
6

1
8
9
4
4
8
1

1
7
4
1
3
9
9

3
4
5
5
0
9
4

5
0
5
6
6
9
4

2
2
6
6
7
1

2
3
3
5
2
0
2

Table D.27: Performance of SAT circuits using locally probability driven approach (Part 2)
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