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Chapter 0

Getting Started

Welcome to the User’s Manual for the Software Tools for Discrete Mathematics ! To use
this software, you should obtain:

• The book Discrete Mathematics Using a Computer, by Cordelia Hall and John
O’Donnell. Published by Springer in January 2000 (£16.95, Softcover, 360 pages,
ISBN 1-85233-089-9).

• The DMC Home Page on the Web, which contains general information as well as
direct links to the following items:

• The software Stdm.lhs, a source file in the Haskell 98 programming language.

• This manual, which is available on the web (in pdf format).

The software, this manual, and the web resources are intended to be used along with the
book. This isn’t a self-contained, standalone document!

Web Addresses

If you’re reading this document online, you can find everything you need by following
the hyperlinks above. If you’re reading this on paper, however, you may need the Web
URL addresses for (1) the DMC Home Page; (2 the software file Stfm.lhs; and (3) this
manual (pdf format):

www.dcs.gla.ac.uk/~jtod/discrete-mathematics/

www.dcs.gla.ac.uk/~jtod/discrete-mathematics/Stdm.lhs

www.dcs.gla.ac.uk/~jtod/discrete-mathematics/StdmMan.pdf

Instructor’s Guide

If you are teaching a course using these materials, you should also obtain access to
the Instructor’s Guide, whose URL is

www.dcs.gla.ac.uk/~jtod/discrete-mathematics/instructors-guide/
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Running Haskell 98

The software tools are written in the standard language Haskell 98. Most of the
implementations of Haskell support experimental extensions to the language, as well as
the standard, so it’s important to tell the implementation to use Haskell 98.

The software uses the literate programming conventions of Haskell. This means that
every line which begins with the > character will be compiled, but all other lines are
comments.

We recommend that you use the Haskell interpreter Hugs. To start Hugs in the Haskell
98 mode, start it with the following command:

hugs +98
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Chapter 1

Introduction to Haskell

Everything covered in this chapter is a feature of the Haskell 98 language, and Stdm
doesn’t contain any specific definitions relating to the chapter.
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Chapter 2

Propositional Logic

Haskell uses the Bool type to represent propositional values. There are two constants of
type Bool, called True and False. (Be sure to make the first letter upper case!)

Logical Operators

Haskell provides several built-in logical operators using the Bool type. The (&&)

operator performs the logical and operation ∧:

(&&) :: Bool -> Bool -> Bool

False && False

==> False

False && True

==> False

True && False

==> False

True && True

==> True

The (||) operator performs the logical or operation ∨:

(||) :: Bool -> Bool -> Bool

False || False

==> False

False || True

==> True

True || False

==> True

True || True

==> True

Finally, the not function performs logical negation ¬:

not :: Bool -> Bool

not False
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==> True

not True

==> False

The Stdm file also provides the following operators, which look more like the standard
mathematical symbols:

> (<=>), (==>), (\/), (/\)

> :: Bool -> Bool -> Bool

The(/\) operator is logical and, and is exactly equivalent to && The (\/) operator is
logical or, and is exactly equivalent to ||. The (==>) operator is logical implication →,
and (<=> is logical equivalence ↔. For example:

True <=> True

==> True

True <=> False

==> False

False ==> True

==> True

True ==> False

==> False

Using the Proof Checker

Propositions

The basic propositions are logical constants and variables; these may be written in
any of the following ways:

• FALSE

• true

• a logical variable A, B, C, . . . , Z

• a logical variable with any name you like to choose, written as Pvar "name"

Notice that the two constants FALSE and true are written differently. We’ll look into the
reason for this in more detail later, but for the time being, just make sure that you write
these two values in the correct way.

The logical operators are used to construct larger propositions from smaller ones. Such
propositions can be written in any of the following ways:

• P ∧Q, written as either And P Q or as P ‘And‘ Q

• P ∨Q, written as either Or P Q or as P ‘Or‘ Q

10



Table 2.1: Examples of Proposition Representation

P P

P ∨Q Or P Q

P ‘Or‘ Q

P ∧Q And P Q

P ‘And‘ Q

(P ∧Q) ∨ (R ∧ S) Or (And P Q) (And R S)

((P ‘And‘Q) ‘Or‘ (R ‘And‘ S)

• P → Q, written as either Imp P Q or as P ‘Imp‘ Q

• ¬P , written as Not P

Parentheses are needed when the areguments to a logical operator are themselves
expressions. For example, we can write P ∧Q as And P Q, without parentheses, but the
expression (P ∧Q) ∨R would be written as Or (And P Q) R, where the parentheses are
essential. An alternative way to write this is (P ‘And‘ Q) ‘Or‘ R, but here again the
parentheses are required to indicate the structure of the expression.

Theorems

A theorem in propositional logic always has a standard form: it says that a proposition
p can be inferred from a set of assumptions a0, a1, . . . , ak−1. The mathematical notation
for this is

a0, a1, . . . , ak−1 ` p.

For example, the theorem

P,Q ` P ∧Q

has two assumptions P and Q, and the conclusion is P ∧Q. This statement means “given
the assumptions P and Q, it is possible to infer the conclusion P ∧Q”. The number k of
assumptions may be 0; thus the theorem

` P → P

says that P → P can be proved without making any assumptions at all.
To represent a theorem in Haskell, write Theorem, followed by a list of assumptions,

followed by the proposition which the theorem claims to hold. Thus the theorem

P,Q ` P ∧Q

would be represented as

Theorem [P,Q] (P ‘And‘ Q)

11



Notice that the two assumptions, P and Q, are written in a list, surrounded by square
brackets and separated by commas. The order of assumptions in the list doesn’t matter.
The conclusion of the theorem is P ‘And‘ Q, but this must be surronded by parentheses
because it contains several symbols. If a theorem has no assumptions, then an empty list
of assumptions is specified. Thus the theorem

` P → P

is written as

Theorem [] (P ‘Imp‘ P)

Usually it is convenient to use an equation to give a name to a theorem; put the
equation in a file, and you can then alternately edit the file and reload it in Hugs as you
work with the theorem interactively. The book defines example theorem to be the name
of the theorem

` Q→ (P ∧R)→ (R ∧Q)

using the following equation (which appears in the Stdm.lhs file):

> example_theorem :: Theorem

> example_theorem =

> Theorem

> []

> (Imp Q (Imp (And P R) (And R Q)))

The proof checker defines the representation of theorems with the following algebraic
data type:

> data Theorem

> = Theorem [Prop] Prop

> deriving (Eq,Show)

Inferences

Assumptions

There are two ways to establish a proposition: it can be assumed or inferred. To
express the fact that a proposition p has been established by assuming it, we write Assume
followed by the Haskell representation of p. For example, suppose we are working on the
theorem P,Q ` P ∧ Q. As we’ll see shortly the key step will be an inference using the
{∧I} rule, but that inference will require us to have established the propositions P and
Q. The statement that P has been established by assuming it is written Assume P. If this
statement is used in the proof of a theorem, then P must appear in the list of assumptions
(unless the assumption has been discharged).

Inferences on the And operator
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a b
{∧I}

a ∧ b
a ∧ b

{∧EL}
a

a ∧ b
{∧ER}

b

a
{∨IL}

a ∨ b
b
{∨IR}

a ∨ b
a ∨ b a ` c b ` c

{∨E}
c

a ` b
{→I}

a→ b

a a→ b
{→E}

b

a
{ID}

a

False
{CTR}

a

¬a ` False
{RAA}

a

Figure 2.1: Inference Rules of Propositional Logic.

The And-Introduction rule {∧I} says that if two propositions a and b have been
established, then their conjunction a ∧ b can be inferred.

a b
{∧I}

a ∧ b

This inference is written in the form:

AndI (Proof,Proof) Prop

There are two And-Elimination rules, the “left” and “right” versions. In both cases
the rule’s assumption is that a conjunction of the form a ∧ b has been established. The
“left” rule {∧EL} says that the leftmost part of the conjunction, a, can be inferred, while
the “right” rule {∧ER} says that b may be inferred.

a ∧ b
{∧EL}

a

a ∧ b
{∧ER}

b

An inference using the {∧EL} rule is written as AndEL, followed by a proof of the con-
junction a ∧ b, followed by the proposition a. The {∧ER} rule is similiar, using instead
the AndER constructor.

Inferences on the Or operator

The Or-Introduction rule has two forms: the “left” form says that given a you can
infer a ∨ b for arbitrary b, and the “right” form says that you if you are given b then you
can infer a ∨ b.
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a
{∨IL}

a ∨ b
b
{∨IR}

a ∨ b

a ∨ b a ` c b ` c
{∨E}

c

Inferences on Implication

a ` b
{→I}

a→ b

a a→ b
{→E}

b

Inferences on Identity and False

a
{ID}

a

False
{CTR}

a

¬a ` False
{RAA}

a

The Proof Checker uses the following algebraic data type to represent inferences and
proofs:

> data Proof

> = Assume Prop

> | AndI (Proof,Proof) Prop

> | AndEL Proof Prop

> | AndER Proof Prop

> | OrI1 Proof Prop

> | OrI2 Proof Prop

> | OrE (Proof,Proof,Proof) Prop

> | NotE (Proof,Proof) Prop

> | ImpI Proof Prop

> | ImpE (Proof,Proof) Prop

> deriving (Eq,Show)
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Represention of Proofs

> proof1 =

> ImpI

> (ImpI

> (AndI

> ((AndER

> (Assume (And P R))

> R),

> Assume Q)

> (And R Q))

> (Imp (And P R) (And R Q)))

> (Imp Q (Imp (And P R) (And R Q)))

Valid proofs using And Introduction

Theorem 1. q, r ` q ∧ r

proof1 = AndI (Assume Q, Assume R) (And Q R)

Invalid proofs using And Introduction.

> p2 = -- q,r |- q&s

> AndI (Assume (Pvar "q"), Assume (Pvar "r"))

> (And (Pvar "q") (Pvar "s"))

Valid proofs using And Elimination (1)

> p3 = -- p&q |- p

> AndEL (Assume (And P Q)) P

> p4 = -- (P|Q)&R |- (P|Q)

> AndEL (Assume (And (Or P Q) R)) (Or P Q)

Invalid proofs using And Elimination (1)

> p5 = -- p&q |- p

> AndEL (Assume (Or P Q)) P

> p6 = -- p&q |- p

> AndEL (Assume (And P Q)) Q

> p7 = -- P&Q |- R

> AndEL (Assume (And P Q)) R

Valid proofs with Imp Introduction

> p81 = -- P,Q |- P&Q

> AndI (Assume P, Assume Q)

> (And P Q)
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> p82 = -- Q |- (P => P&Q)

> ImpI (AndI (Assume P, Assume Q)

> (And P Q))

> (Imp P (And P Q))

> p83 = -- |- Q => (P => (P&Q))

> ImpI (ImpI (AndI (Assume P, Assume Q)

> (And P Q))

> (Imp P (And P Q)))

> (Imp Q (Imp P (And P Q)))

Valid proofs with Imp Elimination

> p9 = ImpE (Assume P, Assume (Imp P Q))

> Q

Here is the theorem and proofs that are used in the book; run them like this:

check_proof example_theorem proof1 (should be valid)

check_proof example_theorem proof2 (should give error message)

> example_theorem :: Theorem

> example_theorem =

> Theorem

> []

> (Imp Q (Imp (And P R) (And R Q)))

> proof1 =

> ImpI

> (ImpI

> (AndI

> ((AndER

> (Assume (And P R))

> R),

> Assume Q)

> (And R Q))

> (Imp (And P R) (And R Q)))

> (Imp Q (Imp (And P R) (And R Q)))

The following proof is incorrect proof, because QR was inferred where RQ was needed.

> proof2 =

> ImpI

> (ImpI

> (AndI

> (Assume Q,

> (AndER

> (Assume (And P R))

> R))

> (And R Q))

> (Imp (And P R) (And R Q)))

> (Imp Q (Imp (And P R) (And R Q)))
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Chapter 3

Predicate Logic

Soon there will be more about this!

> forall :: [Int] -> (Int -> Bool) -> Bool

> exists :: [Int] -> (Int -> Bool) -> Bool
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Chapter 4

Set Theory

A set will be represented as a list:

> type Set a = [a]

The subset function takes two sets as arguments, and returns True if the first is a
subset of the second. (Note: the function does not reject non-sets.)

> subset :: (Eq a, Show a) => Set a -> Set a -> Bool

subset [4,3] [1,2,3,4,5]

==> True

subset [9,3] [1,2,3,4,5]

==> False

subset [1,2,3,4,5] [1,2,3,4,5]

==> True

subset [] []

==> True

The properSubset function implements ⊂; it is just like subset except that it returns
False if the first argument is equal to the second. (Note that properSubset does not reject
non-sets.)

> properSubset :: (Eq a, Show a) => Set a -> Set a -> Bool

properSubset [4,3] [1,2,3,4,5]

==> True

properSubset [9,3] [1,2,3,4,5]

==> False

properSubset [1,2,3,4,5] [1,2,3,4,5]

==> False *** DIFFERENT FROM subset ***

properSubset [] []

==> True

The setEq function determines whether the two arguments represent the same set.
They are equal if they contain the same elements, regardless of the order.
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> setEq :: (Eq a, Show a) => Set a -> Set a -> Bool

setEq [1,2,3] [2,3,4]

==> False

setEq [1,2,3] [1,2,3]

==> True

setEq [1,2,3] [3,2,1]

==> True

setEq [1,2,3] [3,1,2]

==> True

If a list (used to represent a set) contains no duplicate elements, then it is said to
be in normal form. The normalForm function decides whether a set representation is in
normal form, and the normalizeSet function takes a list and puts it into normal form by
removing any duplicate elements. The order of elements is immaterial.

> normalForm :: (Eq a, Show a) => [a] -> Bool

normalForm [1,2,3]

==> True

normalForm [1,2,3,2]

==> False

> normalizeSet :: Eq a => [a] -> Set a

normalizeSet [1,2,3]

==> [1,2,3]

normalizeSet [1,2,3,2]

==> [1,3,2]

Set union is calculated by the +++ operator; thus a∪ b would be written in Haskell as
a+++b.

> (+++) :: (Eq a, Show a) => Set a -> Set a -> Set a

[1,2,3] +++ [2,3,4]

==> [1,2,3,4]

The operator for set intersection is ***, so a ∩ b is written as a***b.

> (***) :: (Eq a, Show a) => Set a -> Set a -> Set a

[1,2,3] *** [2,3,4]

==> [2,3]

[1,2] *** [3,4]

==> []

The ∼∼∼ operator denotes set difference; thus a− b, where a and b represent sets, is
expressed as a ∼∼∼ b.

> (~~~) :: (Eq a, Show a) => Set a -> Set a -> Set a

20



The !!! operator is used to calculate the complement of a set a with respect to a
universe u; this is expressed as u!!!a, and the value is equal to u ∼∼∼ s. If you’re
doing many calculations with the same universe u, you can define a specific complement
function specialised to that universe as compl = (u!!!).

> (!!!) :: (Eq a, Show a) => Set a -> Set a -> Set a

[2,4] !!! [1..5]

[1..5] !!! [2,4]

==> [1,3,5]

The powerset function returns the set of all subsets of its argument. If a set contains
k elements, then its powerset will contain 2k elements.

> powerset :: (Eq a, Show a) => Set a -> Set (Set a)

powerset ([] :: [Int])

==> []

powerset [1]

==>[[1],[]]

powerset [1,2,3]

==> [[1,2,3],[1,2],[1,3],[1],[2,3],[2],[3],[]]

A minor point: in the first example above, where we take the powerset of the empty set, we
declare the type of [] explicitly. This doesn’t have anything to do with the mathematics;
it’s just a way of telling the Haskell typechecker what set type we are using.

The crossproduct function computes the set a × b, consisting of the set of all pairs
where the first element belongs to a and the second element belongs to b. That is,

a× b = {(x, y) | x ∈ a ∧ y ∈ b}.

> crossproduct

> :: (Eq a, Show a, Eq b, Show b)

> => Set a -> Set b -> Set (a,b)

crossproduct [1,2] [7,8,9]

==> [(1,7),(1,8),(1,9),(2,7),(2,8),(2,9)]
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Chapter 5

Recursion

The factorial function is a typical example of a recursive definition. It has two equations;
one for the base case 0, and one for the recursive case n+ 1.

> factorial :: Integer -> Integer

> factorial 0 = 1

> factorial (n+1) = (n+1) * factorial n

The first of these examples just uses the first equation, factorial 0 = 1; the others
require one or more applications of the second equation. In all cases, the evaluation stops
with the base case (the first equation).

factorial 0

==> 1

factorial 1

==> 1

factorial 5

==> 120

Recursion Over Lists

Here is the quicksort algorithm as presented in the book:

> quicksort :: Ord a => [a] -> [a]

> quicksort [] = []

> quicksort (splitter:xs) =

> quicksort [y | y <- xs, y<=splitter]

> ++ [splitter]

> ++ quicksort [y | y <- xs, y>splitter]

The following examples test quicksort on several input lists, but it is clear that testing
can never establish the correctness of the function; there are simply too many possible
inputs to try them all. We would need to prove its correctness mathematically, using
induction.
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quicksort [3,5,4]

==> [3,4,5]

quicksort [5,2,9,3,1,6,0,4,8,7]

==> [0,1,2,3,4,5,6,7,8,9]

quicksort ["bat","ant","mouse","dog"]

==> ["ant","bat","dog","mouse"]

Notice that quicksort is not restricted to sorting lists of numbers; the last example
uses it to sort a list of strings. As the type says, quicksort can handle lists of any type
a as long as a is in the Ord class (that is, the order operations can be applied to values of
type a). Compare this with what you have to do in conventional programming languages!

The book gives firsts as another example of recursion (here it’s called firsts1.
However, the recursion pattern of firsts1 is expressed exactly by the map function, and
it’s better programming style to use map directly, as in the alternative definition firsts2.

> firsts1, firsts2 :: [(a,b)] -> [a]

> firsts1 [] = []

> firsts1 ((a,b):ps) = a : firsts1 ps

> firsts2 xs = map fst xs

firsts1 [("cat",4), ("dog",8), ("mouse",2)]

==> ["cat","dog","mouse"]

firsts2 [("cat",4), ("dog",8), ("mouse",2)]

==> ["cat","dog","mouse"]

Higher Order Recursive Functions

Recursion Over Trees

There is really just one sensible way to define lists, so Haskell provides lists are a pre-
defined type with a rich family of functions and operators. In contrast, there are many
ways to define trees, and it isn’t reasonable to try to include them all in the standard
libraries. Consequently you need to define your own tree types when programming. Here
is the version of trees used in the book:

> data Tree a

> = Tip

> | Node a (Tree a) (Tree a)

> deriving Show

The following definition gives the names t1 and t2 to a couple of specific trees, which
will be used in several of the following examples. Try evaluating t1 and t2 interactively.
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> t1, t2 :: Tree Int

> t1 = Node 6 Tip Tip

> t2 = Node 5

> (Node 3 Tip Tip)

> (Node 8 (Node 6 Tip Tip) (Node 12 Tip Tip))

This function is a typical recursion over trees; it counts the number of Node con-
structors in a tree. Notice that there is a base case and a recursion case, just as for list
functions, but here the recursion case must call nodeCount twice, since there are two
subtrees under a Node.

> nodeCount :: Tree a -> Int

> nodeCount Tip = 0

> nodeCount (Node x t1 t2) = 1 + nodeCount t1 + nodeCount t2

nodeCount t1

==> 1

nodeCount t2

==> 5

The reflect function is a particularly elegant example of recursion.

> reflect :: Tree a -> Tree a

> reflect Tip = Tip

> reflect (Node a t1 t2) = Node a (reflect t2) (reflect t1)

reflect t1

==> Node 6 Tip Tip

reflect t2

==> Node 5 (Node 8 (Node 12 Tip Tip)

(Node 6 Tip Tip))

(Node 3 Tip Tip)

For any data structure we can define a map operation that applies some function f to
every element of the structure. Here is the mapTree function, which applies f :: a ->

b to every element in a Tree:

> mapTree :: (a->b) -> Tree a -> Tree b

> mapTree f Tip = Tip

> mapTree f (Node a t1 t2) =

> Node (f a) (mapTree f t1) (mapTree f t2)

mapTree (*10) t1

==> Node 60 Tip Tip

mapTree (*10) t2

==> Node 50 (Node 30 Tip Tip)

(Node 80 (Node 60 Tip Tip)

(Node 120 Tip Tip))
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This tree stores a pair of type (Int,Int) in every Node, rather than just a singleton
value. This gives us a little database.

> tree :: Tree (Int,Int)

> tree =

> Node (5,10)

> (Node (3,6) (Node (1,1) Tip Tip)

> (Node (4,8) Tip Tip))

> (Node (7,14) (Node (6,12) Tip Tip)

> (Node (8,16) Tip Tip))

The find function looks up a number in the database; if that number is found in the
first element of a pair, then the second element is returned.

> find :: Int -> Tree (Int,a) -> Maybe a

> find n Tip = Nothing

> find n (Node (m,d) t1 t2) =

> if n==m then Just d

> else if n<m then find n t1

> else find n t2

find 6 tree

==> Just 12

find 7 tree

==> Just 14

find 20 tree

==> Nothing

Peano Arithmetic

Peano represents natural numbers; that is, the non-negative integers.

> data Peano = Zero | Succ Peano deriving Show

The following definitions will be used soon in several examples. Try evaluating them
interactively. Notice that that the Peano representation of k always contains exactly k
occurrences of Succ.

> one = Succ Zero

> two = Succ one

> three = Succ two

> four = Succ three

> five = Succ four

> six = Succ five

The decrement function can be defined simply by pattern matching:
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> decrement :: Peano -> Peano

> decrement Zero = Zero

> decrement (Succ a) = a

As an example, notice that decrement six produces the represenation of five.

five ==> Succ (Succ (Succ (Succ (Succ Zero))))

decrement six ==> Succ (Succ (Succ (Succ (Succ Zero))))

Most operations in Peano arithmetic must be defined using recursion; addition is a
typical example:

> add :: Peano -> Peano -> Peano

> add Zero b = b

> add (Succ a) b = Succ (add a b)

add two three ==> Succ (Succ (Succ (Succ (Succ Zero))))

And here is subtraction:

> sub :: Peano -> Peano -> Peano

> sub a Zero = a

> sub Zero b = Zero

> sub (Succ a) (Succ b) = sub a b

sub six four

==> Succ (Succ Zero)

sub five one

==> Succ (Succ (Succ (Succ Zero)))

Testing for equality is similar. Notice that we don’t use the built-in Haskell (==)
operator; instead we use recursion.

> equals :: Peano -> Peano -> Bool

> equals Zero Zero = True

> equals Zero b = False

> equals a Zero = False

> equals (Succ a) (Succ b) = equals a b

equals two three

==> False

equals four four

==> True

equals (add one two) (sub six three)

==> True

equals (sub four two) (add two three)

==> False

As one last example, here is the lt function, which computes the (<) relation:
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> lt :: Peano -> Peano -> Bool

> lt a Zero = False

> lt Zero (Succ b) = True

> lt (Succ a) (Succ b) = lt a b

lt two three

==> True

lt four four

==> False

lt (add one three) (sub five four)

==> False

lt (add two Zero) (add three two)

==> True

> data List a = Empty | Cons a (List a)

Data Recursion

The following function, f datarec, takes a value and builds a list containing that value
repeatedly. (In the book we simply call this function f.) In most programming languages,
this function would go into an infinite loop. Haskell, however, uses lazy evaluation which
allows such infinite data structures to be defined usefully. The idea is that the Haskell
implementation evaluates only the parts of the data structure that are actually required.

> f_datarec :: a -> [a]

> f_datarec x = x : f_datarec x

The list ones :: [Int] is an infinte list of ones:

> ones = f_datarec 1

Now we try evaluating ones. (Try it!) When you get bored with the output, you
can interrupt the computation and get another interactive prompt from the Haskell inter-
preter. (To interrupt the computation on Windows, click Stop; to interrupt in on Unix,
type control-C.

ones

==> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1...

Here is another definition which is essentially the same, except that it doen’t use a
helper function; the data structure is defined using data recursion instead of the more
ordinary function recursion.

> twos = 2 : twos

twos

==> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2...
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Any kind of circular data structure can be defined in a similar way:

> object = let a = 1:b

> b = 2:c

> c = [3] ++ a

> in a

object

==> [1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3...
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Chapter 6

Inductively Defined Sets
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Chapter 7

Induction
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Chapter 8

Relations

> type Relation a = Set (a,a)

> type Digraph a = (Set a, Relation a)

> domain :: (Eq a, Show a, Eq b, Show b) => Set (a,b) -> Set a

> codomain :: (Eq a, Show a, Eq b, Show b) => Set (a,b) -> Set b

> isDigraph :: (Eq a, Show a) => Digraph a -> Bool

> digraphEq :: (Eq a, Show a) => Digraph a -> Digraph a -> Bool

> isReflexive :: (Eq a, Show a) => Digraph a -> Bool

> isIrreflexive :: (Eq a, Show a) => Digraph a -> Bool

> lessThan_N100 :: Digraph Int

> equals_N100 :: Digraph Int

> greaterThan_N100 :: Digraph Int

> lessThanOrEq_N100 :: Digraph Int

> greaterThanOrEq_N100 :: Digraph Int

> notEq_N100 :: Digraph Int

> isSymmetric :: (Eq a, Show a) => Digraph a -> Bool

> isAntisymmetric :: (Eq a, Show a) => Digraph a -> Bool

> isTransitive :: (Eq a, Show a) => Digraph a -> Bool

> relationalComposition :: (Show a, Eq b, Show c, Show b, Eq c, Eq a) =>

> Set (a,b) -> Set (b,c) -> Set (a,c)
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> equalityRelation :: (Eq a, Show a) => Set a -> Relation a

> relationalPower :: (Eq a, Show a) => Digraph a -> Int -> Relation a

> reflexiveClosure :: (Eq a, Show a) => Digraph a -> Digraph a

> inverse :: Set (a,b) -> Set (b,a)

> symmetricClosure :: (Eq a, Show a) => Digraph a -> Digraph a

> transitiveClosure :: (Eq a, Show a) => Digraph a -> Digraph a

> isPartialOrder :: (Eq a, Show a) => Digraph a -> Bool

> remTransArcs :: (Eq a, Show a) => Relation a -> Relation a

> isWeakest :: (Eq a, Show a) => Relation a -> a -> Bool

> isGreatest :: (Eq a, Show a) => Relation a -> a -> Bool

> weakestSet :: (Eq a, Show a) => Digraph a -> Set a

> greatestSet :: (Eq a, Show a) => Digraph a -> Set a

> isQuasiOrder :: (Eq a, Show a) => Digraph a -> Bool

> isChain :: (Eq a, Show a) => Set (a,a) -> Bool

> isLinearOrder :: (Eq a, Show a) => Digraph a -> Bool

> removeFromRelation :: (Eq a, Show a) => a -> Set (a,a) -> Set (a,a)

> removeElt :: (Eq a, Show a) => a -> Digraph a -> Digraph a

> topsort :: (Eq a, Show a) => Digraph a -> Set a

> isEquivalenceRelation

> :: (Eq a, Show a)

> => Digraph a -> Bool
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Chapter 9

Functions

> isFun :: (Eq a, Eq b, Show a, Show b) =>

> Set a -> Set b -> Set (a,FunVals b) -> Bool

> data FunVals a = Undefined | Value a

> deriving (Eq, Show)

> isPartialFunction :: (Eq a, Eq b, Show a, Show b) => Set a -> Set b

> -> Set (a,FunVals b) -> Bool

> imageValues :: (Eq a, Show a) => Set (FunVals a) -> Set a

> isSurjective :: (Eq a, Eq b, Show a, Show b) => Set a ->

> Set b -> Set (a,FunVals b) -> Bool

> isInjective :: (Eq a, Eq b, Show a, Show b) => Set a ->

> Set b -> Set (a,FunVals b) -> Bool

> functionalComposition

> :: (Eq a, Eq b, Eq c, Show a, Show b, Show c)

> => Set (a,FunVals b)

> -> Set (b,FunVals c)

> -> Set (a,FunVals c)

> isBijective :: (Eq a, Eq b, Show a, Show b) => Set a -> Set b

> -> Set (a,FunVals b) -> Bool

> isPermutation

> :: (Eq a, Show a) => Set a -> Set a -> Set (a,FunVals a) -> Bool

> diagonal :: Int -> [(Int,Int)] -> [(Int,Int)]

> rationals :: [(Int, Int)]
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Chapter 10

Digital Circuit Design

> class Signal a where

> inv :: a -> a

> and2, or2, xor :: a -> a -> a

> instance Signal Bool where

> inv False = True

> inv True = False

> and2 = (&&)

> or2 = (||)

> xor False False = False

> xor False True = True

> xor True False = True

> xor True True = False

> -- halfAdd :: Signal a => a -> a -> (a,a)

> halfAdd a b = (and2 a b, xor a b)

> fullAdd :: Signal a => (a,a) -> a -> (a,a)

> fullAdd (a,b) c = (or2 w y, z)

> where (w,x) = halfAdd a b

> (y,z) = halfAdd x c

halfAdd False False

halfAdd False True

halfAdd True False

halfAdd True True

fullAdd (False, False) False

fullAdd (False, False) True

fullAdd (False, True) False

fullAdd (False, True) True

fullAdd (True, False) False
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fullAdd (True, False) True

fullAdd (True, True) False

fullAdd (True, True) True

> add4 :: Signal a => a -> [(a,a)] -> (a,[a])

> add4 c [(x0,y0),(x1,y1),(x2,y2),(x3,y3)] =

> (c0, [s0,s1,s2,s3])

> where (c0,s0) = fullAdd (x0,y0) c1

> (c1,s1) = fullAdd (x1,y1) c2

> (c2,s2) = fullAdd (x2,y2) c3

> (c3,s3) = fullAdd (x3,y3) c

Example: addition of 3 + 8

3 + 8

= 0011 ( 2+1 = 3)

+ 1000 ( 8 = 8)

= 1011 (8+2+1 = 11)

Calculate this by evaluating

add4 False [(False,True),(False,False),(True,False),(True,False)]

The expected result is

(False, [True,False,True,True])

> mscanr :: (b->a->(a,c)) -> a -> [b] -> (a,[c])

> mscanr f a [] = (a,[])

> mscanr f a (x:xs) =

> let (a’,ys) = mscanr f a xs

> (a’’,y) = f x a’

> in (a’’, y:ys)

> rippleAdd :: Signal a => a -> [(a,a)] -> (a, [a])

> rippleAdd c zs = mscanr fullAdd c zs

Example: addition of 23+11

23 + 11

= 010111 (16+4+2+1 = 23)

+ 001011 ( 8+2+1 = 11) with carry input = 0

= 100010 ( 32+2 = 34) with carry output = 0

Calculate with the circuit by evaluating

rippleAdd False [(False,False),(True,False),(False,True),

(True,False),(True,True),(True,True)]

The expected result is

(False, [True,False,False,False,True,False])
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