
Circuit Parallelism in Haskell

Andreas Koltes and John O’Donnell

University of Glasgow

IFL, September 2007

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 1 / 28



Thesis

Circuit parallelism is a useful complement to task and data parallelism.

Two effective ways to exploit increasing chip density are
I Multicore processors, good for task parallelism
I General programmable logic (e.g. FPGA), good for circuit parallelism

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 2 / 28



How circuits can help

As functional units that speed up common functions

As high performance engine for fine-grain data parallelism

To perform exotic computations (randomised circuits, asynchronous
relaxation, . . .)

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 3 / 28



The approach

You partition your program into

a portion that runs on an ordinary computer

a portion that runs as a digital circuit

Both parts can be written in Haskell. The software part is compiled, the
circuit part is transformed into an FPGA program.

No automatic support! But you can still reason about the whole program,
refactor it, etc.

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 4 / 28



Organisation of the prototype system

running on CPU
Haskell program C interface Interface

Circuit
Application

Circuit

Register

Machine
Transfer

FFI

Main Processor FPGA

Wire

Using an Altera Cyclone FPGA

This is only a running prototype! Recent high performance FPGAs will be
a lot faster.

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 5 / 28



Register transfer machine

Interface
circuitry

Message
Buffer

In
pu

t

Execution

Message
Encoder

Decoder

Dispatcher

Message
Serializer

Functional
Unit #1

Functional
Unit #2

Functional
Unit #3

Functional
Unit #4

All connections are point-to-point connections

Write Arbiter

Register File Flag Register FileLock Manager

Functional
Unit Table

Register
Usage Table

O
ut

pu
t

Lock ReadRead

Off-load

Data signals
Acknowledgement/Idleness signals

Unlock WriteWrite

High Priority Write

Main Pipeline

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 6 / 28



A case study

We have developed a running system, and applied it to index interval
selection sort, a data parallel algorithm.

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 7 / 28



Programming Models

Task parallelism. Partition computation into subtasks that can be
computed simultaneously.

Data parallelism. Partition computation into operations over
aggregate data structures.

Each can be implemented on top of the other

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 8 / 28



Implementing data parallelism

There are many ways to achieve parallelism organised around data
structures

Threads organised to operate on aggregates

Data parallelism on top of tasks

SIMD architecture

Programmable circuits

Circuit design

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 9 / 28



Obvious data parallelism

Usually data parallelism has been limited to the most obvious cases:

iterations across dense arrays

vector architectures

obvious algorithms for SIMD architectures

Some real systems betray this limitation, e.g. instead of providing scanl as
a primitive, a family of first order primitives are given:

scanl (+)

scanl (*)

scanl (∨)

scanl (∧)

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 10 / 28



Beyond basic iterations

The most interesting data parallel algorithms require

higher order functions – e.g. the function argument to scan is fairly
complex, not just (+)

more general combinators – sweep, bidirectional scan, etc, not just
scan

These are among the reasons that a functional language is well suited for
data parallelism

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 11 / 28



Index interval selection

an associative array data structure

a selection algorithm

a data parallel sort algorithm, reminiscent of both quicksort and
selection sort

(John O’Donnell, Glasgow FP Workshop, 1988)

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 12 / 28



The problem

Given an array x0, . . . , xn−1.

We want to perform various operations:

Sort it

Selection: given index i (for 0 ≤ i < n), find the ith largest element.

Location: given an element x , find its index in the sorted array.

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 13 / 28



The idea

An associative algorithm: identify by other data associated with it, rather
than by where it is in the machine

For each value in the array, attach its index.

But initially we don’t know its index!

⇒ represent partial information about index: an index interval (low,high)
means that the true index lies in this interval

Initially, give every element the interval (0, n − 1), since it could be
anywhere!

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 14 / 28



Representation

Each “processor” cell consists of a few registers (on the order of 100 bits),
and a little logic (an adder/comparitor, some multiplexors).

data Cell = Cell
{ val :: Value, — data value

lb :: Bound, — lower bound of index interval
ub :: Bound, — upper bound of index interval
select :: Bool, — cell is currently active
flag :: Bool } — temp

type State = [Cell]

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 15 / 28



Refining an interval

1 Activate all the cells with interval (l , h)

2 Pick a splitter

3 Count the number n of active values smaller than splitter, let
k = l + n.

4 Refinement: (l , h) becomes one of (l , k − 1), (k, k), or (k + 1, h).

Each of these steps takes just a small constant number of clock cycles.

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 16 / 28



Organisation of the algorithm

A microinstruction set

A control algorithm (expressed as monadic operation, transformed
into microcontroller in the register transfer machine on the FPGA)

A datapath (specified in Hydra, transformed into FPGA program)

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 17 / 28



The microinstruction set

They operate in parallel on all the cells.

Several groups: input/output, selecting cells to operate on, conditional
operations, and global operations (using a tree network)

There are a lot of tradeoffs here:

If the microinstructions do a lot, the number of cycles is reduced but
the circuit density suffers and cycle time may grow

There are many other data parallel algorithms you might want to
combine with the index interval family

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 18 / 28



Input/Output

shift :: IORef State → (Value,Bound,Bound) → IO
(Value,Bound,Bound)
The cell states are shifted right; enables the computer to initialise and
read out state

readSel :: IORef State → IO (Maybe (Value,Bound,Bound))
Read out the state of the cell with select flag set

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 19 / 28



Selecting cells

The select flag determines whether cells perform conditional operations.

setSelect :: IORef State → Bool → IO ()
initialise the flag

save :: IORef State → IO ()
copy select flag into a temporary

restore :: IORef State → IO ()
copy temporary back into select

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 20 / 28



Conditionals

Comparisons

compare :: IORef State → (Value→Value→Bool) → Value → IO ()
compare local value with broadcast value, set select

match :: IORef State → (Cell→Bound) → Bound → IO ()
compare index interval bound

Conditional operations

condSetUB :: IORef State → Bound → IO ()
set upper bound if select

condSetLB :: IORef State → Bound → IO ()
set lower bound if select

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 21 / 28



Global operations

These use a tree network, with the cells as leaves, to perform
computations involving all the cells.

count :: IORef State → IO Int
returns the number of cells that have select set to True

resolve :: IORef State → IO Bool
clear select in all cells except leftmost one where it was set

imprecise :: IORef State → IO ()
set select where index interval is imprecise

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 22 / 28



XiQuicksort algorithm

Each sort step chooses an imprecise index interval and refines it.

xiSort :: IORef State → IO ()
xiSort sr =

do a ← choose sr
case a of

Nothing → return ()
Just (v,l,u) →

do split sr v l u
xiSort sr

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 23 / 28



Choosing an interval to refine

Search for an imprecise interval, pick one cell with this interval if there are
several, and read out its data value. This will be the splitter.

choose :: IORef State → IO (Maybe (Value,Bound,Bound))
choose sr =

do imprecise sr
resolve sr
result ← readSel sr
return result

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 24 / 28



Splitting the interval

split :: IORef State → Value → Bound → Bound → IO ()
split sr s l u =

do setSelect sr True
match sr lb l – check lower bound
match sr ub u – and upper bound
save sr – iff cell matchs (lb,ub) bounds
compareVal sr (<) s – select indicates match with val<splitter
n ← count sr – number of matches < splitter
let k = l + n – calculate exact index of splitter
condSetUB sr (k − 1) – where val<s, update the upper bound
restore sr
compareVal sr (>) s – where val>s,
condSetLB sr (k + 1) – update the lower bound
restore sr
compareVal sr (==) s – where val=s,
condSetLB sr k – update the lower bound
condSetUB sr k – and the upper bond

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 25 / 28



Performance

Cycle time
I Clock speed on FPGA is 14.3 MHz (up to 46 MHz possible)
I Circuit is not optimised, 100MHz may be reachable
I Recent high performance FPGAs are a lot bigger and faster

Number of cycles
I Selection step: 17 cycles
I Sorting step: 16 cycles
I Find sorted index of value: 16 cycles

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 26 / 28



Some observations

There is a complexity speedup from the parallelism.

In analysing complexity, you have to be careful about the cost model
you’re using!

The selection algorithm is automatically memoising: the work done to
perform a selection has the side effect of refining many index
intervals, making subsequent selections faster.

There are many more rich data parallel algorithms!

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 27 / 28



Conclusion

You can accelerate parts of a program with circuit parallelism, and
both parts of the program can be written in the same language.

Some data parallel algorithms are massively parallel with very fine
grain, and are better suited for circuit parallelism than threads

Haskell can express such algorithms as circuits — graph reduction is
not the only way to run a program!

Some data parallel algorithms only make sense with circuit
parallelism: on a coarse grain multicore they would be inefficient.

A. Koltes, J.O’Donnell (Glasgow) Circuit Parallelism in Haskell IFL, September 2007 28 / 28


