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Classical Patterns

What is a permutation?

π = 431265 =

The property we will look at is avoidance of classical patterns.
What is a classical pattern?

123 = 231 =

So π contains 123 but π avoids 231.
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Permutation Classes

Let B be a set of patterns then define the set Av(B) to be all
permutations that avoid each π ∈ B.

These sets are called permutation classes and B is called the basis.

Question: Given a basis B can we find a structure for Av(B)?
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Avoiding 21

How many permutations of length n are in Av(21)?
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Avoiding 21
Only the increasing permutation 12 . . . n avoids 21 and so there is
exactly one permutation of each length n avoiding 21. The
generating function is therefore

∑
n≥0

anxn = 1 + x + x2 + x3 + · · · = 1
1− x .

What does Struct give?

So we can read the generating function as

F = 1 + x · F

which upon rearranging gives

F = 1
1− x .
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Stack-Sortable Permutations

Knuth [4] showed that a permutation is stack-sortable if and only
if it avoids 231.

How many permutations of length n avoid 231?
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Hence these are counted by the Catalan numbers and have the
generating function C = 1 + x · C2.
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Implementation

Although still under development, the algorithm is available at
GitHub: https://github.com/PermutaTriangle/PermStruct

The algorithm consists of four stages.

Find building sets.
Generate rules.
Generate permutation sets from rules.
Find a cover.
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Building Sets

What are our building sets for Av(B)?

Define the set Aπ to be the set of all patterns contained in a
permutation π. If we take a subset, S ⊆

⋃
π∈B Aπ that satisfies the

condition that S ∩ Aπ is non-empty for each π ∈ B, then we see
that Av(S) ⊆ Av(B).

These subsets Av(S) are the building sets used by Struct.
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Generate Rules and Sets For Rules

A rule is an n ×m grid with entries from our building sets.

A1 A2 A3 A4

A5 A6 A7 A8

A9 A10 A11 A12

Where each Ai is a building set.
We generate the permutations by inflating.
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Wilf-Equivalent

Sometimes permutation classes are enumerated by the same
numbers. For example

|Avn(123)| = |Avn(231)| .

We say that these permutation classes are Wilf-Equivalent.
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Big Bases

Given a basis B ⊆ S4 that is "big", we run Struct on B.

For all such bases such that |B| > 12, Struct found a structure.
These covers were verified for length 10 permutations.
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Peg Permutations

For example 3◦1−4◦2+ is given by the struct rule

◦

◦
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Polynomial Classes
By combining results from Huczynska and Vatter [3] and Albert et
al. [1] we get the following theorem

Theorem (Homberger and Vatter [2])
For a permutation class C the following are equivalent:

(1) The number of length n permutations, |Cn|, is given by a
polynomial for all sufficiently large n,

(2) |Cn| < Fn, the nth Fibonacci number, for some n,
(3) C does not contain arbitrary long permutation of any of the

forms shown below (or any symmetries),
(4) C = Grid(G) for a finite set G of peg permutations.
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