Reed’s conjecture and strong edge coloring

Marthe Bonamy, Thomas Perrett, Luke Postle

April 27, 2016
Vertex coloring

\[\chi : \text{Minimum number of colors to ensure that } a \neq b. \]

\[a \setminus b \Rightarrow \begin{cases} a \neq b, \\ a \in L(x), \\ b \in L(y) \end{cases} \]

\[\chi^\ell : \text{Minimum size of every } L(v) \text{ such that } \omega \leq \chi \leq \chi^\ell \leq \Delta + 1. \]

\[\omega : \text{Maximum size of a clique.} \]
Vertex coloring

\[\chi: \text{Minimum number of colors to ensure that} \]

\[a \neq b \Rightarrow a \in L(x) \quad \text{and} \quad b \in L(y) \]

\[\chi: \text{Minimum size of every} \ L(v) \text{such that} \]

\[\omega: \text{Maximum size of a clique.} \]

\[\omega \leq \chi \leq \chi^{\ell} \leq \Delta + 1 \]
Vertex coloring

\[\chi : \text{Minimum number of colors to ensure that} \]
\[a \neq b. \]

\[\chi_\ell : \text{Minimum size of every } L(v) \text{ such that} \]
\[a \neq b \]
\[a \in L(x) \]
\[b \in L(y) \]
Vertex coloring

\[\chi : \text{Minimum number of colors to ensure that} \]
\[a \quad \Rightarrow \quad a \neq b. \]

\[\chi_l : \text{Minimum size of every } L(v) \text{ such that} \]
\[a \quad \Rightarrow \quad \begin{cases}
 a \neq b \\
 a \in L(x) \\
 b \in L(y)
\end{cases} \]

\[\omega : \text{Maximum size of a clique.} \]
\[\omega \leq \chi \leq \chi_l \]
Vertex coloring

\[\chi: \text{Minimum number of colors to ensure that} \]
\[\begin{array}{c}
\text{a} \quad \text{b} \\
\end{array} \Rightarrow a \neq b. \]

\[\chi_\ell: \text{Minimum size of every } L(v) \text{ such that} \]
\[\begin{array}{c}
\text{a} \quad \text{b} \\
\end{array} \Rightarrow \begin{cases}
 a \neq b \\
 a \in L(x) \\
 b \in L(y)
\end{cases} \]

\[\Delta: \text{Maximum degree.} \]
\[\omega \leq \chi \leq \chi_\ell \leq \Delta + 1. \]
Beyond a trivial bound

Theorem (Folklore)

Every graph \(G \) *satisfies* \(\chi(G) \leq \Delta(G) + 1 \).
Beyond a trivial bound

Theorem (Reed '98)

\[\exists \epsilon > 0, \forall G, \chi(G) \leq \left(1 - \epsilon \right) \cdot \left(\Delta(G) + 1 \right) + \epsilon \cdot \omega(G) \]
Beyond a trivial bound

Theorem (Reed '98)

\[\exists \epsilon > 0, \forall G, \chi(G) \leq \lceil (1 - \epsilon) \cdot (\Delta(G) + 1) + \epsilon \cdot \omega(G) \rceil. \]

Max/sup such \(\epsilon \)?
Beyond a trivial bound

Theorem (Reed '98)

\[\exists \epsilon > 0, \forall G, \chi(G) \leq \lceil (1 - \epsilon) \cdot (\Delta(G) + 1) + \epsilon \cdot \omega(G) \rceil. \]

Max/sup such \(\epsilon \)? False for \(\epsilon = 1 \).

Theorem (Mycielski '55)

\(\forall k, \text{ there is a graph } H_k \text{ with } \chi(H_k) \geq k \text{ and } \omega(H_k) = 2. \)
Beyond a trivial bound

Theorem (Reed '98)

There exists $\epsilon > 0$, such that for all G, $\chi(G) \leq \lceil (1 - \epsilon) \cdot (\Delta(G) + 1) + \epsilon \cdot \omega(G) \rceil$.

Max/sup such ϵ? False for $\epsilon = 1$.

Theorem (Mycielski '55)

For all k, there is a graph H_k with $\chi(H_k) \geq k$ and $\omega(H_k) = 2$.

\[\Delta(G_p) = (p - 1) + 2p \]
\[\omega(G_p) = 2p \]
\[\chi(G_p) = \lceil \frac{5p}{2} \rceil \]
Beyond a trivial bound

Theorem (Reed '98)

\[\exists \epsilon > 0, \forall G, \chi(G) \leq \lceil (1 - \epsilon) \cdot (\Delta(G) + 1) + \epsilon \cdot \omega(G) \rceil. \]

Max/sup such \(\epsilon \)? False for \(\epsilon = 1 \).

Theorem (Mycielski '55)

\(\forall k, there is a graph \(H_k \) with \(\chi(H_k) \geq k \) and \(\omega(H_k) = 2 \). \)

\[\Delta(G_p) = (p - 1) + 2p \]
\[\omega(G_p) = 2p \]
\[\chi(G_p) = \lceil \frac{5p}{2} \rceil \]
\[(1 - \epsilon) \cdot 3p + \epsilon \cdot 2p \geq \frac{5p}{2} \]
Beyond a trivial bound

Theorem (Reed '98)

\[\exists \epsilon > 0, \forall G, \chi(G) \leq \lceil (1 - \epsilon) \cdot (\Delta(G) + 1) + \epsilon \cdot \omega(G) \rceil. \]

Max/\mbox{sup} such \(\epsilon \)? False for \(\epsilon = 1 \).

Theorem (Mycielski '55)

\[\forall k, \text{there is a graph } H_k \text{ with } \chi(H_k) \geq k \text{ and } \omega(H_k) = 2. \]

\[\Delta(G_p) = (p - 1) + 2p \]
\[\omega(G_p) = 2p \]
\[\chi(G_p) = \lceil \frac{5p}{2} \rceil \]
\[(1 - \epsilon) \cdot 3p + \epsilon \cdot 2p \geq \frac{5p}{2} \]
\[\Rightarrow \epsilon \leq \frac{1}{2} \]
Beyond a trivial bound

Theorem (Reed '98)

\[\exists \epsilon > 0, \forall G, \chi(G) \leq \lceil (1 - \epsilon) \cdot (\Delta(G) + 1) + \epsilon \cdot \omega(G) \rceil. \]

Max/sup such \(\epsilon \)? False for \(\epsilon = 1 \).

Theorem (Mycielski '55)

\(\forall k, \) there is a graph \(H_k \) with \(\chi(H_k) \geq k \) and \(\omega(H_k) = 2 \).

\[\Delta(G_p) = (p - 1) + 2p \]
\[\omega(G_p) = 2p \]
\[\chi(G_p) = \left\lceil \frac{5p}{2} \right\rceil \]
\[(1 - \epsilon) \cdot 3p + \epsilon \cdot 2p \geq \frac{5p}{2} \]
\[\Rightarrow \epsilon \leq \frac{1}{2} \]

Conjecture (Reed '98)

\(\forall G, \chi(G) \leq \lceil \frac{1}{2} \cdot (\Delta(G) + 1) + \frac{1}{2} \cdot \omega(G) \rceil. \)
A short proof of Reed’s theorem

Proof from King and Reed ’12 (yields $\epsilon \approx \frac{1}{130,000}$).

Case 1: $\omega(G) > \frac{2}{3}\Delta(G)$.

Case 2: $\omega(G) \leq \frac{2}{3}\Delta(G)$ and $\exists v$ such that $N(v)$ is very dense.

Case 3: $\omega(G) \leq \frac{2}{3}\Delta(G)$ and every $N(v)$ is somewhat sparse.
A short proof of Reed’s theorem

Proof from King and Reed ’12 (yields $\epsilon \approx \frac{1}{130,000}$).

Case 1: $\omega(G) > \frac{2}{3}\Delta(G)$.

Case 2: $\omega(G) \leq \frac{2}{3}\Delta(G)$ and $\exists v$ such that $N(v)$ is very dense.

Case 3: $\omega(G) \leq \frac{2}{3}\Delta(G)$ and every $N(v)$ is somewhat sparse.
Case 1: Large Clique Number

We use the following theorem.

Theorem (King 2010)

If $\omega(G) > \frac{2}{3}(\Delta(G) + 1)$, then there exists an independent set I hitting every maximum clique in G.

$\Delta(G) \leq \Delta(G \setminus I) + 1,$

$\omega(G) = \omega(G \setminus I) + 1,$

$\chi(G) \leq \chi(G \setminus I) + 1.$
Case 1: Large Clique Number

We use the following theorem.

Theorem (King 2010)

If \(\omega(G) > \frac{2}{3}(\Delta(G) + 1) \), then there exists a maximum independent set \(I \) hitting every maximum clique in \(G \).
Case 1: Large Clique Number

We use the following theorem.

Theorem (King 2010)

If \(\omega(G) > \frac{2}{3}(\Delta(G) + 1) \), then there exists a *maximum* independent set \(I \) hitting every maximum clique in \(G \).

\[
\begin{align*}
\Delta(G) &\leq \Delta(G \setminus I) + 1, \\
\omega(G) &\leq \omega(G \setminus I) + 1, \\
\chi(G) &\leq \chi(G \setminus I) + 1.
\end{align*}
\]
Case 2: Small Clique Number and a Dense Neighborhood

k-critical graph: not $(k - 1)$-colorable but every proper subgraph is.

Lemma

∀α > 0 and 0 < ε < \(\frac{1}{6} - 2\sqrt{\alpha}\), if G is \((1 - \epsilon)\Delta(G)\)-critical and \(\omega(G) \leq \frac{2}{3}\Delta(G)\), then ∀v, \(N(v)\) has at most \((1 - \alpha)\left(\frac{\Delta}{2}\right)\) edges.

Proposition

Every graph H has antimatching M of size at least \(\frac{|V(H)| - \omega(H)}{2}\).
Case 2: Small Clique Number and a Dense Neighborhood

Idea: Find an antimatching M in $H = G[N(v)]$.
If $G[M]$ is dense, then color $G - M$ by criticality and extend to M.
Case 3: Sparse Neighborhoods

Lemma

\[\exists \Delta_0 \text{ such that if } \Delta(G) \geq \Delta_0 \text{ and } \alpha > \left(\log \Delta \right)^3 / \Delta, \text{ and every } N(v) \text{ contains at most } (1 - \alpha) \left(\frac{\Delta}{2} \right) \text{ edges, then} \]

\[\chi(G) \leq (1 - \frac{\alpha}{2e^6})(\Delta + 1). \]
Case 3: Sparse Neighborhoods

Lemma

$\exists \Delta_0$ such that if $\Delta(G) \geq \Delta_0$ and $\alpha > (\log \Delta)^3/\Delta$, and every $N(v)$ contains at most $(1 - \alpha)(\Delta/2)$ edges, then

$$\chi(G) \leq (1 - \frac{\alpha}{2e^6})(\Delta + 1).$$

Wasteful Coloring Procedure:

- Color each vertex v with a random color.
- Uncolor any vertex v receiving the same color as a neighbor.
- Complete the coloring by using Greedy.

Idea: Every vertex v sees many repeated colors in $N(v)$.
Case 3: Sparse Neighborhoods

Lemma

\[\exists \Delta_0 \text{ such that if } \Delta(G) \geq \Delta_0 \text{ and } \alpha > \frac{(\log \Delta)^3}{\Delta}, \text{ and every } N(v) \text{ contains at most } (1 - \alpha)(\frac{\Delta}{2}) \text{ edges, then} \]

\[\chi(G) \leq (1 - \frac{\alpha}{2e^6})(\Delta + 1). \]

Wasteful Coloring Procedure:

- Color each vertex \(v \) with a random color.
- Uncolor any vertex \(v \) receiving the same color as a neighbor.
- Complete the coloring by using Greedy.

Idea: Every vertex \(v \) sees many repeated colors in \(N(v) \).

\[\geq \mathbb{E}(P_v) - \mathbb{E}(T_v) \text{ saved colors around } v. \]
Case 3: Sparse Neighborhoods

Lemma

There exists Δ_0 such that if $\Delta(G) \geq \Delta_0$ and $\alpha > (\log \Delta)^3/\Delta$, and every $N(v)$ contains at most $(1 - \alpha)(\Delta/2)$ edges, then

$$\chi(G) \leq (1 - \frac{\alpha}{2e^6})(\Delta + 1).$$

Wasteful Coloring Procedure:

- Regularize the graph
- Color each vertex v with a random color.
- Uncolor any vertex v receiving the same color as a neighbor.
- Complete the coloring by using Greedy.

Idea: Every vertex v sees many repeated colors in $N(v)$.

$$\geq \mathbb{E}(P_v) - \mathbb{E}(T_v)$$ saved colors around v.

M. Bonamy, T. Perrett, L. Postle
Randomly coloring sparse graphs
Let G' be the graph induced in G by uncolored vertices.

- "Every $N_{G'}(v)$ contains at most $(1 - \alpha)(\Delta(G'))$ edges"?
Why not iterate?

Let G' be the graph induced in G by uncolored vertices.

- "Every $N_{G'}(v)$ contains at most $(1 - \alpha)(\Delta(G'))$ edges"?
- List coloring?
Correspondence Coloring

Let L be a k-list-assignment for G.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Note that we could as well assume that $L(v) = [k]$ for all v by permuting the matchings as necessary.
Correspondence Coloring

Let L be a k-list-assignment for G.

\begin{center}
\begin{tikzpicture}
\node (v1) at (0,0) {1};
\node (v2) at (1,0) {2};
\node (v3) at (2,0) {3};
\node (v4) at (3,0) {4};
\node (v5) at (2,-1) {2};
\node (v6) at (3,-1) {3};
\node (v7) at (4,-1) {4};
\draw (v1) -- (v2);
\draw (v2) -- (v3);
\draw (v3) -- (v4);
\draw (v5) -- (v6);
\end{tikzpicture}
\end{center}
Let L be a k-list-assignment for G.

![Diagram with edges and labels: 1-2, 2-3, 3-4, 4-3, 2-4, 1-3]
Let L be a k-list-assignment for G.

\begin{figure}
\centering
\begin{tikzpicture}
\node (A) at (0,0) [shape=circle] {};
\node (B) at (1,0) [shape=circle] {};
\node (C) at (0.5,1) [shape=circle] {};
\node (D) at (1.5,1) [shape=circle] {};
\draw (A) -- (B);
\draw (C) -- (D);
\draw (A) -- (C);
\draw (B) -- (D);
\end{tikzpicture}
\end{figure}

Definition (Dvořák, Postle '15)

k-correspondence-assignment C: a set $(C_e : e \in E(G))$ where for $e = uv$, C_e is a matching from $L(u)$ to $L(v)$.

C-correspondence-coloring ϕ: an assignment $\phi(v) \in L(v)$ such that for every edge $e = uv$, $\phi(u)$ is not matched to $\phi(v)$ in C_e.

Note that we could as well assume that $L(v) = [k]$ for all v by permuting the matchings as necessary.
Definition

The *correspondence chromatic number*, $\chi_c(G)$, is the minimum k such that for all k-correspondence assignments C, G has a C-coloring.

$$\chi_c(G) \geq \chi_\ell(G).$$
The **correspondence chromatic number**, $\chi_c(G)$, is the minimum k such that for all k-correspondence assignments C, G has a C-coloring.

$$\chi_c(G) \geq \chi_\ell(G).$$

They can also differ, e.g. $\chi_c(C_4) = 3$.

```
2 1
1 1
2
```

```
2 1
1 1
2
```
The **correspondence chromatic number**, $\chi_c(G)$, is the minimum k such that for all k-correspondence assignments C, G has a C-coloring.

$$\chi_c(G) \geq \chi_\ell(G).$$

They can also differ, e.g. $\chi_c(C_4) = 3$.

![Diagram of a triangle with vertices labeled 1, 1, 2, 2, 1, 1, 2, 2, and edges colored with the same numbers, illustrating a C_4-coloring.]
Why not iterate? (2)

Let G' be the graph induced in G by uncolored vertices.

- "Every $N_{G'}(v)$ contains at most $(1 - \alpha)(\Delta(G'))$ edges"?
- List coloring? ✓
Let G' be the graph induced in G by uncolored vertices.

- "Every $N_{G'}(v)$ contains at most $(1 - \alpha)(\Delta(G'))^2$ edges"?
- List coloring? ✓

Note that $\mathbb{E}(N_{G'}(v_1) \cap N_{G'}(v_2)) = p \cdot |N(v_1) \cap N(v_2)|$.
Application to Reed’s conjecture

\[\text{Saved}(G) = \Delta(G) + 1 - \chi(G), \quad \text{Gap}(G) = \Delta(G) + 1 - \omega(G) \]

Definition

A graph is *k-list-critical* if it is not \(k \)-choosable but all proper subgraphs are.

Lemma

If \(G \) is k-list-critical where \(k = \Delta(G) - \text{Saved}(G) \), then \(\forall v, \ N(v) \) has at most \((1 - \alpha) \binom{\Delta}{2} \) edges, where

\[\alpha \binom{\Delta}{2} \geq \frac{\text{Gap}(G)^2}{4} - \text{Gap}(G) \text{Saved}(G). \]
Application to Reed’s conjecture

\[\text{Saved}(G) = \Delta(G) + 1 - \chi(G), \quad \text{Gap}(G) = \Delta(G) + 1 - \omega(G) \]

Definition

A graph is *k-list-critical* if it is not *k*-choosable but all proper subgraphs are.

Lemma

If \(G \) is *k*-list-critical where \(k = \Delta(G) - \text{Saved}(G) \), then \(\forall v, N(v) \) has at most \((1 - \alpha)\left(\frac{\Delta}{2}\right)\) edges, where

\[\alpha\left(\frac{\Delta}{2}\right) \geq \frac{\text{Gap}(G)^2}{4} - \text{Gap}(G)\text{Saved}(G). \]

Theorem

For \(\Delta(G) \) large enough, \(\text{Saved}(G) \geq \frac{\text{Gap}(G)}{25} \) (\(\chi(G) \leq \lceil (1 - \frac{1}{25}) \cdot (\Delta(G) + 1) + \frac{1}{25} \cdot \omega(G) \rceil \).
Edge coloring

\[\chi': \text{ Minimum number of colors to ensure that} \]
\[a \neq b. \]
χ': Minimum number of colors to ensure that
\[a \neq b. \]

χ'_s: Minimum number of colors to ensure that
\[a \neq b \text{ and } a \neq c. \]
A subcase of vertex coloring

Vertex coloring of \textit{Squares of Line graphs}.

\[\chi'(G) = \chi(L^2(G)). \]
A subcase of vertex coloring

Vertex coloring of \textit{Squares of Line graphs}.
A subcase of vertex coloring

Vertex coloring of **Squares of Line graphs**.
A subcase of vertex coloring

Vertex coloring of **Squares of Line graphs**.

\[\chi_s'(G) = \chi(L^2(G)). \]
Note that $\Delta(L^2(G)) \leq 2\Delta(G)^2$.
Upper bounds

Note that $\Delta(L^2(G)) \leq 2\Delta(G)^2$.

Conjecture (Erdos and Nesteril 1985)

$\chi(L^2(G)) \leq 1.25\Delta(G)^2$

This is tight for a blown-up 5-cycle: $\omega(L^2(G)) = 1.25\Delta(G^2)$.
Upper bounds

Note that $\Delta(L^2(G)) \leq 2\Delta(G)^2$.

Conjecture (Erdos and Nesteril 1985)

$\omega(L^2(G)) \leq 1.25\Delta(G)^2$

This is tight for a blown-up 5-cycle:

$\omega(L^2(G)) = 1.25\Delta(G^2)$.
Upper bounds

Lemma (Molloy and Reed ’00)

Let $H = L^2(G)$. For every $e \in E(G)$,

$$|E_H(N_H(e))| \leq (1 - \frac{1}{36}) \left(\frac{2\Delta(G)^2}{2} \right)$$

Combined with the Wasteful Coloring Procedure:

Theorem (Molloy and Reed ’00)

$$\chi(L^2(G)) \leq 1.9987\Delta(G)^2$$
Upper bounds

Lemma (Bruhn and Joos ’15)

Let $H = L^2(G)$. For every $e \in E(G)$,

$$|E_H(N_H(e))| \leq \frac{3}{4} \binom{2\Delta(G)^2}{2}$$

Combined with the Wasteful Coloring Procedure:

Theorem (Bruhn and Joos ’15)

$$\chi(L^2(G)) \leq 1.93\Delta(G)^2$$
Lemma (Bruhn and Joos ’15)

Let $H = L^2(G)$. For every $e \in E(G)$,

$$|E_H(N_H(e))| \leq \frac{3}{4} \left(\frac{2\Delta(G)^2}{2} \right)$$

Combined with the Wasteful Coloring Procedure:

Theorem (BPP ’15)

$$\chi(L^2(G)) \leq 1.876\Delta(G)^2$$
Upper bounds

Lemma (Bruhn and Joos ‘15)

Let $H = L^2(G)$. For every $e \in E(G)$,

$$|E_H(N_H(e))| \leq \frac{3}{4} \left(\frac{2\Delta(G)^2}{2} \right)$$

Combined with the Wasteful Coloring Procedure:

Theorem (BPP ‘15)

$$\chi(L^2(G)) \leq 1.835 \Delta(G)^2$$
Conclusion

Thank you!
Thank you!