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Problems considered: fixed version

Definition
Given a coloured connected graph G and a vertex v ∈ V , we
define m(v)(G ) to be the minimum number of moves required to
make G monochromatic, if we always play at the vertex v .

Fixed Flood It
Given a coloured connected graph G and a vertex
v ∈ V (G ), what is m(v)(G )? The number of colours
may be unbounded.

c-Fixed Flood It
The same as Fixed Flood It, except that only
colours from some fixed set of size c are used.
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Problems considered: free version

Definition
Given a coloured connected graph, we define m(G ) to be the
minimum number of moves required to make G monochromatic if,
at each move, we can choose to play at any vertex in G .

Free Flood It
Given a coloured connected graph G , what is m(G )?
The number of colours may be unbounded.

c-Free Flood It
The same as Free Flood It, except that only
colours from some fixed set of size c are used.



Background

Theorem (Arthur, Clifford, Jalsenius, Montanaro, Sach 2010)

3-Fixed Flood It and 3-Free Flood It are NP-hard on n× n
grids (and the decision versions are NP-complete).

Theorem (Lagoutte 2010)

3-Fixed Flood It and 3-Free Flood It are NP-hard on trees.

I Both proved by means of a reduction from Shortest
Common Supersequence (SCS).
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Connecting pairs of vertices

Definition
Given a coloured connected graph G and u, v ∈ V (G ), we define
m(u, v) to be the minimum number of moves we must play in G
(in the free variant) to link u and v .

Lemma
Let G be a connected coloured graph, and let u, v ∈ V (G ). Then
m(u, v) is equal to the minimum, taken over all u-v paths P, of
the number of moves required to flood the path P.

Theorem (M., Scott 2011)

Let G = (V ,E ) be a connected graph, coloured with c colours.
Then we can compute the number of moves required to link every
pair (u, v) ∈ V (2) in time O(|V |3|E ||C |2).
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Applications: Free Flood It on paths

Corollary

For any path P, Free Flood It can be solved in time O(|P|6),
and c-Free Flood It can be solved in time O(|P|4).



Applications: approximating c-Free Flood It on k × n
boards

Corollary

For any fixed k, we can compute a constant additive approximation
to c-Free Flood It, restricted to k × n boards, in time O(n4).



Applications: approximating c-Free Flood It on k × n
boards

Let B be the coloured graph corresponding to a k × n board. Then

m(u, v) ≤ m(B) ≤ m(u, v) + c(k − 1).
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Applications: approximating c-Free Flood It on k × n
boards

Let B be the coloured graph corresponding to a k × n board. Then

m(u, v) ≤ m(B) ≤ m(u, v) + c(k − 1).

u v

Moves: m(u, v) + 5c



Solving the problems exactly for k × n boards
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c = 3 NP-h
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3× n boards

Theorem (M.,Scott 2011)

4-Fixed Flood It and 4-Free Flood It NP-hard on 3× n
boards.

Proved by a reduction from SCS.
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2× n boards

Fixed Free

c fixed P

c unbounded P

Theorem (Clifford, Jalsenius, Montanaro and Sach 2010)

Fixed Flood It can be solved in time O(n) on 2× n boards.



c-Free Flood It on 2× n boards

Fixed Free

c fixed P P

c unbounded P

Theorem (M.,Scott 2011)

When restricted to 2× n boards, c-Free Flood It is fixed
parameter tractable, with parameter c.

I Dynamic programming

I Split board into sections and consider the number of moves
required to create a monochromatic path through each
section, subject to certain further conditions.



c-Free Flood It on 2× n boards

Fixed Free

c fixed P P

c unbounded P

Theorem (M.,Scott 2011)

When restricted to 2× n boards, c-Free Flood It is fixed
parameter tractable, with parameter c.

I Dynamic programming

I Split board into sections and consider the number of moves
required to create a monochromatic path through each
section, subject to certain further conditions.



Free Flood It on 2× n boards

Fixed Free

c fixed P P

c unbounded P NP-h

Theorem (M., Scott, 2011)

Free Flood It remains NP-hard when restricted to 2×n boards.

I Reduction from Vertex Cover.



Open Problems

I Complexity of detemining the number of moves required to
link a given set of k ≥ 3 points, for fixed k .

I Complexity of 3-Fixed Flood It and 3-Free Flood It
on 3× n boards.

I Conjecture: c-Free Flood It is solvable in polynomial time
on subdivisions of any fixed graph H.

I Extremal problems:
I What is the worst possible colouring of a k × n board with c

colours?
I Given a graph G ,

1. what is the worst possible colouring with c colours?
2. what is the best possible proper colouring?
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