

When can an FPT decision algorithm be used to count?

January 2016 Kitty Meeks

DECISION

Is there a witness?

DECISION

Is there a witness?

APPROX COUNTING Approximately how many witnesses?

DECISION

Is there a witness?

APPROX COUNTING Approximately how many witnesses?

EXACT COUNTING

Exactly how many witnesses?

Deciding, counting and enumerating

DECISION Is there a witness?

EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses?

EXACT COUNTING

Exactly how many witnesses?

DECISION Is there a witness?

Jniversity

of Glasgow

EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses? UNIFORM SAMPLING Pick a single witness uniformly at random

EXACT COUNTING Exactly how many witnesses?

Deciding, counting and enumerating

University of Glasgow

DECISION Is there a witness? EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses? UNIFORM SAMPLING Pick a single witness uniformly at random

EXACT COUNTING

Exactly how many witnesses?

ENUMERATION

List all witnesses

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic inclusion oracle.

... at least with high probability.

An FPRAS for a counting problem Π is a randomised approximation scheme that takes an instance I of Π (with |I| = n), and numbers $\epsilon > 0$ and $0 < \delta < 1$, and in time $poly(n, 1/\epsilon, \log(1/\delta))$ outputs a rational number z such that

 $\mathbb{P}[(1-\epsilon)\Pi(I) \le z \le (1+\epsilon)\Pi(I)] \ge 1-\delta.$

... at least with high probability.

An FPRAS for a counting problem Π is a randomised approximation scheme that takes an instance I of Π (with |I| = n), and numbers $\epsilon > 0$ and $0 < \delta < 1$, and in time $poly(n, 1/\epsilon, \log(1/\delta))$ outputs a rational number z such that

$$\mathbb{P}[(1-\epsilon)\Pi(I) \le z \le (1+\epsilon)\Pi(I)] \ge 1-\delta.$$

Set $\epsilon < \frac{1}{2}$, and we will distinguish between 0 and at least 1 with probability at least $1 - \delta$.

GENCYCLE Input: A directed graph G. Output: A cycle selected uniformly, at random, from the set of all directed cycles of G.

Theorem (Jerrum, Valiant, Vazirani, 1986)

Iniversity

Suppose there exists a polynomial time bounded Probabilistic Turing Machine which solves the problem GENCYCLE. Then NP = RP.

A relation $R \subseteq \Sigma^* \times \Sigma^*$ is *self-reducible* if and only if:

- there exists a polynomial time computable function $g \in \Sigma^* \to \mathbb{N}$ such that $xRy \implies |y| = g(x)$;
- there exist polynomial time computable functions ψ ∈ Σ* × Σ* → Σ* and σ ∈ Σ* → ℕ satisfying:

•
$$\sigma(x) = O(\log |x|)$$

- $g(x) > 0 \implies \sigma(x) > 0 \quad \forall x \in \Sigma^*$
- $\bullet \ |\psi(x,w)| \leq |x| \quad \forall x,w \in \Sigma^*,$

and such that, for all $x \in \Sigma^*$, $y = y_1 \dots y_n \in \Sigma^*$,

$$\langle x, y_1 \dots y_n \rangle \in R \iff \langle \psi(x, y_1 \dots y_{\sigma(x)}), y_{\sigma(x)+1} \dots y_n \rangle \in R.$$

A relation $R \subseteq \Sigma^* \times \Sigma^*$ is *self-reducible* if and only if:

- there exists a polynomial time computable function $g \in \Sigma^* \to \mathbb{N}$ such that $xRy \implies |y| = g(x)$;
- there exist polynomial time computable functions ψ ∈ Σ* × Σ* → Σ* and σ ∈ Σ* → N satisfying:

•
$$\sigma(x) = O(\log |x|)$$

- $g(x) > 0 \implies \sigma(x) > 0 \quad \forall x \in \Sigma^*$
- $|\psi(x,w)| \le |x| \quad \forall x, w \in \Sigma^*$,

and such that, for all $x \in \Sigma^*$, $y = y_1 \dots y_n \in \Sigma^*$,

$$\langle x, y_1 \dots y_n \rangle \in R \iff \langle \psi(x, y_1 \dots y_{\sigma(x)}), y_{\sigma(x)+1} \dots y_n \rangle \in R.$$

Theorem (Jerrum, Valiant, Vazirani, 1986)

For self-reducible problems, approximate counting and almost-uniform sampling are polynomial-time inter-reducible.

Let Φ be a family $(\phi_1, \phi_2, ...)$ of functions, such that ϕ_k is a mapping from labelled graphs on *k*-vertices to $\{0, 1\}$.

p-INDUCED SUBGRAPH WITH PROPERTY(Φ) (**p-**ISWP(Φ)) *Input:* A graph G = (V, E) and an integer k. *Parameter:* k. *Question:* Is there a tuple $(v_1, \ldots, v_k) \in V^k$ such that v_1, \ldots, v_k are all distinct and $\phi_k(G[v_1, \ldots, v_k]) = 1$?

Let Φ be a family $(\phi_1, \phi_2, ...)$ of functions, such that ϕ_k is a mapping from labelled graphs on *k*-vertices to $\{0, 1\}$.

p-INDUCED SUBGRAPH WITH PROPERTY(Φ) (**p-**ISWP(Φ)) *Input:* A graph G = (V, E) and an integer k. *Parameter:* k. *Question:* Is there a tuple $(v_1, \ldots, v_k) \in V^k$ such that v_1, \ldots, v_k are all distinct and $\phi_k(G[v_1, \ldots, v_k]) = 1$?

p-MISWP(Φ) *Input:* A graph G = (V, E), an integer k and a colouring $f : V \to \{1, ..., k\}$. *Parameter:* k. *Question:* Is there a tuple $(v_1, ..., v_k) \in V^k$ such that $\{f(v_1), ..., f(v_k)\} = \{1, ..., k\}$ and $\phi_k(G[v_1, ..., v_k]) = 1$?

Let Φ be a family $(\phi_1, \phi_2, ...)$ of functions, such that ϕ_k is a mapping from labelled graphs on *k*-vertices to $\{0, 1\}$.

p-INDUCED SUBGRAPH WITH PROPERTY(Φ) (**p-**ISWP(Φ)) *Input:* A graph G = (V, E) and an integer k. *Parameter:* k. *Question:* Is there a tuple $(v_1, \ldots, v_k) \in V^k$ such that v_1, \ldots, v_k are all distinct and $\phi_k(G[v_1, \ldots, v_k]) = 1$?

p-EXT-ISWP(Φ) *Input:* A graph G = (V, E), an integer k and subset $U \subset V$ of cardinality at most k.

Parameter: k.

Question: Is there a tuple $(v_1, \ldots, v_k) \in V^k$ such that v_1, \ldots, v_k are all distinct, $U \subseteq \{v_1, \ldots, v_k\}$, and $\phi_k(G[v_1, \ldots, v_k]) = 1$?

Proposition

Suppose that $ISWP(\Phi)$ belongs to FPT. Then the following three statements are equivalent:

- ISWP(Φ) is self-reducible;
- **2** MISWP(Φ) belongs to FPT;
- **(3)** EXT-ISWP (Φ) belongs to FPT.

Theorem (Arvind and Raman (2002); Jerrum and M. (2015); M. (2016))

Suppose that Φ is a monotone property, and that **p**-ISWP(Φ) is self-reducible. Then, if **p**-ISWP(Φ) belongs to FPT, there is an FPTRAS for **p**-#ISWP(Φ).

Proposition

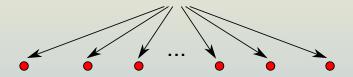
Suppose that, for each k and any graph G on n vertices, the number of k-vertex (labelled) subgraphs of G that satisfy ϕ_k is either

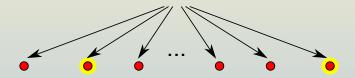
1 zero, or

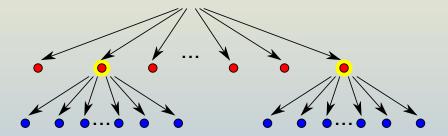
at least

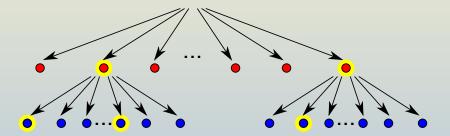
$$\frac{1}{g(k)p(n)}\binom{n}{k}.$$

Then there exists an FPTRAS for p-#ISWP(Φ).









• **p-ISWP**(Φ) is in FPT:

• By Ramsey, for sufficiently large graphs the answer is always "yes".

• **p-ISWP**(Φ) is in FPT:

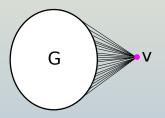
• By Ramsey, for sufficiently large graphs the answer is always "yes".

- **p-**EXT-ISWP(Φ) is W[1]-complete:
 - Reduction from **p-**CLIQUE.

• **p-ISWP**(Φ) is in FPT:

• By Ramsey, for sufficiently large graphs the answer is always "yes".

- **p-**EXT-ISWP(Φ) is W[1]-complete:
 - Reduction from **p-**CLIQUE.



Theorem (Alon, Yuster, Zwick, 1995)

For all $n, k \in \mathbb{N}$ there is a k-perfect family $\mathcal{F}_{n,k}$ of hash functions from [n] to [k] of cardinality $2^{O(k)} \cdot \log n$. Furthermore, given n and k, a representation of the family $\mathcal{F}_{n,k}$ can be computed in time $2^{O(k)} \cdot n \log n$.

Theorem (Alon, Yuster, Zwick, 1995)

For all $n, k \in \mathbb{N}$ there is a k-perfect family $\mathcal{F}_{n,k}$ of hash functions from [n] to [k] of cardinality $2^{O(k)} \cdot \log n$. Furthermore, given n and k, a representation of the family $\mathcal{F}_{n,k}$ can be computed in time $2^{O(k)} \cdot n \log n$.

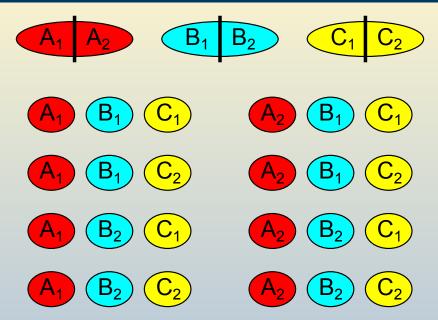
• IDEA: create many coloured instances, and enumerate the colourful copies in each (omitting duplicates)

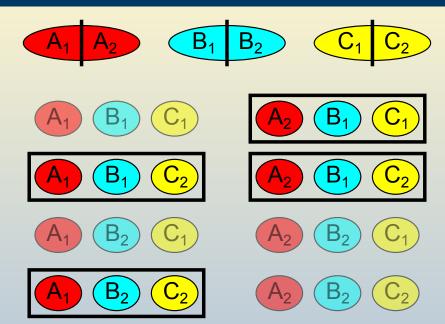
Theorem (Alon, Yuster, Zwick, 1995)

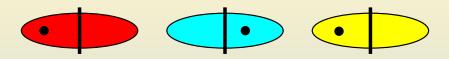
For all $n, k \in \mathbb{N}$ there is a k-perfect family $\mathcal{F}_{n,k}$ of hash functions from [n] to [k] of cardinality $2^{O(k)} \cdot \log n$. Furthermore, given n and k, a representation of the family $\mathcal{F}_{n,k}$ can be computed in time $2^{O(k)} \cdot n \log n$.

- IDEA: create many coloured instances, and enumerate the colourful copies in each (omitting duplicates)
- PROBLEM: although we're now looking for colourful witnesses, we still only have a decision oracle for the uncoloured version...



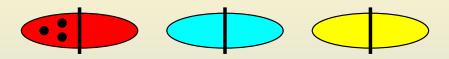






If a witness is colourful:

• It will always survive in exactly one combination

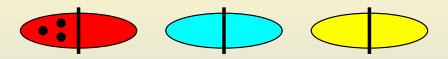


If a witness is colourful:

• It will always survive in exactly one combination

If a witness contains vertices of only $\ell < k$ colours:

- the probability it survives in at least one combination is at most $2^{-(k-\ell)}$
- if it survives in any combination, it will survive in exactly 2^{k−ℓ} combinations



If a witness is colourful:

• It will always survive in exactly one combination

If a witness contains vertices of only $\ell < k$ colours:

- the probability it survives in at least one combination is at most $2^{-(k-\ell)}$
- if it survives in any combination, it will survive in exactly 2^{k−ℓ} combinations

It can then be shown that, for **any** witness, the **expected** number of combinations in which it survives at each level is at most one.

Suppose that $ISWP(\Phi)$ is in FPT. Then there is a randomised algorithm which enumerates all witnesses for $ISWP(\Phi)$ in expected time $f(k) \cdot n^{O(1)} \cdot N$, where N is the total number of witnesses in the instance.

Suppose that $ISWP(\Phi)$ is in FPT. Then there is a randomised algorithm which enumerates all witnesses for $ISWP(\Phi)$ in expected time $f(k) \cdot n^{O(1)} \cdot N$, where N is the total number of witnesses in the instance.

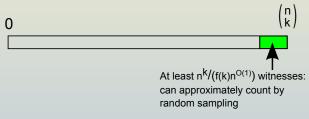
Corollary

Suppose that $ISWP(\Phi)$ is in FPT and that, for each k and any graph G on n vertices, the number of k-vertex (labelled) subgraphs of G that satisfy ϕ_k is at most $f(k)n^{O(1)}$. Then there exists an FPTRAS for **p**-ISWP(Φ).

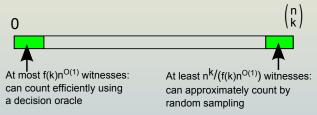
• Can the randomised enumeration process be derandomised?

- Can the randomised enumeration process be derandomised?
- How common are non-self-reducible subgraph problems?

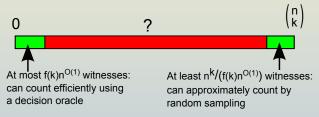
- Can the randomised enumeration process be derandomised?
- How common are non-self-reducible subgraph problems?
- Can we close the gap?



- Can the randomised enumeration process be derandomised?
- How common are non-self-reducible subgraph problems?
- Can we close the gap?



- Can the randomised enumeration process be derandomised?
- How common are non-self-reducible subgraph problems?
- Can we close the gap?



Thank you