
When can an FPT decision algorithm
be used to count?

January 2016
Kitty Meeks

Deciding, counting and enumerating

DECISION
Is there a witness?

2/19

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

2/19

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

2/19

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

2/19

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

2/19

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses

2/19

If we can decide, we can find a witness

3/19

If we can decide, we can find a witness

3/19

If we can decide, we can find a witness

3/19

If we can decide, we can find a witness

3/19

If we can decide, we can find a witness

3/19

If we can decide, we can find a witness

3/19

If we can decide, we can find a witness

3/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic inclusion oracle.

4/19

If we can count approximately, we can decide

... at least with high probability.

An FPRAS for a counting problem Π is a randomised approximation scheme
that takes an instance I of Π (with |I| = n), and numbers ε > 0 and
0 < δ < 1, and in time poly(n, 1/ε, log(1/δ)) outputs a rational number z
such that

P[(1− ε)Π(I) ≤ z ≤ (1 + ε)Π(I)] ≥ 1− δ.

Set ε < 1
2 , and we will distinguish between 0 and at least 1 with probability

at least 1− δ.

5/19

If we can count approximately, we can decide

... at least with high probability.

An FPRAS for a counting problem Π is a randomised approximation scheme
that takes an instance I of Π (with |I| = n), and numbers ε > 0 and
0 < δ < 1, and in time poly(n, 1/ε, log(1/δ)) outputs a rational number z
such that

P[(1− ε)Π(I) ≤ z ≤ (1 + ε)Π(I)] ≥ 1− δ.

Set ε < 1
2 , and we will distinguish between 0 and at least 1 with probability

at least 1− δ.

5/19

If we can count approximately, we can decide

... at least with high probability.

An FPRAS for a counting problem Π is a randomised approximation scheme
that takes an instance I of Π (with |I| = n), and numbers ε > 0 and
0 < δ < 1, and in time poly(n, 1/ε, log(1/δ)) outputs a rational number z
such that

P[(1− ε)Π(I) ≤ z ≤ (1 + ε)Π(I)] ≥ 1− δ.

Set ε < 1
2 , and we will distinguish between 0 and at least 1 with probability

at least 1− δ.

5/19

Uniform sampling is harder than finding a witness

GENCYCLE
Input: A directed graph G.
Output: A cycle selected uniformly, at random, from the set of all directed
cycles of G.

Theorem (Jerrum, Valiant, Vazirani, 1986)

Suppose there exists a polynomial time bounded Probabilistic Turing
Machine which solves the problem GENCYCLE. Then NP = RP.

6/19

Self-reducibility

A relation R ⊆ Σ∗ × Σ∗ is self-reducible if and only if:
there exists a polynomial time computable function g ∈ Σ∗ → N such
that xRy =⇒ |y| = g(x);
there exist polynomial time computable functions ψ ∈ Σ∗ × Σ∗ → Σ∗

and σ ∈ Σ∗ → N satisfying:
σ(x) = O(log |x|)
g(x) > 0 =⇒ σ(x) > 0 ∀x ∈ Σ∗

|ψ(x,w)| ≤ |x| ∀x,w ∈ Σ∗,

and such that, for all x ∈ Σ∗, y = y1 . . . yn ∈ Σ∗,

〈x, y1 . . . yn〉 ∈ R ⇐⇒ 〈ψ(x, y1 . . . yσ(x)), yσ(x)+1 . . . yn〉 ∈ R.

Theorem (Jerrum, Valiant, Vazirani, 1986)

For self-reducible problems, approximate counting and almost-uniform
sampling are polynomial-time inter-reducible.

7/19

Self-reducibility

A relation R ⊆ Σ∗ × Σ∗ is self-reducible if and only if:
there exists a polynomial time computable function g ∈ Σ∗ → N such
that xRy =⇒ |y| = g(x);
there exist polynomial time computable functions ψ ∈ Σ∗ × Σ∗ → Σ∗

and σ ∈ Σ∗ → N satisfying:
σ(x) = O(log |x|)
g(x) > 0 =⇒ σ(x) > 0 ∀x ∈ Σ∗

|ψ(x,w)| ≤ |x| ∀x,w ∈ Σ∗,

and such that, for all x ∈ Σ∗, y = y1 . . . yn ∈ Σ∗,

〈x, y1 . . . yn〉 ∈ R ⇐⇒ 〈ψ(x, y1 . . . yσ(x)), yσ(x)+1 . . . yn〉 ∈ R.

Theorem (Jerrum, Valiant, Vazirani, 1986)

For self-reducible problems, approximate counting and almost-uniform
sampling are polynomial-time inter-reducible.

7/19

Parameterised subgraph problems

Let Φ be a family (φ1, φ2, . . .) of functions, such that φk is a mapping from
labelled graphs on k-vertices to {0, 1}.

p-INDUCED SUBGRAPH WITH PROPERTY(Φ) (p-ISWP(Φ))
Input: A graph G = (V,E) and an integer k.
Parameter: k.
Question: Is there a tuple (v1, . . . , vk) ∈ Vk such that v1, . . . , vk are all
distinct and φk(G[v1, . . . , vk]) = 1?

8/19

Parameterised subgraph problems

Let Φ be a family (φ1, φ2, . . .) of functions, such that φk is a mapping from
labelled graphs on k-vertices to {0, 1}.

p-INDUCED SUBGRAPH WITH PROPERTY(Φ) (p-ISWP(Φ))
Input: A graph G = (V,E) and an integer k.
Parameter: k.
Question: Is there a tuple (v1, . . . , vk) ∈ Vk such that v1, . . . , vk are all
distinct and φk(G[v1, . . . , vk]) = 1?

p-MISWP(Φ)
Input: A graph G = (V,E), an integer k and a colouring f : V → {1, . . . , k}.
Parameter: k.
Question: Is there a tuple (v1, . . . , vk) ∈ Vk such that
{f (v1), . . . , f (vk)} = {1, . . . , k} and φk(G[v1, . . . , vk]) = 1?

8/19

Parameterised subgraph problems

Let Φ be a family (φ1, φ2, . . .) of functions, such that φk is a mapping from
labelled graphs on k-vertices to {0, 1}.

p-INDUCED SUBGRAPH WITH PROPERTY(Φ) (p-ISWP(Φ))
Input: A graph G = (V,E) and an integer k.
Parameter: k.
Question: Is there a tuple (v1, . . . , vk) ∈ Vk such that v1, . . . , vk are all
distinct and φk(G[v1, . . . , vk]) = 1?

p-EXT-ISWP(Φ)
Input: A graph G = (V,E), an integer k and subset U ⊂ V of cardinality at
most k.
Parameter: k.
Question: Is there a tuple (v1, . . . , vk) ∈ Vk such that v1, . . . , vk are all
distinct, U ⊆ {v1, . . . , vk}, and φk(G[v1, . . . , vk]) = 1?

8/19

Self-reducibility and equivalent notions

Proposition

Suppose that ISWP(Φ) belongs to FPT. Then the following three statements
are equivalent:

1 ISWP(Φ) is self-reducible;
2 MISWP(Φ) belongs to FPT;
3 EXT-ISWP(Φ) belongs to FPT.

9/19

A special case

Theorem (Arvind and Raman (2002); Jerrum and M. (2015); M.
(2016))

Suppose that Φ is a monotone property, and that p-ISWP(Φ) is
self-reducible. Then, if p-ISWP(Φ) belongs to FPT, there is an FPTRAS for
p-#ISWP(Φ).

10/19

Many witnesses

Proposition

Suppose that, for each k and any graph G on n vertices, the number of
k-vertex (labelled) subgraphs of G that satisfy φk is either

1 zero, or
2 at least

1
g(k)p(n)

(
n
k

)
.

Then there exists an FPTRAS for p-#ISWP(Φ).

11/19

Few witnesses

Theorem

Suppose that p-MISWP(Φ) belongs to FPT. Then we can enumerate (and
hence count) all witnesses in time f (k) · nO(1) · N, where N is the total
number of witnesses.

12/19

Few witnesses

Theorem

Suppose that p-MISWP(Φ) belongs to FPT. Then we can enumerate (and
hence count) all witnesses in time f (k) · nO(1) · N, where N is the total
number of witnesses.

...

12/19

Few witnesses

Theorem

Suppose that p-MISWP(Φ) belongs to FPT. Then we can enumerate (and
hence count) all witnesses in time f (k) · nO(1) · N, where N is the total
number of witnesses.

...

12/19

Few witnesses

Theorem

Suppose that p-MISWP(Φ) belongs to FPT. Then we can enumerate (and
hence count) all witnesses in time f (k) · nO(1) · N, where N is the total
number of witnesses.

...

... ...

12/19

Few witnesses

Theorem

Suppose that p-MISWP(Φ) belongs to FPT. Then we can enumerate (and
hence count) all witnesses in time f (k) · nO(1) · N, where N is the total
number of witnesses.

...

... ...

12/19

Not all subgraph problems are self-reducible

Let φk(H) = 1 if and only if H is either a clique or an independent set.
Then:

p-ISWP(Φ) is in FPT:
By Ramsey, for sufficiently large graphs the answer is always “yes”.

p-EXT-ISWP(Φ) is W[1]-complete:
Reduction from p-CLIQUE.

13/19

Not all subgraph problems are self-reducible

Let φk(H) = 1 if and only if H is either a clique or an independent set.
Then:

p-ISWP(Φ) is in FPT:
By Ramsey, for sufficiently large graphs the answer is always “yes”.

p-EXT-ISWP(Φ) is W[1]-complete:
Reduction from p-CLIQUE.

13/19

Not all subgraph problems are self-reducible

Let φk(H) = 1 if and only if H is either a clique or an independent set.
Then:

p-ISWP(Φ) is in FPT:
By Ramsey, for sufficiently large graphs the answer is always “yes”.

p-EXT-ISWP(Φ) is W[1]-complete:
Reduction from p-CLIQUE.

G

13/19

Not all subgraph problems are self-reducible

Let φk(H) = 1 if and only if H is either a clique or an independent set.
Then:

p-ISWP(Φ) is in FPT:
By Ramsey, for sufficiently large graphs the answer is always “yes”.

p-EXT-ISWP(Φ) is W[1]-complete:
Reduction from p-CLIQUE.

vG

13/19

Colour coding

Theorem (Alon, Yuster, Zwick, 1995)

For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n] to
[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision oracle for the uncoloured version...

14/19

Colour coding

Theorem (Alon, Yuster, Zwick, 1995)

For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n] to
[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision oracle for the uncoloured version...

14/19

Colour coding

Theorem (Alon, Yuster, Zwick, 1995)

For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n] to
[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision oracle for the uncoloured version...

14/19

A randomised approach

A B C

15/19

A randomised approach

C1 C2B1 B2A1 A2

15/19

A randomised approach

A1 B1 C1 A2

A1 B1 C2

A1 B2 C1

A1 B2 C2

B1 C1

B1 C2

B2 C1

B2 C2

A2

A2

A2

C1 C2B1 B2A1 A2

15/19

A randomised approach

A2

A1 B1 C2

A1 B2 C2

B1 C1

B1 C2A2

C1 C2B1 B2A1 A2

15/19

A randomised approach

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.

16/19

A randomised approach

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.

16/19

A randomised approach

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.

16/19

Few witnesses, revisited

Theorem

Suppose that ISWP(Φ) is in FPT. Then there is a randomised algorithm
which enumerates all witnesses for ISWP(Φ) in expected time
f (k) · nO(1) · N, where N is the total number of witnesses in the instance.

Corollary

Suppose that ISWP(Φ) is in FPT and that, for each k and any graph G on n
vertices, the number of k-vertex (labelled) subgraphs of G that satisfy φk is
at most f (k)nO(1). Then there exists an FPTRAS for p-ISWP(Φ).

17/19

Few witnesses, revisited

Theorem

Suppose that ISWP(Φ) is in FPT. Then there is a randomised algorithm
which enumerates all witnesses for ISWP(Φ) in expected time
f (k) · nO(1) · N, where N is the total number of witnesses in the instance.

Corollary

Suppose that ISWP(Φ) is in FPT and that, for each k and any graph G on n
vertices, the number of k-vertex (labelled) subgraphs of G that satisfy φk is
at most f (k)nO(1). Then there exists an FPTRAS for p-ISWP(Φ).

17/19

Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?

18/19

Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?

0
n
k((

18/19

Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?

At least nk/(f(k)nO(1)) witnesses:
can approximately count by
random sampling

0
n
k((

18/19

Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?

At most f(k)nO(1) witnesses:
can count efficiently using
a decision oracle

At least nk/(f(k)nO(1)) witnesses:
can approximately count by
random sampling

0
n
k((

18/19

Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?

At most f(k)nO(1) witnesses:
can count efficiently using
a decision oracle

At least nk/(f(k)nO(1)) witnesses:
can approximately count by
random sampling

?0
n
k((

18/19

Thank you

19/19

