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Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most
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queries to a deterministic inclusion oracle.
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If we can count approximately, we can decide

... at least with high probability.

An FPRAS for a counting problem Π is a randomised approximation scheme
that takes an instance I of Π (with |I| = n), and numbers ε > 0 and
0 < δ < 1, and in time poly(n, 1/ε, log(1/δ)) outputs a rational number z
such that

P[(1− ε)Π(I) ≤ z ≤ (1 + ε)Π(I)] ≥ 1− δ.

Set ε < 1
2 , and we will distinguish between 0 and at least 1 with probability

at least 1− δ.
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Uniform sampling is harder than finding a witness

GENCYCLE
Input: A directed graph G.
Output: A cycle selected uniformly, at random, from the set of all directed
cycles of G.

Theorem (Jerrum, Valiant, Vazirani, 1986)

Suppose there exists a polynomial time bounded Probabilistic Turing
Machine which solves the problem GENCYCLE. Then NP = RP.
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Self-reducibility

A relation R ⊆ Σ∗ × Σ∗ is self-reducible if and only if:
there exists a polynomial time computable function g ∈ Σ∗ → N such
that xRy =⇒ |y| = g(x);
there exist polynomial time computable functions ψ ∈ Σ∗ × Σ∗ → Σ∗

and σ ∈ Σ∗ → N satisfying:
σ(x) = O(log |x|)
g(x) > 0 =⇒ σ(x) > 0 ∀x ∈ Σ∗

|ψ(x,w)| ≤ |x| ∀x,w ∈ Σ∗,

and such that, for all x ∈ Σ∗, y = y1 . . . yn ∈ Σ∗,

〈x, y1 . . . yn〉 ∈ R ⇐⇒ 〈ψ(x, y1 . . . yσ(x)), yσ(x)+1 . . . yn〉 ∈ R.

Theorem (Jerrum, Valiant, Vazirani, 1986)

For self-reducible problems, approximate counting and almost-uniform
sampling are polynomial-time inter-reducible.
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Parameterised subgraph problems

Let Φ be a family (φ1, φ2, . . .) of functions, such that φk is a mapping from
labelled graphs on k-vertices to {0, 1}.

p-INDUCED SUBGRAPH WITH PROPERTY(Φ) (p-ISWP(Φ))
Input: A graph G = (V,E) and an integer k.
Parameter: k.
Question: Is there a tuple (v1, . . . , vk) ∈ Vk such that v1, . . . , vk are all
distinct and φk(G[v1, . . . , vk]) = 1?
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Self-reducibility and equivalent notions

Proposition

Suppose that ISWP(Φ) belongs to FPT. Then the following three statements
are equivalent:

1 ISWP(Φ) is self-reducible;
2 MISWP(Φ) belongs to FPT;
3 EXT-ISWP(Φ) belongs to FPT.
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A special case

Theorem (Arvind and Raman (2002); Jerrum and M. (2015); M.
(2016))

Suppose that Φ is a monotone property, and that p-ISWP(Φ) is
self-reducible. Then, if p-ISWP(Φ) belongs to FPT, there is an FPTRAS for
p-#ISWP(Φ).
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Many witnesses

Proposition

Suppose that, for each k and any graph G on n vertices, the number of
k-vertex (labelled) subgraphs of G that satisfy φk is either

1 zero, or
2 at least

1
g(k)p(n)

(
n
k

)
.

Then there exists an FPTRAS for p-#ISWP(Φ).

11/19



Few witnesses

Theorem

Suppose that p-MISWP(Φ) belongs to FPT. Then we can enumerate (and
hence count) all witnesses in time f (k) · nO(1) · N, where N is the total
number of witnesses.
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Not all subgraph problems are self-reducible

Let φk(H) = 1 if and only if H is either a clique or an independent set.
Then:

p-ISWP(Φ) is in FPT:
By Ramsey, for sufficiently large graphs the answer is always “yes”.

p-EXT-ISWP(Φ) is W[1]-complete:
Reduction from p-CLIQUE.
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Colour coding

Theorem (Alon, Yuster, Zwick, 1995)

For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n] to
[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision oracle for the uncoloured version...
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A randomised approach
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A randomised approach

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.
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Few witnesses, revisited

Theorem

Suppose that ISWP(Φ) is in FPT. Then there is a randomised algorithm
which enumerates all witnesses for ISWP(Φ) in expected time
f (k) · nO(1) · N, where N is the total number of witnesses in the instance.

Corollary

Suppose that ISWP(Φ) is in FPT and that, for each k and any graph G on n
vertices, the number of k-vertex (labelled) subgraphs of G that satisfy φk is
at most f (k)nO(1). Then there exists an FPTRAS for p-ISWP(Φ).
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Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?
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Thank you
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