Parameterised Subgraph Counting Problems

Kitty Meeks

University of Glasgow

Bergen, 13th May 2015

Joint work with Mark Jerrum (QMUL)

What is a counting problem?

Decision problems

Given a graph G, does G contain a Hamilton cycle?

Given a bipartite graph G, does G contain a perfect matching?

What is a counting problem?

Decision problems

Given a graph G, does G contain a Hamilton cycle?

Given a bipartite graph G, does G contain a perfect matching?

Counting problems

How many Hamilton cycles are there in the graph *G*?

How many perfect matchings are there in the bipartite graph *G*?

- Introduced by Flum and Grohe (2004)
- Measure running time in terms of a parameter as well as the total input size
- Examples:

- Introduced by Flum and Grohe (2004)
- Measure running time in terms of a parameter as well as the total input size
- Examples:
 - How many vertex-covers of size k are there in G?

- Introduced by Flum and Grohe (2004)
- Measure running time in terms of a parameter as well as the total input size
- Examples:
 - How many vertex-covers of size k are there in G?
 - How many k-cliques are there in G?

- Introduced by Flum and Grohe (2004)
- Measure running time in terms of a parameter as well as the total input size
- Examples:
 - How many vertex-covers of size k are there in G?
 - How many k-cliques are there in G?
 - Given a graph G of treewidth at most k, how many Hamilton cycles are there in G?

The theory of parameterised counting

Efficient algorithms: Fixed parameter tractable (FPT) Running time $f(k) \cdot n^{O(1)}$

The theory of parameterised counting

Efficient algorithms: Fixed parameter tractable (FPT) Running time $f(k) \cdot n^{O(1)}$

Intractable problems: #W[1]-hard

A #W[1]-complete problem: **p**-#CLIQUE.

#W[1]-completeness

■ To show the problem Π' (with parameter κ') is #W[1]-hard, we give a reduction from a problem Π (with parameter κ) to Π' .

#W[1]-completeness

- To show the problem Π' (with parameter κ') is #W[1]-hard, we give a reduction from a problem Π (with parameter κ) to Π' .
- An fpt Turing reduction from (Π, κ) to (Π', κ') is an algorithm A with an oracle to Π' such that
 - \blacksquare A computes Π,
 - 2 A is an fpt-algorithm with respect to κ , and
 - 3 there is a computable function $g: \mathbb{N} \to \mathbb{N}$ such that for all oracle queries " $\Pi'(y) = ?$ " posed by A on input x we have $\kappa'(y) \leq g(\kappa(x))$.

In this case we write $(\Pi, \kappa) \leq_T^{fpt} (\Pi', \kappa')$.

Subgraph Counting Model

Let Φ be a family $(\phi_1, \phi_2, ...)$ of functions, such that ϕ_k is a mapping from labelled graphs on k-vertices to $\{0, 1\}$.

Subgraph Counting Model

Let Φ be a family $(\phi_1, \phi_2, ...)$ of functions, such that ϕ_k is a mapping from labelled graphs on k-vertices to $\{0, 1\}$.

```
p-#INDUCED SUBGRAPH WITH PROPERTY(\Phi) (ISWP(\Phi))
Input: A graph G = (V, E) and an integer k.

Parameter: k.

Question: What is the cardinality of the set
\{(v_1, \ldots, v_k) \in V^k : v_1, \ldots, v_k \text{ all distinct,}
\text{and } \phi_k(G[v_1, \ldots, v_k]) = 1\}?
```


■ p-#SUB(*H*)

e.g. p-#Clique, p-#Path, p-#Cycle, p-#Matching

- p-#Sub(H)e.g. p-#Clique, p-#Path, p-#Cycle, p-#Matching
- p-#Connected Induced Subgraph

- p-#Sub(H)e.g. p-#Clique, p-#Path, p-#Cycle, p-#Matching
- p-#Connected Induced Subgraph
- p-#Planar Induced Subgraph

- p-#Sub(H)e.g. p-#Clique, p-#Path, p-#Cycle, p-#Matching
- p-#Connected Induced Subgraph
- p-#Planar Induced Subgraph
- p-#Even Induced Subgraph p-#Odd Induced Subgraph

Complexity Questions

- Is the corresponding decision problem in FPT?
- Is there a fixed parameter algorithm for p-#INDUCED SUBGRAPH WITH PROPERTY(Φ)?
- **Can we approximate p-#**INDUCED SUBGRAPH WITH PROPERTY(Φ) efficiently?

Approximation Algorithms

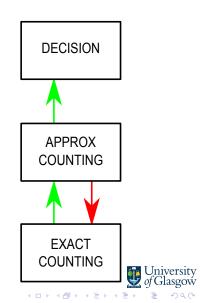
An FPTRAS for a parameterised counting problem Π with parameter k is a randomised approximation scheme that takes an instance I of Π (with |I|=n), and numbers $\epsilon>0$ and $0<\delta<1$, and in time $f(k)\cdot g(n,1/\epsilon,\log(1/\delta))$ (where f is any function, and g is a polynomial in n, $1/\epsilon$ and $\log(1/\delta)$) outputs a rational number z such that

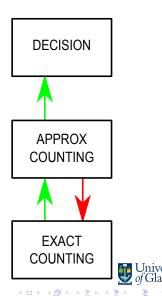
$$\mathbb{P}[(1-\epsilon)\Pi(I) \le z \le (1+\epsilon)\Pi(I)] \ge 1-\delta.$$

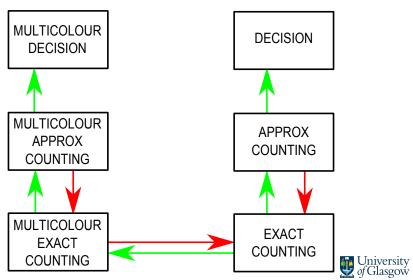
DECISION

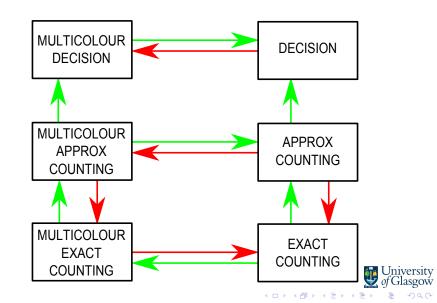
APPROX COUNTING

EXACT COUNTING









Monotone properties I: \mathbf{p} - $\#\mathrm{Sub}(\mathcal{H})$

Theorem (Arvind & Raman, 2002)

There is an FPTRAS for p- $\#SUB(\mathcal{H})$ whenever all graphs in \mathcal{H} have bounded treewidth.

Monotone properties I: \mathbf{p} - $\#\mathrm{Sub}(\mathcal{H})$

Theorem (Arvind & Raman, 2002)

There is an FPTRAS for p- $\#Sub(\mathcal{H})$ whenever all graphs in \mathcal{H} have bounded treewidth.

Theorem (Curticapean & Marx, 2014)

p-#Sub(\mathcal{H}) is in FPT if all graphs in \mathcal{H} have bounded vertex-cover number; otherwise **p-#**Sub(\mathcal{H}) is #W[1]-complete.

Monotone properties II: properties with more than one minimal element

Theorem (Jerrum & M.)

Let Φ be a monotone property, and suppose that there exists a constant t such that, for every $k \in \mathbb{N}$, all minimal graphs satisfying ϕ_k have treewidth at most t. Then there is an FPTRAS for \mathbf{p} -#INDUCED SUBGRAPH WITH PROPERTY(Φ).

Monotone properties II: properties with more than one minimal element

Theorem (M.)

Suppose that there is no constant t such that, for every $k \in \mathbb{N}$, all minimal graphs satisfying ϕ_k have treewidth at most t. Then **p-#**INDUCED SUBGRAPH WITH PROPERTY(Φ) is #W[1]-complete.

Monotone properties II: properties with more than one minimal element

Theorem (M.)

Suppose that there is no constant t such that, for every $k \in \mathbb{N}$, all minimal graphs satisfying ϕ_k have treewidth at most t. Then **p-#**INDUCED SUBGRAPH WITH PROPERTY(Φ) is #W[1]-complete.

Theorem (Jerrum & M.)

p-#Connected Induced Subgraph is #W[1]-complete.

Non-monotone properties

Theorem

Let Φ be a family (ϕ_1, ϕ_2, \ldots) of functions ϕ_k from labelled k-vertex graphs to $\{0,1\}$ that are not identically zero, such that the function mapping $k \mapsto \phi_k$ is computable. Suppose that

$$|\{|E(H)|: |V(H)| = k \text{ and } \Phi \text{ is true for } H\}| = o(k^2).$$

Then **p-#**Induced Subgraph With Property(Φ) is #W[1]-complete.

Non-monotone properties

Theorem

Let Φ be a family (ϕ_1, ϕ_2, \ldots) of functions ϕ_k from labelled k-vertex graphs to $\{0,1\}$ that are not identically zero, such that the function mapping $k \mapsto \phi_k$ is computable. Suppose that

$$|\{|E(H)|: |V(H)| = k \text{ and } \Phi \text{ is true for } H\}| = o(k^2).$$

Then **p-#**Induced Subgraph With Property(Φ) is #W[1]-complete.

E.g. **p-#**Planar Induced Subgraph, **p-#**Regular Induced Subgraph

Even induced subgraphs: FPT???

Theorem (Goldberg, Grohe, Jerrum & Thurley (2010); Lidl & Niederreiter (1983))

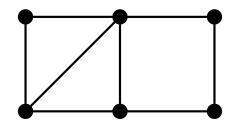
Given a graph G, there is a polynomial-time algorithm which computes the number of induced subgraphs of G having an even number of edges.

Even induced subgraphs: decision

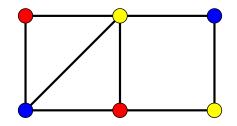
Let G be a graph on $n \ge 2^{2k}$ vertices. Then:

- If $k \equiv 0 \mod 4$ or $k \equiv 1 \mod 4$ then G contains a k-vertex subgraph with an even number of edges.
- If $k \equiv 2 \mod 4$ then G contains a k-vertex subgraph with an even number of edges *unless* G is a clique.
- If $k \equiv 3 \mod 4$ then G contains a k-vertex subgraph with an even number of edges *unless* G is either a clique or the disjoint union of two cliques.

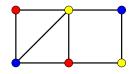
Even induced subgraphs: exact counting is #W[1]-complete



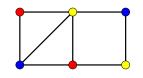
Even induced subgraphs: exact counting is #W[1]-complete



Even induced subgraphs: exact counting is #W[1]-complete



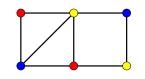
Even induced subgraphs: exact counting is #W[1]-complete



under	ving	structure

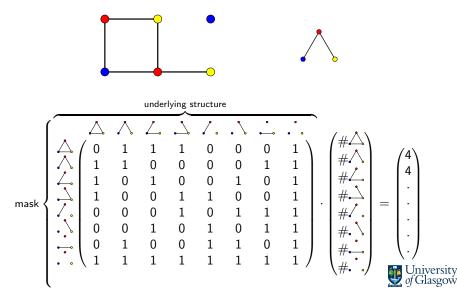
	anderlying structure								
	\bigcap	\triangle	\wedge	<u>_</u>		1.	.\	•	• •
	\triangle	(0	1	1	1	0	0	0	1
mask 〈	$ \wedge $	1	1	0	0	0	0	1	1
	<u> </u>	1	0	1	0	0	1	0	1
	$ \dot{\gamma} $	1	0	0	1	1	0	0	1
		0	0	0	1	0	1	1	1
	\	0	0	1	0	1	0	1	1
	•••	0	1	0	0	1	1	0	1
	• •	\ 1	1	1	1	1	1	1	1 /
	I								

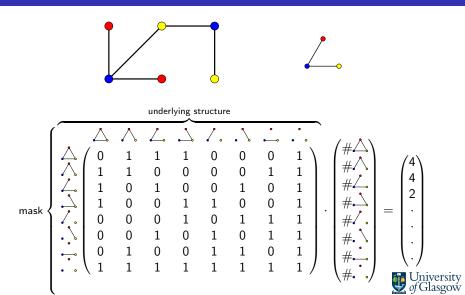
Even induced subgraphs: exact counting is #W[1]-complete

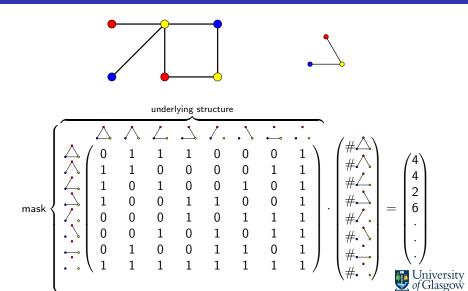


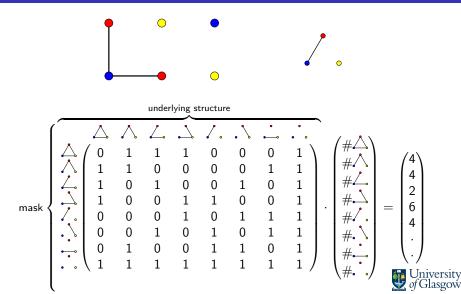
	underlying structure										
1		\triangle	\wedge	L		/.	.\	•	•••		
	\triangle	(0	1	1	1	0	0	0	1 \		
	\triangle	1	1	0	0	0	0	1	1		
-		1	0	1	0	0	1	0	1		
Į		1	0	0	1	1	0	0	1 .		
•	✓.	0	0	0	1	0	1	1	1		
-	. `	0	0	1	0	1	0	1	1		
	•••	0	1	0	0	1	1	0	1		
	• •	\ 1	1	1	1	1	1	1	1 /		

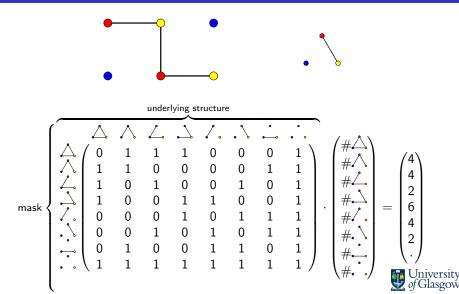
mask

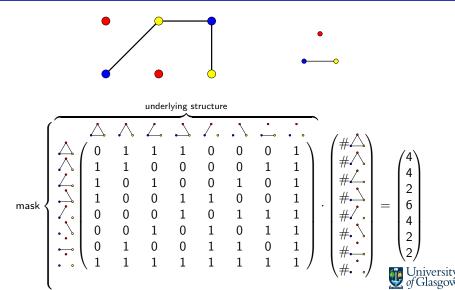












Lemma

Suppose that, for each k and any graph G on n vertices, the number of k-vertex (labelled) subgraphs of G that satisfy ϕ_k is either

- 1 zero, or
- 2 at least

$$\frac{1}{g(k)p(n)}\binom{n}{k}$$
,

where p is a polynomial and g is a computable function.

Then there exists an FPTRAS for \mathbf{p} -#ISWP(Φ).

Theorem

Let $k \ge 3$ and let G be a graph on $n \ge 2^{2k}$ vertices. Then either G contains no even k-vertex subgraph or else G contains at least

$$\frac{1}{2^{2k^2}k^2n^2}\binom{n}{k}$$

even k-vertex subgraphs.

Theorem (Erdős and Szekeres)

Let $k \in \mathbb{N}$. Then there exists $R(k) < 2^{2k}$ such that any graph on $n \ge R(k)$ vertices contains either a clique or independent set on k vertices.

Corollary

Let G = (V, E) be an n-vertex graph, where $n \ge 2^{2k}$. Then the number of k-vertex subsets $U \subset V$ such that U induces either a clique or independent set in G is at least

$$\frac{(2^{2k}-k)!}{(2^{2k})!}\frac{n!}{(n-k)!}.$$

Corollary

Let G = (V, E) be an n-vertex graph, where $n \ge 2^{2k}$. Then the number of k-vertex subsets $U \subset V$ such that U induces either a clique or independent set in G is at least

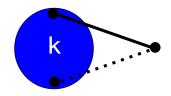
$$\frac{(2^{2k}-k)!}{(2^{2k})!}\frac{n!}{(n-k)!}.$$

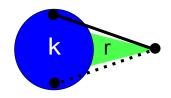
- If at least half of these "interesting" subsets are independent sets, we are done.
- Thus we may assume from now on that G contains at least $\frac{(2^{2k}-k)!}{2(2^{2k})!} \frac{n!}{(n-k)!} k$ -cliques.

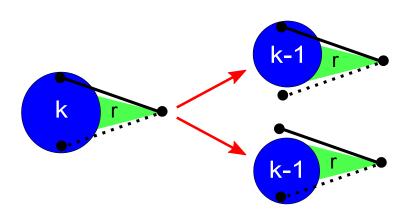
Definition

Let $A \subset \{1, ..., k\}$. We say that a k-clique H in G is A-extendible if there are subsets $U \subset V(H)$ and $W \subset V(G) \setminus V(H)$, with $|U| = |W| \in A$, such that $G[(H \setminus U) \cup W]$ has an even number of edges.

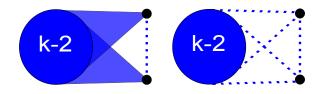
- If every k-clique in G is $\{1,2\}$ -extendible, we are done.
- Thus we may assume from now on that there is at least one k-clique H in G that is not $\{1,2\}$ -extendible.



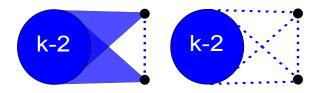




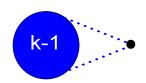
If $\binom{k}{2}$ is odd, the following have an even number of edges:

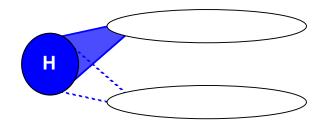


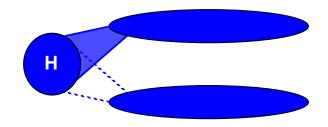
If $\binom{k}{2}$ is odd, the following have an even number of edges:

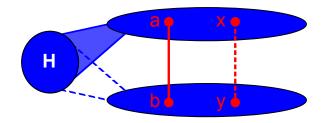


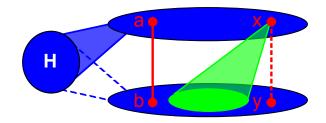
If $k \equiv 2 \mod 4$, this also has an even number of edges:

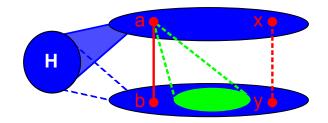


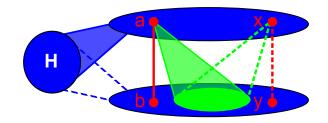












Open problems

Open problems

 Can similar results be obtained for properties that only hold for graphs H where

$$e(H) \equiv r \mod p$$
,

for
$$p > 2$$
?

Open problems

 Can similar results be obtained for properties that only hold for graphs H where

$$e(H) \equiv r \mod p$$
,

for
$$p > 2$$
?

What if we consider an arbitrary property that depends only on the number of edges?

THANK YOU

