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What is a counting problem?

Decision problems

Given a graph G , does G
contain a Hamilton cycle?

Given a bipartite graph G ,
does G contain a perfect
matching?
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What is a parameterised counting problem?

Introduced by Flum and Grohe (2004)

Measure running time in terms of a parameter as well as the
total input size

Examples:

How many vertex-covers of size k are there in G?
How many k-cliques are there in G?
Given a graph G of treewidth at most k , how many Hamilton
cycles are there in G?
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The theory of parameterised counting

Efficient algorithms: Fixed parameter tractable (FPT)
Running time f (k) · nO(1)

Intractable problems: #W[1]-hard
A #W[1]-complete problem: p-#Clique.
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#W[1]-completeness

To show the problem Π′ (with parameter κ′) is #W[1]-hard,
we give a reduction from a problem Π (with parameter κ) to
Π′.

An fpt Turing reduction from (Π, κ) to (Π′, κ′) is an algorithm
A with an oracle to Π′ such that

1 A computes Π,
2 A is an fpt-algorithm with respect to κ, and
3 there is a computable function g : N→ N such that for all

oracle queries “Π′(y) =?” posed by A on input x we have
κ′(y) ≤ g(κ(x)).

In this case we write (Π, κ) ≤fpt
T (Π′, κ′).
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Subgraph Counting Model

Let Φ be a family (φ1, φ2, . . .) of functions, such that φk is a
mapping from labelled graphs on k-vertices to {0, 1}.

p-#Induced Subgraph With Property(Φ)
Input: A graph G = (V ,E ) and an integer k .
Parameter: k.
Question: What is the cardinality of the set
{(v1, . . . , vk) ∈ V k : φk(G [v1, . . . , vk ]) = 1}?
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p-#Connected Induced Subgraph

p-#Clique + Independent Set

p-#Planar Induced Subgraph
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Complexity Questions

Is the corresponding decision problem in FPT?

Is there a fixed parameter algorithm for p-#Induced
Subgraph With Property(Φ)?

Can we approximate p-#Induced Subgraph With
Property(Φ) efficiently?



Approximation Algorithms

An FPTRAS for a parameterised counting problem Π with
parameter k is a randomised approximation scheme that takes an
instance I of Π (with |I | = n), and real numbers ε > 0 and
0 < δ < 1, and in time f (k) · g(n, 1/ε, log(1/δ)) (where f is any
function, and g is a polynomial in n, 1/ε and log(1/δ)) outputs a
rational number z such that

P[(1− ε)Π(I ) ≤ z ≤ (1 + ε)Π(I )] ≥ 1− δ.



Problems in our model

Decision
FPT?

FPTRAS?
Exact

counting
FPT?

p-#Clique N N N

p-#Path Y Y N
p-#Cycle

p-#Matching Y Y N

p-#Connected
Induced Sub-
graph

Y Y N

p-#Clique +
Independent
Set

Y Y N

Flum & Grohe ’04, Curticapean ’13, Arvind & Raman ’02, Jerrum
& M. ’13



The Colourful Version

Suppose the vertices of G are coloured with k colours.

We say a subset of the vertices (or a subgraph) is colourful if it
contains exactly one vertex of each colour.

We define another problem, p-#Multicolour Induced
Subgraph with Property(Φ), where we only count colourful
labelled subgraphs satisfying Φ.



Colouring can make problems easier

If the uncoloured version of a parameterised counting problem
is in FPT, the multicolour version must also be in FPT: use
inclusion-exclusion.

p-#Matching is #W[1]-complete.

p-#Multicolour Matching is in FPT:

There are k!

( k
2 )!2

k
2

ways to pair up the colours

For each way of pairing up the colours, the number of
matchings can easily be calculated:

a edges

b edges

c edges

abc matchings
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Colouring can make problems harder

p-Clique + Independent Set is in FPT:

By Ramsey, for sufficiently large graphs the answer is always
“yes”.

p-Multicolour Clique + Independent Set is
W[1]-complete:

Reduction from p-Multicolour Clique.

G
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Colouring can make problems harder

p-Clique + Independent Set is in FPT:

By Ramsey, for sufficiently large graphs the answer is always
“yes”.

p-Multicolour Clique + Independent Set is
W[1]-complete:

Reduction from p-Multicolour Clique.

vG



Hardness I: Properties that hold for few distinct edge
densities

Theorem

Let Φ be a family (φ1, φ2, . . .) of functions φk : {0, 1}(
k
2) → {0, 1}

that are not identically zero, such that the function mapping
k 7→ φk is computable. Suppose that

|{|E (H)| : |V (H)| = k and Φ is true for H}| = o(k2).

Then p-#Induced Subgraph With Property(Φ) is
#W[1]-complete.



Hardness I: Properties that hold for few distinct edge
densities

We prove hardness of p-#Multicolour Induced
Subgraph with Property(Φ) by means of a reduction
from p-#Multicolour Clique.
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Hardness I: Properties that hold for few distinct edge
densities

Lemma

Let G = (V ,E ) be an n-vertex graph, where n ≥ 2k . Then the
number of k-vertex subsets U ⊂ V such that U induces either a
clique or independent set in G is at least

(2k − k)!

(2k)!

n!

(n − k)!
.



Hardness II: Connected subgraphs

Theorem

p-#Connected Induced Subgraph is #W[1]-complete under
fpt Turing reductions.

Prove hardness of p-#Multicolour Connected
Induced Subgraph

Reduction from p-#Multicolour Independent Set
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Hardness II: Connected subgraphs

Associate each colourful set of vertices U with a partition P(U) of
{1, . . . , k}.

1
2 6

53

4

{{1,5,6},{2,3},{4}}



Hardness II: Connected subgraphs

For any partition Pi of {1, . . . , k}, construct GPi
.

Suppose Pi = {{1, 2}, {3}, {4}, {5, 6}}:

G 3 4 5 6

7 8 9 10

21

Number of colourful connected induced subgraphs
= Number of colourful subsets U ∈ V (G )(k) such that
P(U) ∧ Pi = {{1, . . . , k}}.
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Hardness II: Connected subgraphs

Let Ni be the number of colourful subsets U ∈ V (k) such that
P(U) = Pi .

Set

aij =

{
1 if Pi ∧ Pj = {{1, . . . , k}}
0 otherwise.

We can compute
a1,1 a1,2 · · · a1,Bk

a2,1 a2,2 · · · a2,Bk

...
...

. . .
...

aBk ,1 aBk ,2 · · · aBk ,Bk

 ·


N0

N1
...

NBk


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Approximation algorithm

Theorem

Let Φ = (φ1, φ2, . . .) be a monotone property, and suppose there
exists a positive integer t such that, for each φk , all edge-minimal
labelled k-vertex graphs (H, π) such that φk(H) = 1 satisfy
treewidth(H) ≤ t. Then there is an FPTRAS for p-#Induced
Subgraph With Property(Φ).



Approximation algorithm

Colour the vertices of G with k colours.

For each minimal element H, and each colouring of H with k
colours:

1
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1 1H G
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Open problems

Are there any non-trivial properties in this model that can be
counted exactly in FPT time?

Is there an FPTRAS for any monotone property where the
minimal elements with the property do not all have bounded
treewidth?

What is the complexity of p-#Induced Subgraph With
Property(Φ) when φk is true precisely on k-vertex induced
subgraphs which have an even number of edges?
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