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What is a counting problem?

Decision problems

Given a graph G, does G
contain a Hamilton cycle?

Given a bipartite graph G,

does G contain a perfect
matching?
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What is a counting problem?

Decision problems

Given a graph G, does G
contain a Hamilton cycle?

Given a bipartite graph G,
does G contain a perfect
matching?

Counting problems

How many Hamilton cycles are
there in the graph G?

How many perfect matchings

are there in the bipartite graph
G?
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What is a parameterised counting problem?

m Introduced by Flum and Grohe (2004)

m Measure running time in terms of a parameter as well as the
total input size
m Examples:
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What is a parameterised counting problem?

m Introduced by Flum and Grohe (2004)

m Measure running time in terms of a parameter as well as the
total input size

m Examples:

m How many vertex-covers of size k are there in G?
m How many k-cliques are there in G?
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What is a parameterised counting problem?

m Introduced by Flum and Grohe (2004)

m Measure running time in terms of a parameter as well as the
total input size
m Examples:
m How many vertex-covers of size k are there in G?
m How many k-cliques are there in G?
m Given a graph G of treewidth at most k, how many Hamilton
cycles are there in G?

Unlversuy
Glasgow



The theory of parameterised counting

Efficient algorithms: Fixed parameter tractable (FPT)
Running time f(k) - no()
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The theory of parameterised counting

Efficient algorithms: Fixed parameter tractable (FPT)
Running time f(k) - n®(%)

Intractable problems: #W]1]-hard
A #W][1]-complete problem: p-#CLIQUE.
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#W][1]-completeness

m To show the problem M’ (with parameter ') is #W/[1]-hard,

we give a reduction from a problem I (with parameter ) to
n.
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#W][1]-completeness

m To show the problem M’ (with parameter ') is #W/[1]-hard,
we give a reduction from a problem I (with parameter ) to
n.

m An fpt Turing reduction from (M, x) to (M’, x") is an algorithm
A with an oracle to " such that

A computes [T,

Ais an fpt-algorithm with respect to x, and

there is a computable function g : N — N such that for all
oracle queries "T1’(y) =7" posed by A on input x we have

K (y) < g(k(x)).
In this case we write (I, k) gé’it (', &".
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Subgraph Counting Model

Let ® be a family (¢1, ¢2,...) of functions, such that ¢y is a
mapping from labelled graphs on k-vertices to {0,1}.
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Subgraph Counting Model

Let ® be a family (¢1, ¢2,...) of functions, such that ¢y is a
mapping from labelled graphs on k-vertices to {0,1}.

p-#INDUCED SUBGRAPH WITH PROPERTY(®) (ISWP(®))
Input: A graph G = (V, E) and an integer k.

Parameter: k.

Question: What is the cardinality of the set

{(Vl,. R Vk) e vk ¢k(G[V1,. . Vk]) = 1}7
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Examples

m p-#SUB(H)
e.g. p-#CLIQUE, p-#PATH, p-#CYCLE, p-#MATCHING
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Examples

m p-#SUB(H)
e.g. p-#CLIQUE, p-#PATH, p-#CYCLE, p-#MATCHING

m p-#CONNECTED INDUCED SUBGRAPH

m p-#PLANAR INDUCED SUBGRAPH
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Examples

p-#SUB(H)
e.g. p-#CLIQUE, p-#PATH, p-#CYCLE, p-#MATCHING

p-#CONNECTED INDUCED SUBGRAPH

p-#PLANAR INDUCED SUBGRAPH

p-#EVEN INDUCED SUBGRAPH
p-#0ODD INDUCED SUBGRAPH
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Complexity Questions

m Is the corresponding decision problem in FPT?

m Is there a fixed parameter algorithm for p-#INDUCED
SUBGRAPH WITH PROPERTY(®)?

m Can we approximate p-#INDUCED SUBGRAPH WITH
PROPERTY(®) efficiently?
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Approximation Algorithms

An FPTRAS for a parameterised counting problem [T with
parameter k is a randomised approximation scheme that takes an
instance /| of 1 (with |/| = n), and real numbers ¢ > 0 and
0<0<1,andin time f(k)-g(n,1/elog(1/5)) (where f is any
function, and g is a polynomial in n, 1/e and log(1/0)) outputs a
rational number z such that

P[(1— e)N(1) <z < (1+)N(N] >1—6.
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Monotone properties |: p-#SUB(H)

Theorem (Arvind & Raman, 2002)

There is an FPTRAS for p-#SUB(H) whenever all graphs in H
have bounded treewidth.
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Monotone properties |: p-#SUB(H)

Theorem (Arvind & Raman, 2002)

There is an FPTRAS for p-#SUB(H) whenever all graphs in H
have bounded treewidth.

Theorem (Curticapean & Marx, 2014)

p-#SUB(H) is in FPT if all graphs in H have bounded
vertex-cover number; otherwise p-#SUB(H) is #W/[1]-complete.
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Monotone properties |l: properties with more than one

minimal element

Theorem (Jerrum & M.)

Let ® be a monotone property, and suppose that there exists a
constant t such that, for every k € N, all minimal graphs satisfying
¢k have treewidth at most t. Then there is an FPTRAS for
p-#INDUCED SUBGRAPH WITH PROPERTY(®).
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Monotone properties |l: properties with more than one
minimal element

Theorem (M.)

Suppose that there is no constant t such that, for every k € N, all
minimal graphs satisfying ¢y have treewidth at most t. Then
p-#INDUCED SUBGRAPH WITH PROPERTY(®) is
#WI[1]-complete.
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Monotone properties |l: properties with more than one
minimal element

Theorem (M.)

Suppose that there is no constant t such that, for every k € N, all
minimal graphs satisfying ¢y have treewidth at most t. Then
p-#INDUCED SUBGRAPH WITH PROPERTY(®) is
#WI[1]-complete.

Theorem (Jerrum & M.)

p-#CONNECTED INDUCED SUBGRAPH is #W/[1]-complete.
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Non-monotone properties

Let ® be a family (¢1, ¢2,...) of functions ¢y from labelled
k-vertex graphs to {0, 1} that are not identically zero, such that
the function mapping k — ¢y is computable. Suppose that

{|E(H)| : |V(H)| = k and ® is true for H}| = o(k?).

Then p-#INDUCED SUBGRAPH WITH PROPERTY (®) is
#W([1]-complete.
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Non-monotone properties

Theorem

Let ® be a family (¢1, ¢2,...) of functions ¢y from labelled
k-vertex graphs to {0, 1} that are not identically zero, such that
the function mapping k — ¢y is computable. Suppose that

{|E(H)| : |V(H)| = k and ® is true for H}| = o(k?).

Then p-#INDUCED SUBGRAPH WITH PROPERTY (®) is
#W([1]-complete.

E.g. p-#PLANAR INDUCED SUBGRAPH, p-#REGULAR
INDUCED SUBGRAPH

A Universit
of Glasgov}vf



Even induced subgraphs: FPT?777

Theorem (Goldberg, Grohe, Jerrum & Thurley (2010); Lidl &
Niederreiter (1983))

Given a graph G, there is a polynomial-time algorithm which
computes the number of induced subgraphs of G having an even
number of edges.
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Even induced subgraphs: decision

Let G be a graph on n > 22k vertices. Then:

mlf k=0 mod4or k=1 mod 4 then G contains a k-vertex
subgraph with an even number of edges.

m If k=2 mod 4 then G contains a k-vertex subgraph with an
even number of edges unless G is a clique.

m If k=3 mod 4 then G contains a k-vertex subgraph with an
even number of edges unless G is either a clique or the
disjoint union of two cliques.
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Even induced subgraphs: exact counting is

#W[1]-complete
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Even induced subgraphs: exact counting is

#W[1]-complete
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Even induced subgraphs: exact counting is

#W[1]-complete

®
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underlying structure
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Even induced subgraphs: an FPTRAS

Suppose that, for each k and any graph G on n vertices, the
number of k-vertex (labelled) subgraphs of G that satisfy ¢y is
either

zero, or
at least

)

where p is a polynomial and g is a computable function.
Then there exists an FPTRAS for p-#ISWP(®).
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Even induced subgraphs: an FPTRAS

Let k > 3 and let G be a graph on n > 22k vertices. Then either
G contains no even k-vertex subgraph or else G contains at least

1 n
22k* [2n2 \ k

even k-vertex subgraphs.
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Even induced subgraphs: an FPTRAS

Theorem (Erdés and Szekeres)

Let k € N. Then there exists R(k) < 22k such that any graph on
n > R(k) vertices contains either a clique or independent set on k
vertices.

Corollary

Let G = (V,E) be an n-vertex graph, where n > 22k, Then the
number of k-vertex subsets U C V such that U induces either a
clique or independent set in G is at least

(22 — k)l
(22 (n— k)"

uAuVCl'SitY
&7 of Glasgow



Corollary

Let G = (V,E) be an n-vertex graph, where n > 2%, Then the
number of k-vertex subsets U C V such that U induces either a
clique or independent set in G is at least

(22K — k)l !
(221 (n— k)"

m If at least half of these “interesting” subsets are independent
sets, we are done.
m Thus we may assume from now on that G contains at least

2k n )
%(n_jlk). k-cliques.
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Even induced subgraphs: an FPTRAS

Definition
Let AC {1,...,k}. We say that a k-clique H in G is A-extendible
if there are subsets U C V(H) and W C V(G)\ V(H), with

|U| = |W| € A, such that G[(H \ U) U W] has an even number of
edges.

m If every k-clique in G is {1, 2}-extendible, we are done.

m Thus we may assume from now on that there is at least one
k-clique H in G that is not {1,2}-extendible.
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Even induced subgraphs: an FPTRAS
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Open problems
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Open problems

m Can similar results be obtained for properties that only hold
for graphs H where

e(H)=r mod p,

for p > 27
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Open problems

m Can similar results be obtained for properties that only hold
for graphs H where

e(H)=r mod p,

for p > 27

m What if we consider an arbitrary property that depends only
on the number of edges?
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THANK YOU
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