
When can an efficient decision
algorithm be used to find and count
witnesses?

1st March 2016
Kitty Meeks

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges

2/23

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges

2/23

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges

2/23

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges

2/23

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges

2/23

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges

2/23

Deciding, counting and enumerating

DECISION
Is there a witness?

3/23

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

3/23

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

3/23

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

3/23

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

3/23

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses

3/23

The values of n and k

Consider the k-cycle problem:

if k = 3 then we are interested in triangles

if k = n then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity,
independently, with k << n.

We can consider all possible k-vertex subgraphs in time O(nk).

We would like to be able to answer questions about k-vertex subgraphs
in time f (k) · nO(1).

4/23

The values of n and k

Consider the k-cycle problem:

if k = 3 then we are interested in triangles

if k = n then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity,
independently, with k << n.

We can consider all possible k-vertex subgraphs in time O(nk).

We would like to be able to answer questions about k-vertex subgraphs
in time f (k) · nO(1).

4/23

The values of n and k

Consider the k-cycle problem:

if k = 3 then we are interested in triangles

if k = n then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity,
independently, with k << n.

We can consider all possible k-vertex subgraphs in time O(nk).

We would like to be able to answer questions about k-vertex subgraphs
in time f (k) · nO(1).

4/23

The values of n and k

Consider the k-cycle problem:

if k = 3 then we are interested in triangles

if k = n then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity,
independently, with k << n.

We can consider all possible k-vertex subgraphs in time O(nk).

We would like to be able to answer questions about k-vertex subgraphs
in time f (k) · nO(1).

4/23

If we can decide, we can find a witness

5/23

If we can decide, we can find a witness

5/23

If we can decide, we can find a witness

5/23

If we can decide, we can find a witness

5/23

If we can decide, we can find a witness

5/23

If we can decide, we can find a witness

5/23

If we can decide, we can find a witness

5/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

6/23

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses

7/23

If we can count approximately, we can decide

... at least with high probability.

An FPRAS for a counting problem Π is a randomised approximation scheme
that takes an instance I of Π (with |I| = n), and numbers ε > 0 and
0 < δ < 1, and in time poly(n, 1/ε, log(1/δ)) outputs a rational number z
such that

P[(1− ε)Π(I) ≤ z ≤ (1 + ε)Π(I)] ≥ 1− δ.

Set ε < 1
2 , and we will distinguish between 0 and at least 1 with probability

at least 1− δ.

8/23

If we can count approximately, we can decide

... at least with high probability.

An FPRAS for a counting problem Π is a randomised approximation scheme
that takes an instance I of Π (with |I| = n), and numbers ε > 0 and
0 < δ < 1, and in time poly(n, 1/ε, log(1/δ)) outputs a rational number z
such that

P[(1− ε)Π(I) ≤ z ≤ (1 + ε)Π(I)] ≥ 1− δ.

Set ε < 1
2 , and we will distinguish between 0 and at least 1 with probability

at least 1− δ.

8/23

If we can count approximately, we can decide

... at least with high probability.

An FPRAS for a counting problem Π is a randomised approximation scheme
that takes an instance I of Π (with |I| = n), and numbers ε > 0 and
0 < δ < 1, and in time poly(n, 1/ε, log(1/δ)) outputs a rational number z
such that

P[(1− ε)Π(I) ≤ z ≤ (1 + ε)Π(I)] ≥ 1− δ.

Set ε < 1
2 , and we will distinguish between 0 and at least 1 with probability

at least 1− δ.

8/23

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses

9/23

Uniform sampling is harder than finding a witness

GENCYCLE
Input: A directed graph G.
Output: A cycle selected uniformly, at random, from the set of all directed
cycles of G.

Theorem (Jerrum, Valiant, Vazirani, 1986)

Suppose there exists a polynomial time bounded Probabilistic Turing
Machine which solves the problem GENCYCLE. Then NP = RP.

10/23

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses

11/23

Self-reducibility

A relation R ⊆ Σ∗ × Σ∗ is self-reducible if and only if:
there exists a polynomial time computable function g ∈ Σ∗ → N such
that xRy =⇒ |y| = g(x);
there exist polynomial time computable functions ψ ∈ Σ∗ × Σ∗ → Σ∗

and σ ∈ Σ∗ → N satisfying:
σ(x) = O(log |x|)
g(x) > 0 =⇒ σ(x) > 0 ∀x ∈ Σ∗

|ψ(x,w)| ≤ |x| ∀x,w ∈ Σ∗,

and such that, for all x ∈ Σ∗, y = y1 . . . yn ∈ Σ∗,

〈x, y1 . . . yn〉 ∈ R ⇐⇒ 〈ψ(x, y1 . . . yσ(x)), yσ(x)+1 . . . yn〉 ∈ R.

Theorem (Jerrum, Valiant, Vazirani, 1986)

For self-reducible problems, approximate counting and almost-uniform
sampling are polynomial-time inter-reducible.

12/23

Self-reducibility

A relation R ⊆ Σ∗ × Σ∗ is self-reducible if and only if:
there exists a polynomial time computable function g ∈ Σ∗ → N such
that xRy =⇒ |y| = g(x);
there exist polynomial time computable functions ψ ∈ Σ∗ × Σ∗ → Σ∗

and σ ∈ Σ∗ → N satisfying:
σ(x) = O(log |x|)
g(x) > 0 =⇒ σ(x) > 0 ∀x ∈ Σ∗

|ψ(x,w)| ≤ |x| ∀x,w ∈ Σ∗,

and such that, for all x ∈ Σ∗, y = y1 . . . yn ∈ Σ∗,

〈x, y1 . . . yn〉 ∈ R ⇐⇒ 〈ψ(x, y1 . . . yσ(x)), yσ(x)+1 . . . yn〉 ∈ R.

Theorem (Jerrum, Valiant, Vazirani, 1986)

For self-reducible problems, approximate counting and almost-uniform
sampling are polynomial-time inter-reducible.

12/23

Self-reducibility and equivalent notions

Suppose that we can decide if there is at least one witness in time
f (k) · nO(1). Then the following statements are equivalent.

1 The problem is self-reducible.

2 We can decide whether there is at least one multicoloured witness in
time f (k) · nO(1).

3 We can decide whether there is at least one witness that is an extension
of a given partial solution in time f (k) · nO(1).

13/23

Self-reducibility and equivalent notions

Suppose that we can decide if there is at least one witness in time
f (k) · nO(1). Then the following statements are equivalent.

1 The problem is self-reducible.

2 We can decide whether there is at least one multicoloured witness in
time f (k) · nO(1).

3 We can decide whether there is at least one witness that is an extension
of a given partial solution in time f (k) · nO(1).

13/23

Self-reducibility and equivalent notions

Suppose that we can decide if there is at least one witness in time
f (k) · nO(1). Then the following statements are equivalent.

1 The problem is self-reducible.

2 We can decide whether there is at least one multicoloured witness in
time f (k) · nO(1).

3 We can decide whether there is at least one witness that is an extension
of a given partial solution in time f (k) · nO(1).

13/23

Self-reducibility and equivalent notions

Suppose that we can decide if there is at least one witness in time
f (k) · nO(1). Then the following statements are equivalent.

1 The problem is self-reducible.

2 We can decide whether there is at least one multicoloured witness in
time f (k) · nO(1).

3 We can decide whether there is at least one witness that is an extension
of a given partial solution in time f (k) · nO(1).

13/23

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses

14/23

A special case

Theorem (Arvind and Raman (2002); Jerrum and M. (2015); M.
(2016))

If there is an efficient (f (k) · nO(1)) algorithm for the decision version of a
self-reducible subgraph problem, and adding edges cannot decrease the
number of witnesses, then we can count witnesses approximately.

15/23

Many witnesses

Proposition

Suppose that, for each k and any graph G on n vertices, the number of
k-vertex witnesses is either

1 zero, or
2 at least

1
g(k)p(n)

(
n
k

)
.

Then there is an FPTRAS to count witnesses.

16/23

Few witnesses

Theorem

Suppose that we have an f (k) · nO(1) decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) · nO(1) · N, where N is the total number of witnesses.

17/23

Few witnesses

Theorem

Suppose that we have an f (k) · nO(1) decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) · nO(1) · N, where N is the total number of witnesses.

...

17/23

Few witnesses

Theorem

Suppose that we have an f (k) · nO(1) decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) · nO(1) · N, where N is the total number of witnesses.

...

17/23

Few witnesses

Theorem

Suppose that we have an f (k) · nO(1) decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) · nO(1) · N, where N is the total number of witnesses.

...

... ...

17/23

Few witnesses

Theorem

Suppose that we have an f (k) · nO(1) decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) · nO(1) · N, where N is the total number of witnesses.

...

... ...

17/23

Not all subgraph problems are self-reducible

Suppose that a k-vertex subset is a witness if it either induces a clique or an
independent set.

The decision problem can be solved in time f (k):
By Ramsey, for sufficiently large graphs the answer is always “yes”.

Unless the exponential time hypothesis fails, there is no f (k) · no(1)

algorithm for the extension version:
Reduction from p-CLIQUE.

18/23

Not all subgraph problems are self-reducible

Suppose that a k-vertex subset is a witness if it either induces a clique or an
independent set.

The decision problem can be solved in time f (k):
By Ramsey, for sufficiently large graphs the answer is always “yes”.

Unless the exponential time hypothesis fails, there is no f (k) · no(1)

algorithm for the extension version:
Reduction from p-CLIQUE.

18/23

Not all subgraph problems are self-reducible

Suppose that a k-vertex subset is a witness if it either induces a clique or an
independent set.

The decision problem can be solved in time f (k):
By Ramsey, for sufficiently large graphs the answer is always “yes”.

Unless the exponential time hypothesis fails, there is no f (k) · no(1)

algorithm for the extension version:
Reduction from p-CLIQUE.

G

18/23

Not all subgraph problems are self-reducible

Suppose that a k-vertex subset is a witness if it either induces a clique or an
independent set.

The decision problem can be solved in time f (k):
By Ramsey, for sufficiently large graphs the answer is always “yes”.

Unless the exponential time hypothesis fails, there is no f (k) · no(1)

algorithm for the extension version:
Reduction from p-CLIQUE.

vG

18/23

Colour coding

Theorem (Alon, Yuster, Zwick, 1995)

For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n] to
[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision algorithm for the uncoloured version...

19/23

Colour coding

Theorem (Alon, Yuster, Zwick, 1995)

For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n] to
[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision algorithm for the uncoloured version...

19/23

Colour coding

Theorem (Alon, Yuster, Zwick, 1995)

For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n] to
[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision algorithm for the uncoloured version...

19/23

A randomised approach

A B C

20/23

A randomised approach

C1 C2B1 B2A1 A2

20/23

A randomised approach

A1 B1 C1 A2

A1 B1 C2

A1 B2 C1

A1 B2 C2

B1 C1

B1 C2

B2 C1

B2 C2

A2

A2

A2

C1 C2B1 B2A1 A2

20/23

A randomised approach

A2

A1 B1 C2

A1 B2 C2

B1 C1

B1 C2A2

C1 C2B1 B2A1 A2

20/23

A randomised approach

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.

21/23

A randomised approach

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.

21/23

A randomised approach

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.

21/23

Few witnesses, revisited

Theorem

Suppose that we can decide if there is at least one witness in time
f (k) · nO(1). Then there is a randomised algorithm which enumerates all
witnesses in expected time f (k) · nO(1) · N, where N is the total number of
witnesses in the instance.

Corollary

Suppose that we can decide if there is at least one witness in time f (k) · nO(1)

and that, for each k and any graph G on n vertices, the total number of
witnesses is at most f (k)nO(1). Then there exists an FPTRAS to count
witnesses.

22/23

Few witnesses, revisited

Theorem

Suppose that we can decide if there is at least one witness in time
f (k) · nO(1). Then there is a randomised algorithm which enumerates all
witnesses in expected time f (k) · nO(1) · N, where N is the total number of
witnesses in the instance.

Corollary

Suppose that we can decide if there is at least one witness in time f (k) · nO(1)

and that, for each k and any graph G on n vertices, the total number of
witnesses is at most f (k)nO(1). Then there exists an FPTRAS to count
witnesses.

22/23

Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?

23/23

Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?

0
n
k((

23/23

Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?

At least nk/(f(k)nO(1)) witnesses:
can approximately count by
random sampling

0
n
k((

23/23

Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?

At most f(k)nO(1) witnesses:
can count efficiently using
a decision oracle

At least nk/(f(k)nO(1)) witnesses:
can approximately count by
random sampling

0
n
k((

23/23

Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?

At most f(k)nO(1) witnesses:
can count efficiently using
a decision oracle

At least nk/(f(k)nO(1)) witnesses:
can approximately count by
random sampling

?0
n
k((

23/23

Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?

At most f(k)nO(1) witnesses:
can count efficiently using
a decision oracle

At least nk/(f(k)nO(1)) witnesses:
can approximately count by
random sampling

?0
n
k((

Thank you

23/23

