
When can an efficient decision
algorithm be used to find and count
witnesses?

1st March 2016
Kitty Meeks



The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges
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Deciding, counting and enumerating

DECISION
Is there a witness?

3/23



Deciding, counting and enumerating

APPROX COUNTING
Approximately how 
many witnesses?

DECISION
Is there a witness?

3/23



Deciding, counting and enumerating

APPROX COUNTING
Approximately how 
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many 

witnesses?

3/23



Deciding, counting and enumerating

APPROX COUNTING
Approximately how 
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many 

witnesses?

EXTRACTION
Identify a single 

witness

3/23



Deciding, counting and enumerating

APPROX COUNTING
Approximately how 
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many 

witnesses?

EXTRACTION
Identify a single 

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

3/23



Deciding, counting and enumerating

APPROX COUNTING
Approximately how 
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many 

witnesses?

EXTRACTION
Identify a single 

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses

3/23



The values of n and k

Consider the k-cycle problem:

if k = 3 then we are interested in triangles

if k = n then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity,
independently, with k << n.

We can consider all possible k-vertex subgraphs in time O(nk).

We would like to be able to answer questions about k-vertex subgraphs
in time f (k) · nO(1).
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If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.
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If we can count approximately, we can decide

... at least with high probability.

An FPRAS for a counting problem Π is a randomised approximation scheme
that takes an instance I of Π (with |I| = n), and numbers ε > 0 and
0 < δ < 1, and in time poly(n, 1/ε, log(1/δ)) outputs a rational number z
such that

P[(1− ε)Π(I) ≤ z ≤ (1 + ε)Π(I)] ≥ 1− δ.

Set ε < 1
2 , and we will distinguish between 0 and at least 1 with probability

at least 1− δ.
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Uniform sampling is harder than finding a witness

GENCYCLE
Input: A directed graph G.
Output: A cycle selected uniformly, at random, from the set of all directed
cycles of G.

Theorem (Jerrum, Valiant, Vazirani, 1986)

Suppose there exists a polynomial time bounded Probabilistic Turing
Machine which solves the problem GENCYCLE. Then NP = RP.
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Self-reducibility

A relation R ⊆ Σ∗ × Σ∗ is self-reducible if and only if:
there exists a polynomial time computable function g ∈ Σ∗ → N such
that xRy =⇒ |y| = g(x);
there exist polynomial time computable functions ψ ∈ Σ∗ × Σ∗ → Σ∗

and σ ∈ Σ∗ → N satisfying:
σ(x) = O(log |x|)
g(x) > 0 =⇒ σ(x) > 0 ∀x ∈ Σ∗

|ψ(x,w)| ≤ |x| ∀x,w ∈ Σ∗,

and such that, for all x ∈ Σ∗, y = y1 . . . yn ∈ Σ∗,

〈x, y1 . . . yn〉 ∈ R ⇐⇒ 〈ψ(x, y1 . . . yσ(x)), yσ(x)+1 . . . yn〉 ∈ R.

Theorem (Jerrum, Valiant, Vazirani, 1986)

For self-reducible problems, approximate counting and almost-uniform
sampling are polynomial-time inter-reducible.
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Self-reducibility and equivalent notions

Suppose that we can decide if there is at least one witness in time
f (k) · nO(1). Then the following statements are equivalent.

1 The problem is self-reducible.

2 We can decide whether there is at least one multicoloured witness in
time f (k) · nO(1).

3 We can decide whether there is at least one witness that is an extension
of a given partial solution in time f (k) · nO(1).
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A special case

Theorem (Arvind and Raman (2002); Jerrum and M. (2015); M.
(2016))

If there is an efficient (f (k) · nO(1)) algorithm for the decision version of a
self-reducible subgraph problem, and adding edges cannot decrease the
number of witnesses, then we can count witnesses approximately.
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Many witnesses

Proposition

Suppose that, for each k and any graph G on n vertices, the number of
k-vertex witnesses is either

1 zero, or
2 at least

1
g(k)p(n)

(
n
k

)
.

Then there is an FPTRAS to count witnesses.
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Few witnesses

Theorem

Suppose that we have an f (k) · nO(1) decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) · nO(1) · N, where N is the total number of witnesses.
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Not all subgraph problems are self-reducible

Suppose that a k-vertex subset is a witness if it either induces a clique or an
independent set.

The decision problem can be solved in time f (k):
By Ramsey, for sufficiently large graphs the answer is always “yes”.

Unless the exponential time hypothesis fails, there is no f (k) · no(1)

algorithm for the extension version:
Reduction from p-CLIQUE.
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Colour coding

Theorem (Alon, Yuster, Zwick, 1995)

For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n] to
[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision algorithm for the uncoloured version...
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A randomised approach

A B C
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A randomised approach
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A randomised approach

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.
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Few witnesses, revisited

Theorem

Suppose that we can decide if there is at least one witness in time
f (k) · nO(1). Then there is a randomised algorithm which enumerates all
witnesses in expected time f (k) · nO(1) · N, where N is the total number of
witnesses in the instance.

Corollary

Suppose that we can decide if there is at least one witness in time f (k) · nO(1)

and that, for each k and any graph G on n vertices, the total number of
witnesses is at most f (k)nO(1). Then there exists an FPTRAS to count
witnesses.

22/23



Few witnesses, revisited

Theorem

Suppose that we can decide if there is at least one witness in time
f (k) · nO(1). Then there is a randomised algorithm which enumerates all
witnesses in expected time f (k) · nO(1) · N, where N is the total number of
witnesses in the instance.

Corollary

Suppose that we can decide if there is at least one witness in time f (k) · nO(1)

and that, for each k and any graph G on n vertices, the total number of
witnesses is at most f (k)nO(1). Then there exists an FPTRAS to count
witnesses.

22/23



Open problems

Can the randomised enumeration process be derandomised?

How common are non-self-reducible subgraph problems?

Can we close the gap?
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