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Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:
o Paths on k vertices
@ Cycles on k vertices
o Cliques on k vertices

@ Connected k-vertex induced
subgraphs

o k-vertex induced subgraphs with
an even number of edges
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4 7 Glasgo The values of n and k

Consider the k-cycle problem:
o if k = 3 then we are interested in triangles

o if k = n then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity,
independently, with k << n.

@ We can consider all possible k-vertex subgraphs in time O(n¥).

o We would like to be able to answer questions about k-vertex subgraphs
in time f (k) - n®(),

4/23
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Theorem (Bjorklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k (logz ;\l + 2)

queries to a deterministic decision algorithm.
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Theorem (Bjorklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most
n
2k (1og2 = 2)

queries to a deterministic decision algorithm.

Q000000000
Q000008000

6/23



If we can decide, we can find a withess

Theorem (Bjorklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most
n
2k (1og2 = 2)
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An FPRAS for a counting problem II is a randomised approximation scheme
that takes an instance 7 of II (with |I| = n), and numbers ¢ > 0 and
0 < 0 < 1, and in time poly(n, 1/¢,1og(1/§)) outputs a rational number z
such that
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An FPRAS for a counting problem II is a randomised approximation scheme
that takes an instance 7 of II (with |I| = n), and numbers ¢ > 0 and
0 < 0 < 1, and in time poly(n, 1/¢,1og(1/§)) outputs a rational number z
such that

P[(1 —e)II(J) <z < (1 +e)II(I)] > 1 — 6.

Set e < % and we will distinguish between 0 and at least 1 with probability
at least 1 — 4.
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5%812%?53{ Uniform sampling is harder than finding a witness

GENCYCLE

Input: A directed graph G.

Output: A cycle selected uniformly, at random, from the set of all directed
cycles of G.

Theorem (Jerrum, Valiant, Vazirani, 1986)

Suppose there exists a polynomial time bounded Probabilistic Turing
Machine which solves the problem GENCYCLE. Then NP = RP.
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4 7 Glasgo Self-reducibility

A relation R C ¥* x X* is self-reducible if and only if:
o there exists a polynomial time computable function g € ¥* — N such
that xRy —> |y| = g(x);
o there exist polynomial time computable functions ¢ € ¥* x ¥* — X*
and 0 € ¥* — N satisfying:
s o(x) = O(log|x)
0 g(x) >0 = o(x) >0 VxeX
o |[Y(x,w)| < |x| Vx,we X7,
and such that, forallx € X",y =y, ...y, € ¥*,

<x7y1--~yn> €ER — <¢(x7y1"-YJ(X))vya(x)+l~‘-yn> €R.
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A relation R C ¥* x X* is self-reducible if and only if:
o there exists a polynomial time computable function g € ¥* — N such
that xRy —> |y| = g(x);
o there exist polynomial time computable functions ¢ € ¥* x ¥* — 3*
and 0 € ¥* — N satisfying:
s o(x) = O(log|x)
0 g(x) >0 = o(x) >0 VxeX*
o [h(x,w)| < |x| Vx,we X,

and such that, forallx € ¥X*, y =y;...y, € X,
<X,Y1 .. ~yn> €ER — <¢(x7y1 .. -ycr(x))vya(x)—i-l o ~yn> €R.
Theorem (Jerrum, Valiant, Vazirani, 1986)

For self-reducible problems, approximate counting and almost-uniform
sampling are polynomial-time inter-reducible.
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q of Glasgow Self-reducibility and equivalent notions

Suppose that we can decide if there is at least one witness in time
f(k) - n°D_ Then the following statements are equivalent.

@ The problem is self-reducible.

@ We can decide whether there is at least one multicoloured witness in
time f (k) - n®(1).

© We can decide whether there is at least one witness that is an extension
of a given partial solution in time f (k) - n®(1).
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niversity

of Glasgow A special case

Theorem (Arvind and Raman (2002); Jerrum and M. (2015); M.
(2016))

If there is an efficient (f (k) - n°W) algorithm for the decision version of a
self-reducible subgraph problem, and adding edges cannot decrease the

number of witnesses, then we can count witnesses approximately.
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5%8122553/, Many witnesses

Suppose that, for each k and any graph G on n vertices, the number of
k-vertex witnesses is either

Q zero, or

Q at least

)

Then there is an FPTRAS to count witnesses.
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1r8f£§é§§/w Few witnesses

Suppose that we have an f (k) - n°W decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) - n°W . N, where N is the total number of witnesses.
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o oy Colour coding

Theorem (Alon, Yuster, Zwick, 1995)

For all n,k € N there is a k-perfect family JF, x of hash functions from [n] to
[k] of cardinality 2° (&) . log n. Furthermore, given n and k, a representation
of the family F, x can be computed in time 2°%) . nlogn.

o IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

o PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision algorithm for the uncoloured version...
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ey A randomised approach

If a witness is colourful:

o It will always survive in exactly one combination

If a witness contains vertices of only ¢ < k colours:
o the probability it survives in at least one combination is at most 2~ *—)

o if it survives in any combination, it will survive in exactly 2¢—¢
combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.
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Theorem
Suppose that we can decide if there is at least one witness in time

f(k) - n°Y). Then there is a randomised algorithm which enumerates all
witnesses in expected time f (k) - n°(!)

- N, where N is the total number of
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ﬁf%lﬁiﬁgii Few witnesses, revisited

Theorem

Suppose that we can decide if there is at least one witness in time
f(k) - n°D). Then there is a randomised algorithm which enumerates all

witnesses in expected time f (k) - n°") - N, where N is the total number of
witnesses in the instance.

Corollary

Suppose that we can decide if there is at least one witness in time f (k) - n°M
and that, for each k and any graph G on n vertices, the total number of
witnesses is at most f (k)n®). Then there exists an FPTRAS to count
witnesses.
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) ey Open problems

o Can the randomised enumeration process be derandomised?
o How common are non-self-reducible subgraph problems?

o Can we close the gap?

(%)
0 ? k

At most f(k)n®") witnesses: At least nK/(f(k)n®") witnesses:
can count efficiently using can approximately count by

a decision oracle random sampling

Thank you

23/23



