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Existing results concerning Free Flood It

Given a coloured graph G , Free Flood It is the problem of
determining the minimum number of moves required to flood G ,
when we are allowed to make moves anywhere in the graph.

Free Flood It is NP-hard when restricted to

n × n or 3× n grids,

trees,

series-parallel graphs.

Free Flood It can be solved in polynomial time when restricted
to

paths

cycles

co-comparability graphs

or

if only two colours are used
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Connecting pairs of vertices

G

u

v

Using this fact, we can compute in time O(|V |3|E |c2) the number
of moves required to connect any given pair of vertices in a graph
G = (V ,E ) coloured with c colours.
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Proof of spanning trees result: key step

A B

The number of moves required to flood T with colour d is at most
the sum of the numbers of moves required to flood A and B
respectively with colour d .
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In general, a graph has an exponential number of spanning
trees.

Besides, Free Flood It is still NP-hard even on trees.
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increase when we play in a larger graph.
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Application II: Connecting k points

Given a coloured graph G and a subset U of at most k vertices,
k-Linking Flood It is the problem of determining the number
of moves required to create a single monochromatic component
containing U.

Theorem

k-Linking Flood It can be solved in time O(|V |k+3|E |c22k) on
a graph G = (V ,E ) coloured with c colours.



Application II: Connecting k points

G

The number of moves required to connect U is equal to the
minimum, taken over all subtrees T of G that contain U, of the
number of moves required to flood T .
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Conclusions

We can analyse flood filling problems by considering only
trees.

This allows us to prove nice complexity results:

Free Flood It is solvable in polynomial time on graphs with
polynomially many connected subgraphs.
k-Linking Flood It is solvable in polynomial time on
arbitrary graphs (for fixed k).
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Is k-Linking Flood It fixed parameter tractable,
parameterised by k?

On what other minor-closed classes of trees is Free Flood
It solvable in polynomial time?

Extremal problems...

Does the Loch Ness Monster exist?
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Thank you


