Subgraph counting problems

23rd March 2016
Kitty Meeks

1

Given a graph on n vertices, we are interested in subgraphs with k vertices that have particular properties.

Given a graph on n vertices, we are interested in subgraphs with k vertices that have particular properties.

For example:

- Paths on k vertices

Given a graph on n vertices, we are interested in subgraphs with k vertices that have particular properties.

For example:

- Paths on k vertices
- Cycles on k vertices

Given a graph on n vertices, we are interested in subgraphs with k vertices that have particular properties.

For example:

- Paths on k vertices
- Cycles on k vertices
- Cliques on k vertices

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices that have particular properties.

For example:

- Paths on k vertices
- Cycles on k vertices
- Cliques on k vertices
- Connected k-vertex induced subgraphs

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices that have particular properties.

For example:

- Paths on k vertices
- Cycles on k vertices
- Cliques on k vertices
- Connected k-vertex induced subgraphs
- k-vertex induced subgraphs with an even number of edges

Deciding, counting and enumerating

DECISION

Is there a witness?

Deciding, counting and enumerating

DECISION

Is there a witness?

APPROX COUNTING

Approximately how many witnesses?

Deciding, counting and enumerating

DECISION

Is there a witness?

APPROX COUNTING

Approximately how many witnesses?

EXACT COUNTING

Exactly how many witnesses?

Deciding, counting and enumerating

DECISION

Is there a witness?

EXTRACTION

Identify a single witness

APPROX COUNTING

Approximately how many witnesses?

EXACT COUNTING

Exactly how many witnesses?

DECISION

Is there a witness?

EXTRACTION

Identify a single witness

UNIFORM SAMPLING

Pick a single witness uniformly at random

EXACT COUNTING

Exactly how many witnesses?

DECISION

Is there a witness?

EXTRACTION

Identify a single witness

UNIFORM SAMPLING

Pick a single witness uniformly at random

ENUMERATION

List all witnesses

Consider the k-cycle problem:

- if $k=3$ then we are interested in triangles
- if $k=n$ then we are interested in Hamilton Cycles

Consider the k-cycle problem:

- if $k=3$ then we are interested in triangles
- if $k=n$ then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity, independently, with $k \ll n$.

Consider the k-cycle problem:

- if $k=3$ then we are interested in triangles
- if $k=n$ then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity, independently, with $k \ll n$.

- We can consider all possible k-vertex subgraphs in time $O\left(n^{k}\right)$.

Consider the k-cycle problem:

- if $k=3$ then we are interested in triangles
- if $k=n$ then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity, independently, with $k \ll n$.

- We can consider all possible k-vertex subgraphs in time $O\left(n^{k}\right)$.
- We would like to be able to answer questions about k-vertex subgraphs in time $f(k) \cdot n^{O(1)}$; in this case the problem belongs to the parameterised complexity class FPT.

When are these questions hard?

Theorem (Based on Chen, Chor, Fellows, Huang, Juedes, Kanj and Xia, 2005)
 Assuming the Exponential Time Hypothesis, there is no algorithm to determine whether an n-vertex graph contains a clique on k vertices in time $f(k) \cdot n^{o(1)}$, for any function f.

DECISION

Is there a witness?

EXTRACTION

Identify a single witness

UNIFORM SAMPLING

Pick a single witness uniformly at random

ENUMERATION

List all witnesses

0000000000 $0000000 \bullet \bullet$

Theorem (Björklund, Kaski and Kowalik, 2014)
There exists an algorithm that extracts a witness using at most

$$
2 k\left(\log _{2} \frac{n}{k}+2\right)
$$

queries to a deterministic decision algorithm.

DECISION

Is there a witness?

EXTRACTION

Identify a single witness

UNIFORM SAMPLING

Pick a single witness uniformly at random

ENUMERATION

List all witnesses

Exact counting is harder than decision

Question: Does G contain a connected induced subgraph on k vertices?
We can find the maximum component size, and hence answer this question, in $O(|V|+|E|)$ using a breadth first search.

Exact counting is harder than decision

Question: Does G contain a connected induced subgraph on k vertices?
We can find the maximum component size, and hence answer this question, in $O(|V|+|E|)$ using a breadth first search.

Theorem (Jerrum \& M., 2015)

It is \#W[1]-complete to count exactly the number of k-vertex connected induced subgraphs in a given input graph.

Exact counting is harder than decision

Question: Does G contain a connected induced subgraph on k vertices?
We can find the maximum component size, and hence answer this question, in $O(|V|+|E|)$ using a breadth first search.

Theorem (Jerrum \& M., 2015)

It is \#W[1]-complete to count exactly the number of k-vertex connected induced subgraphs in a given input graph.

Theorem (Jerrum \& M., 2015)

There is an efficient algorithm to count approximately the number of k-vertex connected induced subgraphs in a given input graph.

Exact counting is harder than decision

Question: Does G contain a connected induced subgraph on k vertices?
We can find the maximum component size, and hence answer this question, in $O(|V|+|E|)$ using a breadth first search.

Theorem (Jerrum \& M., 2015)

It is \#W[1]-complete to count exactly the number of k-vertex connected induced subgraphs in a given input graph.

Theorem (Jerrum \& M., 2015)

There is an efficient algorithm to count approximately the number of k-vertex connected induced subgraphs in a given input graph.

Many other examples: k-vertex paths, k-vertex cycles, k-edge matchings, k-vertex regular induced subgraphs...

DECISION

Is there a witness?

EXTRACTION

Identify a single witness

UNIFORM SAMPLING

Pick a single witness uniformly at random

ENUMERATION

List all witnesses

If one witness implies many witnesses...

Proposition

Suppose that, for each k and any graph G on n vertices, the number of k-vertex subgraphs of G that have our property is either
(1) zero, or
(2) at least

$$
\frac{1}{g(k) p(n)}\binom{n}{k}
$$

Then there is an efficient algorithm to count witnesses approximately.

If one witness implies many witnesses...

Proposition

Suppose that, for each k and any graph G on n vertices, the number of k-vertex subgraphs of G that have our property is either
(1) zero, or
(2) at least

$$
\frac{1}{g(k) p(n)}\binom{n}{k}
$$

Then there is an efficient algorithm to count witnesses approximately.

Examples: k-vertex regular induced subgraphs; k-vertex induced subgraphs with an even number of edges.

If one witness implies many witnesses...

Proposition

Suppose that, for each k and any graph G on n vertices, the number of k-vertex subgraphs of G that have our property is either
(1) zero, or
(2) at least

$$
\frac{1}{g(k) p(n)}\binom{n}{k}
$$

Then there is an efficient algorithm to count witnesses approximately.

Examples: k-vertex regular induced subgraphs; k-vertex induced subgraphs with an even number of edges.

These problems are still hard for exact counting.

If there are only $f(k) \cdot n^{O(1)}$ witnesses...

Theorem

Suppose that we have an $f(k) \cdot n^{O(1)}$ decision algorithm for the multicolour version of the problem. Then we can enumerate (and hence count) all witnesses in time $g(k) \cdot n^{O(1)} \cdot N$, where N is the total number of witnesses.

If there are only $f(k) \cdot n^{O(1)}$ witnesses...

Theorem

Suppose that we have an $f(k) \cdot n^{O(1)}$ decision algorithm for the multicolour version of the problem. Then we can enumerate (and hence count) all witnesses in time $g(k) \cdot n^{O(1)} \cdot N$, where N is the total number of witnesses.

If there are only $f(k) \cdot n^{o(1)}$ witnesses...

Theorem

Suppose that we have an $f(k) \cdot n^{O(1)}$ decision algorithm for the multicolour version of the problem. Then we can enumerate (and hence count) all witnesses in time $g(k) \cdot n^{O(1)} \cdot N$, where N is the total number of witnesses.

If there are only $f(k) \cdot n^{O(1)}$ witnesses...

Theorem

Suppose that we have an $f(k) \cdot n^{O(1)}$ decision algorithm for the multicolour version of the problem. Then we can enumerate (and hence count) all witnesses in time $g(k) \cdot n^{O(1)} \cdot N$, where N is the total number of witnesses.

If there are only $f(k) \cdot n^{O(1)}$ witnesses...

Theorem

Suppose that we have an $f(k) \cdot n^{O(1)}$ decision algorithm for the multicolour version of the problem. Then we can enumerate (and hence count) all witnesses in time $g(k) \cdot n^{O(1)} \cdot N$, where N is the total number of witnesses.

A randomised approach for the general case

- IDEA: create many coloured instances, and enumerate the colourful copies in each (omitting duplicates)

A randomised approach for the general case

- IDEA: create many coloured instances, and enumerate the colourful copies in each (omitting duplicates)
- PROBLEM: although we're now looking for colourful witnesses, we still only have a decision algorithm for the uncoloured version...

A randomised approach for the general case

A randomised approach

If a witness is colourful:

- It will always survive in exactly one combination

If a witness is colourful:

- It will always survive in exactly one combination

If a witness contains vertices of only $\ell<k$ colours:

- the probability it survives in at least one combination is at most $2^{-(k-\ell)}$
- if it survives in any combination, it will survive in exactly $2^{k-\ell}$ combinations

A randomised approach

If a witness is colourful:

- It will always survive in exactly one combination

If a witness contains vertices of only $\ell<k$ colours:

- the probability it survives in at least one combination is at most $2^{-(k-\ell)}$
- if it survives in any combination, it will survive in exactly $2^{k-\ell}$ combinations

It can then be shown that, for any witness, the expected number of combinations in which it survives at each level is at most one.

Few witnesses, revisited

Theorem

Suppose that we can decide if there is at least one witness in time $f(k) \cdot n^{O(1)}$. Then there is a randomised algorithm which enumerates all witnesses in expected time $f(k) \cdot n^{O(1)} \cdot N$, where N is the total number of witnesses in the instance.

Few witnesses, revisited

Theorem

Suppose that we can decide if there is at least one witness in time $f(k) \cdot n^{O(1)}$. Then there is a randomised algorithm which enumerates all witnesses in expected time $f(k) \cdot n^{O(1)} \cdot N$, where N is the total number of witnesses in the instance.

Corollary

Suppose that we can decide if there is at least one witness in time $f(k) \cdot n^{O(1)}$ and that, for each k and any graph G on n vertices, the total number of witnesses is at most $f(k) n^{O(1)}$. Then there is an efficient algorithm to count witnesses approximately.

Open problems

- Can the randomised enumeration process be derandomised?
- Can the randomised enumeration process be derandomised?
- Can we close the gap?

- Can the randomised enumeration process be derandomised?
- Can we close the gap?

0

At least $\mathrm{n}^{\mathrm{k}} /\left(\mathrm{f}(\mathrm{k}) \mathrm{n}^{\mathrm{O}}{ }^{(1)}\right)$ witnesses:
can approximately count by
random sampling

- Can the randomised enumeration process be derandomised?
- Can we close the gap?

- Can the randomised enumeration process be derandomised?
- Can we close the gap?

- Can the randomised enumeration process be derandomised?
- Can we close the gap?

Thank you

