

Subgraph counting problems

23rd March 2016 Kitty Meeks

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices that have particular properties.

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices that have particular properties.

For example:

• Paths on k vertices

- Paths on k vertices
- Cycles on k vertices

- Paths on k vertices
- Cycles on k vertices
- Cliques on k vertices

- Paths on k vertices
- Cycles on k vertices
- Cliques on k vertices
- Connected *k*-vertex induced subgraphs

- Paths on k vertices
- Cycles on k vertices
- Cliques on k vertices
- Connected *k*-vertex induced subgraphs
- *k*-vertex induced subgraphs with an even number of edges

DECISION

Is there a witness?

DECISION

Is there a witness?

APPROX COUNTING Approximately how many witnesses?

DECISION

Is there a witness?

APPROX COUNTING Approximately how many witnesses?

EXACT COUNTING

Exactly how many witnesses?

Deciding, counting and enumerating

DECISION Is there a witness?

EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses?

EXACT COUNTING

Exactly how many witnesses?

DECISION Is there a witness?

Jniversity

of Glasgow

EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses? UNIFORM SAMPLING Pick a single witness uniformly at random

EXACT COUNTING Exactly how many witnesses?

Deciding, counting and enumerating

University of Glasgow

DECISION Is there a witness? EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses? UNIFORM SAMPLING Pick a single witness uniformly at random

EXACT COUNTING

Exactly how many witnesses?

ENUMERATION

List all witnesses

- if k = 3 then we are interested in triangles
- if k = n then we are interested in Hamilton Cycles

- if k = 3 then we are interested in triangles
- if k = n then we are interested in Hamilton Cycles

We are interested in what happens as *n* and *k* both tend to infinity, independently, with $k \ll n$.

- if k = 3 then we are interested in triangles
- if k = n then we are interested in Hamilton Cycles

We are interested in what happens as *n* and *k* both tend to infinity, independently, with $k \ll n$.

• We can consider all possible k-vertex subgraphs in time $O(n^k)$.

- if k = 3 then we are interested in triangles
- if k = n then we are interested in Hamilton Cycles

We are interested in what happens as *n* and *k* both tend to infinity, independently, with $k \ll n$.

- We can consider all possible k-vertex subgraphs in time $O(n^k)$.
- We would like to be able to answer questions about *k*-vertex subgraphs in time $f(k) \cdot n^{O(1)}$; in this case the problem belongs to the parameterised complexity class FPT.

Theorem (Based on Chen, Chor, Fellows, Huang, Juedes, Kanj and Xia, 2005)

Assuming the Exponential Time Hypothesis, there is no algorithm to determine whether an n-vertex graph contains a clique on k vertices in time $f(k) \cdot n^{o(1)}$, for any function f.

Deciding, counting and enumerating

University of Glasgow

DECISION Is there a witness?

EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses? UNIFORM SAMPLING Pick a single witness uniformly at random

EXACT COUNTING

Exactly how many witnesses?

ENUMERATION

List all witnesses

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic decision algorithm.

Deciding, counting and enumerating

University of Glasgow

DECISION Is there a witness?

EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses? UNIFORM SAMPLING Pick a single witness uniformly at random

EXACT COUNTING

Exactly how many witnesses?

ENUMERATION

List all witnesses

We can find the maximum component size, and hence answer this question, in O(|V| + |E|) using a breadth first search.

We can find the maximum component size, and hence answer this question, in O(|V| + |E|) using a breadth first search.

Theorem (Jerrum & M., 2015)

It is #W[1]-complete to count exactly the number of k-vertex connected induced subgraphs in a given input graph.

We can find the maximum component size, and hence answer this question, in O(|V| + |E|) using a breadth first search.

Theorem (Jerrum & M., 2015)

It is #W[1]-complete to count exactly the number of k-vertex connected induced subgraphs in a given input graph.

Theorem (Jerrum & M., 2015)

There is an efficient algorithm to count approximately the number of k-vertex connected induced subgraphs in a given input graph.

We can find the maximum component size, and hence answer this question, in O(|V| + |E|) using a breadth first search.

Theorem (Jerrum & M., 2015)

It is #W[1]-complete to count exactly the number of k-vertex connected induced subgraphs in a given input graph.

Theorem (Jerrum & M., 2015)

There is an efficient algorithm to count approximately the number of k-vertex connected induced subgraphs in a given input graph.

Many other examples: *k*-vertex paths, *k*-vertex cycles, *k*-edge matchings, *k*-vertex regular induced subgraphs...

Deciding, counting and enumerating

Jniversity

of Glasgow

DECISION Is there a witness? EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses? UNIFORM SAMPLING Pick a single witness uniformly at random

EXACT COUNTING

Exactly how many witnesses?

ENUMERATION

List all witnesses

Proposition

Suppose that, for each k and any graph G on n vertices, the number of k-vertex subgraphs of G that have our property is either

zero, or
at least

$$\frac{1}{g(k)p(n)}\binom{n}{k}.$$

Then there is an efficient algorithm to count witnesses approximately.

Proposition

Suppose that, for each k and any graph G on n vertices, the number of k-vertex subgraphs of G that have our property is either

zero, or
at least

$$\frac{1}{g(k)p(n)}\binom{n}{k}.$$

Then there is an efficient algorithm to count witnesses approximately.

Examples: *k*-vertex regular induced subgraphs; *k*-vertex induced subgraphs with an even number of edges.

Proposition

Suppose that, for each k and any graph G on n vertices, the number of k-vertex subgraphs of G that have our property is either

zero, or
at least

$$\frac{1}{g(k)p(n)}\binom{n}{k}.$$

Then there is an efficient algorithm to count witnesses approximately.

Examples: *k*-vertex regular induced subgraphs; *k*-vertex induced subgraphs with an even number of edges.

These problems are still hard for exact counting.

• IDEA: create many coloured instances, and enumerate the colourful copies in each (omitting duplicates)

- IDEA: create many coloured instances, and enumerate the colourful copies in each (omitting duplicates)
- PROBLEM: although we're now looking for colourful witnesses, we still only have a decision algorithm for the uncoloured version...

A randomised approach

If a witness is colourful:

• It will always survive in exactly one combination

A randomised approach

If a witness is colourful:

• It will always survive in exactly one combination

If a witness contains vertices of only $\ell < k$ colours:

- the probability it survives in at least one combination is at most $2^{-(k-\ell)}$
- if it survives in any combination, it will survive in exactly 2^{k−ℓ} combinations

A randomised approach

If a witness is colourful:

• It will always survive in exactly one combination

If a witness contains vertices of only $\ell < k$ colours:

- the probability it survives in at least one combination is at most $2^{-(k-\ell)}$
- if it survives in any combination, it will survive in exactly 2^{k−ℓ} combinations

It can then be shown that, for **any** witness, the **expected** number of combinations in which it survives at each level is at most one.

Suppose that we can decide if there is at least one witness in time $f(k) \cdot n^{O(1)}$. Then there is a randomised algorithm which enumerates all witnesses in expected time $f(k) \cdot n^{O(1)} \cdot N$, where N is the total number of witnesses in the instance.

Suppose that we can decide if there is at least one witness in time $f(k) \cdot n^{O(1)}$. Then there is a randomised algorithm which enumerates all witnesses in expected time $f(k) \cdot n^{O(1)} \cdot N$, where N is the total number of witnesses in the instance.

Corollary

Suppose that we can decide if there is at least one witness in time $f(k) \cdot n^{O(1)}$ and that, for each k and any graph G on n vertices, the total number of witnesses is at most $f(k)n^{O(1)}$. Then there is an efficient algorithm to count witnesses approximately.

• Can the randomised enumeration process be derandomised?

- Can the randomised enumeration process be derandomised?
- Can we close the gap?

- Can the randomised enumeration process be derandomised?
- Can we close the gap?

- Can the randomised enumeration process be derandomised?
- Can we close the gap?

- Can the randomised enumeration process be derandomised?
- Can we close the gap?

- Can the randomised enumeration process be derandomised?
- Can we close the gap?

Thank you