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The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges
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Deciding, counting and enumerating

DECISION
Is there a witness?
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The values of n and k

Consider the k-cycle problem:

if k = 3 then we are interested in triangles

if k = n then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity,
independently, with k << n.

We can consider all possible k-vertex subgraphs in time O(nk).

We would like to be able to answer questions about k-vertex subgraphs
in time f (k) · nO(1); in this case the problem belongs to the
parameterised complexity class FPT.
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When are these questions hard?

Theorem (Based on Chen, Chor, Fellows, Huang, Juedes, Kanj and
Xia, 2005)

Assuming the Exponential Time Hypothesis, there is no algorithm to
determine whether an n-vertex graph contains a clique on k vertices in time
f (k) · no(1), for any function f .
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If we can decide, we can find a witness
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If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k
+ 2

)
queries to a deterministic decision algorithm.
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Exact counting is harder than decision

Question: Does G contain a connected induced subgraph on k vertices?

We can find the maximum component size, and hence answer this question,
in O(|V|+ |E|) using a breadth first search.

Theorem (Jerrum & M., 2015)

It is #W[1]-complete to count exactly the number of k-vertex connected
induced subgraphs in a given input graph.

Theorem (Jerrum & M., 2015)

There is an efficient algorithm to count approximately the number of k-vertex
connected induced subgraphs in a given input graph.

Many other examples: k-vertex paths, k-vertex cycles, k-edge matchings,
k-vertex regular induced subgraphs...
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If one witness implies many witnesses...

Proposition

Suppose that, for each k and any graph G on n vertices, the number of
k-vertex subgraphs of G that have our property is either

1 zero, or
2 at least

1
g(k)p(n)

(
n
k

)
.

Then there is an efficient algorithm to count witnesses approximately.

Examples: k-vertex regular induced subgraphs; k-vertex induced subgraphs
with an even number of edges.

These problems are still hard for exact counting.
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If there are only f (k) · nO(1) witnesses...

Theorem

Suppose that we have an f (k) · nO(1) decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) · nO(1) · N, where N is the total number of witnesses.
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A randomised approach for the general case

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision algorithm for the uncoloured version...
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A randomised approach

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.
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Few witnesses, revisited

Theorem

Suppose that we can decide if there is at least one witness in time
f (k) · nO(1). Then there is a randomised algorithm which enumerates all
witnesses in expected time f (k) · nO(1) · N, where N is the total number of
witnesses in the instance.

Corollary

Suppose that we can decide if there is at least one witness in time f (k) · nO(1)

and that, for each k and any graph G on n vertices, the total number of
witnesses is at most f (k)nO(1). Then there is an efficient algorithm to count
witnesses approximately.
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Open problems

Can the randomised enumeration process be derandomised?

Can we close the gap?
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