
Subgraph counting problems

23rd March 2016
Kitty Meeks

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges

2/16

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges

2/16

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges

2/16

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges

2/16

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges

2/16

The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices
that have particular properties.

For example:

Paths on k vertices

Cycles on k vertices

Cliques on k vertices

Connected k-vertex induced
subgraphs

k-vertex induced subgraphs with
an even number of edges

2/16

Deciding, counting and enumerating

DECISION
Is there a witness?

3/16

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

3/16

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

3/16

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

3/16

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

3/16

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses

3/16

The values of n and k

Consider the k-cycle problem:

if k = 3 then we are interested in triangles

if k = n then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity,
independently, with k << n.

We can consider all possible k-vertex subgraphs in time O(nk).

We would like to be able to answer questions about k-vertex subgraphs
in time f (k) · nO(1); in this case the problem belongs to the
parameterised complexity class FPT.

4/16

The values of n and k

Consider the k-cycle problem:

if k = 3 then we are interested in triangles

if k = n then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity,
independently, with k << n.

We can consider all possible k-vertex subgraphs in time O(nk).

We would like to be able to answer questions about k-vertex subgraphs
in time f (k) · nO(1); in this case the problem belongs to the
parameterised complexity class FPT.

4/16

The values of n and k

Consider the k-cycle problem:

if k = 3 then we are interested in triangles

if k = n then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity,
independently, with k << n.

We can consider all possible k-vertex subgraphs in time O(nk).

We would like to be able to answer questions about k-vertex subgraphs
in time f (k) · nO(1); in this case the problem belongs to the
parameterised complexity class FPT.

4/16

The values of n and k

Consider the k-cycle problem:

if k = 3 then we are interested in triangles

if k = n then we are interested in Hamilton Cycles

We are interested in what happens as n and k both tend to infinity,
independently, with k << n.

We can consider all possible k-vertex subgraphs in time O(nk).

We would like to be able to answer questions about k-vertex subgraphs
in time f (k) · nO(1); in this case the problem belongs to the
parameterised complexity class FPT.

4/16

When are these questions hard?

Theorem (Based on Chen, Chor, Fellows, Huang, Juedes, Kanj and
Xia, 2005)

Assuming the Exponential Time Hypothesis, there is no algorithm to
determine whether an n-vertex graph contains a clique on k vertices in time
f (k) · no(1), for any function f .

5/16

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses

6/16

If we can decide, we can find a witness

7/16

If we can decide, we can find a witness

7/16

If we can decide, we can find a witness

7/16

If we can decide, we can find a witness

7/16

If we can decide, we can find a witness

7/16

If we can decide, we can find a witness

7/16

If we can decide, we can find a witness

7/16

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k
+ 2

)
queries to a deterministic decision algorithm.

7/16

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses

8/16

Exact counting is harder than decision

Question: Does G contain a connected induced subgraph on k vertices?

We can find the maximum component size, and hence answer this question,
in O(|V|+ |E|) using a breadth first search.

Theorem (Jerrum & M., 2015)

It is #W[1]-complete to count exactly the number of k-vertex connected
induced subgraphs in a given input graph.

Theorem (Jerrum & M., 2015)

There is an efficient algorithm to count approximately the number of k-vertex
connected induced subgraphs in a given input graph.

Many other examples: k-vertex paths, k-vertex cycles, k-edge matchings,
k-vertex regular induced subgraphs...

9/16

Exact counting is harder than decision

Question: Does G contain a connected induced subgraph on k vertices?

We can find the maximum component size, and hence answer this question,
in O(|V|+ |E|) using a breadth first search.

Theorem (Jerrum & M., 2015)

It is #W[1]-complete to count exactly the number of k-vertex connected
induced subgraphs in a given input graph.

Theorem (Jerrum & M., 2015)

There is an efficient algorithm to count approximately the number of k-vertex
connected induced subgraphs in a given input graph.

Many other examples: k-vertex paths, k-vertex cycles, k-edge matchings,
k-vertex regular induced subgraphs...

9/16

Exact counting is harder than decision

Question: Does G contain a connected induced subgraph on k vertices?

We can find the maximum component size, and hence answer this question,
in O(|V|+ |E|) using a breadth first search.

Theorem (Jerrum & M., 2015)

It is #W[1]-complete to count exactly the number of k-vertex connected
induced subgraphs in a given input graph.

Theorem (Jerrum & M., 2015)

There is an efficient algorithm to count approximately the number of k-vertex
connected induced subgraphs in a given input graph.

Many other examples: k-vertex paths, k-vertex cycles, k-edge matchings,
k-vertex regular induced subgraphs...

9/16

Exact counting is harder than decision

Question: Does G contain a connected induced subgraph on k vertices?

We can find the maximum component size, and hence answer this question,
in O(|V|+ |E|) using a breadth first search.

Theorem (Jerrum & M., 2015)

It is #W[1]-complete to count exactly the number of k-vertex connected
induced subgraphs in a given input graph.

Theorem (Jerrum & M., 2015)

There is an efficient algorithm to count approximately the number of k-vertex
connected induced subgraphs in a given input graph.

Many other examples: k-vertex paths, k-vertex cycles, k-edge matchings,
k-vertex regular induced subgraphs...

9/16

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses

10/16

If one witness implies many witnesses...

Proposition

Suppose that, for each k and any graph G on n vertices, the number of
k-vertex subgraphs of G that have our property is either

1 zero, or
2 at least

1
g(k)p(n)

(
n
k

)
.

Then there is an efficient algorithm to count witnesses approximately.

Examples: k-vertex regular induced subgraphs; k-vertex induced subgraphs
with an even number of edges.

These problems are still hard for exact counting.

11/16

If one witness implies many witnesses...

Proposition

Suppose that, for each k and any graph G on n vertices, the number of
k-vertex subgraphs of G that have our property is either

1 zero, or
2 at least

1
g(k)p(n)

(
n
k

)
.

Then there is an efficient algorithm to count witnesses approximately.

Examples: k-vertex regular induced subgraphs; k-vertex induced subgraphs
with an even number of edges.

These problems are still hard for exact counting.

11/16

If one witness implies many witnesses...

Proposition

Suppose that, for each k and any graph G on n vertices, the number of
k-vertex subgraphs of G that have our property is either

1 zero, or
2 at least

1
g(k)p(n)

(
n
k

)
.

Then there is an efficient algorithm to count witnesses approximately.

Examples: k-vertex regular induced subgraphs; k-vertex induced subgraphs
with an even number of edges.

These problems are still hard for exact counting.

11/16

If there are only f (k) · nO(1) witnesses...

Theorem

Suppose that we have an f (k) · nO(1) decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) · nO(1) · N, where N is the total number of witnesses.

12/16

If there are only f (k) · nO(1) witnesses...

Theorem

Suppose that we have an f (k) · nO(1) decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) · nO(1) · N, where N is the total number of witnesses.

...

12/16

If there are only f (k) · nO(1) witnesses...

Theorem

Suppose that we have an f (k) · nO(1) decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) · nO(1) · N, where N is the total number of witnesses.

...

12/16

If there are only f (k) · nO(1) witnesses...

Theorem

Suppose that we have an f (k) · nO(1) decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) · nO(1) · N, where N is the total number of witnesses.

...

... ...

12/16

If there are only f (k) · nO(1) witnesses...

Theorem

Suppose that we have an f (k) · nO(1) decision algorithm for the multicolour
version of the problem. Then we can enumerate (and hence count) all
witnesses in time g(k) · nO(1) · N, where N is the total number of witnesses.

...

... ...

12/16

A randomised approach for the general case

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision algorithm for the uncoloured version...

13/16

A randomised approach for the general case

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision algorithm for the uncoloured version...

13/16

A randomised approach for the general case

A B C

13/16

A randomised approach for the general case

C1 C2B1 B2A1 A2

13/16

A randomised approach for the general case

A1 B1 C1 A2

A1 B1 C2

A1 B2 C1

A1 B2 C2

B1 C1

B1 C2

B2 C1

B2 C2

A2

A2

A2

C1 C2B1 B2A1 A2

13/16

A randomised approach for the general case

A2

A1 B1 C2

A1 B2 C2

B1 C1

B1 C2A2

C1 C2B1 B2A1 A2

13/16

A randomised approach

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.

14/16

A randomised approach

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.

14/16

A randomised approach

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.

14/16

Few witnesses, revisited

Theorem

Suppose that we can decide if there is at least one witness in time
f (k) · nO(1). Then there is a randomised algorithm which enumerates all
witnesses in expected time f (k) · nO(1) · N, where N is the total number of
witnesses in the instance.

Corollary

Suppose that we can decide if there is at least one witness in time f (k) · nO(1)

and that, for each k and any graph G on n vertices, the total number of
witnesses is at most f (k)nO(1). Then there is an efficient algorithm to count
witnesses approximately.

15/16

Few witnesses, revisited

Theorem

Suppose that we can decide if there is at least one witness in time
f (k) · nO(1). Then there is a randomised algorithm which enumerates all
witnesses in expected time f (k) · nO(1) · N, where N is the total number of
witnesses in the instance.

Corollary

Suppose that we can decide if there is at least one witness in time f (k) · nO(1)

and that, for each k and any graph G on n vertices, the total number of
witnesses is at most f (k)nO(1). Then there is an efficient algorithm to count
witnesses approximately.

15/16

Open problems

Can the randomised enumeration process be derandomised?

Can we close the gap?

16/16

Open problems

Can the randomised enumeration process be derandomised?

Can we close the gap?

0
n
k((

16/16

Open problems

Can the randomised enumeration process be derandomised?

Can we close the gap?

At least nk/(f(k)nO(1)) witnesses:
can approximately count by
random sampling

0
n
k((

16/16

Open problems

Can the randomised enumeration process be derandomised?

Can we close the gap?

At most f(k)nO(1) witnesses:
can count efficiently using
a decision oracle

At least nk/(f(k)nO(1)) witnesses:
can approximately count by
random sampling

0
n
k((

16/16

Open problems

Can the randomised enumeration process be derandomised?

Can we close the gap?

At most f(k)nO(1) witnesses:
can count efficiently using
a decision oracle

At least nk/(f(k)nO(1)) witnesses:
can approximately count by
random sampling

?0
n
k((

16/16

Open problems

Can the randomised enumeration process be derandomised?

Can we close the gap?

At most f(k)nO(1) witnesses:
can count efficiently using
a decision oracle

At least nk/(f(k)nO(1)) witnesses:
can approximately count by
random sampling

?0
n
k((

Thank you

16/16

