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Witnesses and Oracles

Many problems involve finding a witness W (subset with some particular
property) of size k in a universe U of size n.

ORA(X)
Input: X ⊆ U
Output: 1 if some witness is entirely contained in X; 0 otherwise.

In self-contained k-witness problem, we can obtain an oracle of this kind by
calling a decision algorithm with universe X rather than U (so if W ⊆ X ⊆ U
then W is a witness with respect to X if and only if it is a witness with
respect to U).

Examples
k-CLIQUE
k-PATH

Non-examples
k-VERTEX COVER
k-DOMINATING SET
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Deciding, counting and enumerating

DECISION
Is there a witness?
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Deciding, counting and enumerating

APPROX COUNTING
Approximately how 
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many 

witnesses?

EXTRACTION
Identify a single 

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses
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If we can decide, we can find a witness
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If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, ESA 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.
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With an extension oracle, we can find all witnesses

EXT-ORA(X,Y)
Input: X ⊆ U and Y ⊆ X
Output: 1 if there exists a witness W with Y ⊆ W ⊆ X; 0 otherwise.
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With an extension oracle, we can find all witnesses

EXT-ORA(X,Y)
Input: X ⊆ U and Y ⊆ X
Output: 1 if there exists a witness W with Y ⊆ W ⊆ X; 0 otherwise.

v1

v2 v2

yes no

v3 v3v3 v3

yes yesno no

... ... ... ...

... ... ... ...
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Extension can be harder than inclusion

Suppose that a k-vertex subset is a witness if it either induces a clique or an
independent set.

The decision problem can be solved in time f (k):
By Ramsey, for sufficiently large graphs the answer is always “yes”.

The extension version is W[1]-hard:
Reduction from p-CLIQUE.
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Enumerating without using extension

Theorem

There is a randomised algorithm to enumerate all witnesses of size k in a
self-contained k-witness problem exactly once, whose expected number of
calls to a deterministic decision oracle is at most 2O(k) log2 n · N, where N is
the total number of witnesses.

Moreover, if an oracle call can be executed in time g(k) · nO(1), then the
expected total running time of the algorithm is

2O(k) · g(k) · nO(1) · N.
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Enumerating without using extension

Definition

A family F of hash functions from [n] to [k] is said to be k-perfect if, for
every subset A ⊂ [n] of size k, there exists f ∈ F such that the restriction of f
to A is injective.

Theorem (Alon, Yuster, Zwick, 1995)

For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n] to
[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.
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[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision algorithm for the uncoloured version...
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Enumerating without using extension
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Enumerating without using extension

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.
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Application to counting

Theorem

Let Π be a self-contained k-witness problem, and suppose that 0 < δ ≤ 1
2

and M ∈ N. Then there exists a randomised algorithm which makes at most
2O(k) log2 n M log(δ−1) calls to a deterministic decision oracle for Π, and

1 if the number of witnesses in the instance of Π is at most M, outputs
with probability at least 1− δ the exact number of witnesses in the
instance;

2 if the number of witnesses in the instance of Π is strictly greater than
M, always outputs “More than M.”

Moreover, if there is an algorithm solving the decision version of Π in time
g(k) · nO(1), then the expected running time of the randomised algorithm is
bounded by 2O(k) · g(k) · nO(1) ·M · log(δ−1).
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Open problems

Can the randomised enumeration process be derandomised?

How common are self-contained k-witness problems whose decision
version is FPT but for which the extension problem is W[1]-hard?

Can we improve the algorithm to bound the expected time between
finding one witness and the next?

Thank you
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