
Randomised enumeration of small
witnesses using a decision oracle

IPEC, Aarhus, 25th August 2016
Kitty Meeks

Witnesses and Oracles

Many problems involve finding a witness W (subset with some particular
property) of size k in a universe U of size n.

ORA(X)
Input: X ⊆ U
Output: 1 if some witness is entirely contained in X; 0 otherwise.

In self-contained k-witness problem, we can obtain an oracle of this kind by
calling a decision algorithm with universe X rather than U (so if W ⊆ X ⊆ U
then W is a witness with respect to X if and only if it is a witness with
respect to U).

Examples
k-CLIQUE
k-PATH

Non-examples
k-VERTEX COVER
k-DOMINATING SET

2/11

Witnesses and Oracles

Many problems involve finding a witness W (subset with some particular
property) of size k in a universe U of size n.

ORA(X)
Input: X ⊆ U
Output: 1 if some witness is entirely contained in X; 0 otherwise.

In self-contained k-witness problem, we can obtain an oracle of this kind by
calling a decision algorithm with universe X rather than U (so if W ⊆ X ⊆ U
then W is a witness with respect to X if and only if it is a witness with
respect to U).

Examples
k-CLIQUE
k-PATH

Non-examples
k-VERTEX COVER
k-DOMINATING SET

2/11

Witnesses and Oracles

Many problems involve finding a witness W (subset with some particular
property) of size k in a universe U of size n.

ORA(X)
Input: X ⊆ U
Output: 1 if some witness is entirely contained in X; 0 otherwise.

In self-contained k-witness problem, we can obtain an oracle of this kind by
calling a decision algorithm with universe X rather than U (so if W ⊆ X ⊆ U
then W is a witness with respect to X if and only if it is a witness with
respect to U).

Examples
k-CLIQUE
k-PATH

Non-examples
k-VERTEX COVER
k-DOMINATING SET

2/11

Witnesses and Oracles

Many problems involve finding a witness W (subset with some particular
property) of size k in a universe U of size n.

ORA(X)
Input: X ⊆ U
Output: 1 if some witness is entirely contained in X; 0 otherwise.

In self-contained k-witness problem, we can obtain an oracle of this kind by
calling a decision algorithm with universe X rather than U (so if W ⊆ X ⊆ U
then W is a witness with respect to X if and only if it is a witness with
respect to U).

Examples
k-CLIQUE
k-PATH

Non-examples
k-VERTEX COVER
k-DOMINATING SET

2/11

Deciding, counting and enumerating

DECISION
Is there a witness?

3/11

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

3/11

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

3/11

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

3/11

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

3/11

Deciding, counting and enumerating

APPROX COUNTING
Approximately how
many witnesses?

DECISION
Is there a witness?

EXACT COUNTING
Exactly how many

witnesses?

EXTRACTION
Identify a single

witness

UNIFORM SAMPLING
Pick a single witness
uniformly at random

ENUMERATION
List all witnesses

3/11

If we can decide, we can find a witness

4/11

If we can decide, we can find a witness

4/11

If we can decide, we can find a witness

4/11

If we can decide, we can find a witness

4/11

If we can decide, we can find a witness

4/11

If we can decide, we can find a witness

4/11

If we can decide, we can find a witness

4/11

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, ESA 2014)

There exists an algorithm that extracts a witness using at most

2k
(

log2
n
k

+ 2
)

queries to a deterministic decision algorithm.

4/11

With an extension oracle, we can find all witnesses

EXT-ORA(X,Y)
Input: X ⊆ U and Y ⊆ X
Output: 1 if there exists a witness W with Y ⊆ W ⊆ X; 0 otherwise.

5/11

With an extension oracle, we can find all witnesses

EXT-ORA(X,Y)
Input: X ⊆ U and Y ⊆ X
Output: 1 if there exists a witness W with Y ⊆ W ⊆ X; 0 otherwise.

v1

v2 v2

yes no

v3 v3v3 v3

yes yesno no

...

...

5/11

Extension can be harder than inclusion

Suppose that a k-vertex subset is a witness if it either induces a clique or an
independent set.

The decision problem can be solved in time f (k):
By Ramsey, for sufficiently large graphs the answer is always “yes”.

The extension version is W[1]-hard:
Reduction from p-CLIQUE.

6/11

Extension can be harder than inclusion

Suppose that a k-vertex subset is a witness if it either induces a clique or an
independent set.

The decision problem can be solved in time f (k):
By Ramsey, for sufficiently large graphs the answer is always “yes”.

The extension version is W[1]-hard:
Reduction from p-CLIQUE.

6/11

Extension can be harder than inclusion

Suppose that a k-vertex subset is a witness if it either induces a clique or an
independent set.

The decision problem can be solved in time f (k):
By Ramsey, for sufficiently large graphs the answer is always “yes”.

The extension version is W[1]-hard:
Reduction from p-CLIQUE.

G

6/11

Extension can be harder than inclusion

Suppose that a k-vertex subset is a witness if it either induces a clique or an
independent set.

The decision problem can be solved in time f (k):
By Ramsey, for sufficiently large graphs the answer is always “yes”.

The extension version is W[1]-hard:
Reduction from p-CLIQUE.

vG

6/11

Enumerating without using extension

Theorem

There is a randomised algorithm to enumerate all witnesses of size k in a
self-contained k-witness problem exactly once, whose expected number of
calls to a deterministic decision oracle is at most 2O(k) log2 n · N, where N is
the total number of witnesses.

Moreover, if an oracle call can be executed in time g(k) · nO(1), then the
expected total running time of the algorithm is

2O(k) · g(k) · nO(1) · N.

7/11

Enumerating without using extension

Definition

A family F of hash functions from [n] to [k] is said to be k-perfect if, for
every subset A ⊂ [n] of size k, there exists f ∈ F such that the restriction of f
to A is injective.

Theorem (Alon, Yuster, Zwick, 1995)

For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n] to
[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.

7/11

Enumerating without using extension

Definition

A family F of hash functions from [n] to [k] is said to be k-perfect if, for
every subset A ⊂ [n] of size k, there exists f ∈ F such that the restriction of f
to A is injective.

Theorem (Alon, Yuster, Zwick, 1995)

For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n] to
[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

7/11

Enumerating without using extension

Definition

A family F of hash functions from [n] to [k] is said to be k-perfect if, for
every subset A ⊂ [n] of size k, there exists f ∈ F such that the restriction of f
to A is injective.

Theorem (Alon, Yuster, Zwick, 1995)

For all n, k ∈ N there is a k-perfect family Fn,k of hash functions from [n] to
[k] of cardinality 2O(k) · log n. Furthermore, given n and k, a representation
of the family Fn,k can be computed in time 2O(k) · n log n.

IDEA: create many coloured instances, and enumerate the colourful
copies in each (omitting duplicates)

PROBLEM: although we’re now looking for colourful witnesses, we
still only have a decision algorithm for the uncoloured version...

7/11

Enumerating without using extension

A B C

8/11

Enumerating without using extension

C1 C2B1 B2A1 A2

8/11

Enumerating without using extension

A1 B1 C1 A2

A1 B1 C2

A1 B2 C1

A1 B2 C2

B1 C1

B1 C2

B2 C1

B2 C2

A2

A2

A2

C1 C2B1 B2A1 A2

8/11

Enumerating without using extension

A2

A1 B1 C2

A1 B2 C2

B1 C1

B1 C2A2

C1 C2B1 B2A1 A2

8/11

Enumerating without using extension

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.

9/11

Enumerating without using extension

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.

9/11

Enumerating without using extension

If a witness is colourful:
It will always survive in exactly one combination

If a witness contains vertices of only ` < k colours:
the probability it survives in at least one combination is at most 2−(k−`)

if it survives in any combination, it will survive in exactly 2k−`

combinations

It can then be shown that, for any witness, the expected number of
combinations in which it survives at each level is at most one.

9/11

Application to counting

Theorem

Let Π be a self-contained k-witness problem, and suppose that 0 < δ ≤ 1
2

and M ∈ N. Then there exists a randomised algorithm which makes at most
2O(k) log2 n M log(δ−1) calls to a deterministic decision oracle for Π, and

1 if the number of witnesses in the instance of Π is at most M, outputs
with probability at least 1− δ the exact number of witnesses in the
instance;

2 if the number of witnesses in the instance of Π is strictly greater than
M, always outputs “More than M.”

Moreover, if there is an algorithm solving the decision version of Π in time
g(k) · nO(1), then the expected running time of the randomised algorithm is
bounded by 2O(k) · g(k) · nO(1) ·M · log(δ−1).

10/11

Application to counting

Theorem

Let Π be a self-contained k-witness problem, and suppose that 0 < δ ≤ 1
2

and M ∈ N. Then there exists a randomised algorithm which makes at most
2O(k) log2 n M log(δ−1) calls to a deterministic decision oracle for Π, and

1 if the number of witnesses in the instance of Π is at most M, outputs
with probability at least 1− δ the exact number of witnesses in the
instance;

2 if the number of witnesses in the instance of Π is strictly greater than
M, always outputs “More than M.”

Moreover, if there is an algorithm solving the decision version of Π in time
g(k) · nO(1), then the expected running time of the randomised algorithm is
bounded by 2O(k) · g(k) · nO(1) ·M · log(δ−1).

At most f(k)nO(1) witnesses At least nk/(f(k)nO(1)) witnesses

0
n
k((

10/11

Application to counting

Theorem

Let Π be a self-contained k-witness problem, and suppose that 0 < δ ≤ 1
2

and M ∈ N. Then there exists a randomised algorithm which makes at most
2O(k) log2 n M log(δ−1) calls to a deterministic decision oracle for Π, and

1 if the number of witnesses in the instance of Π is at most M, outputs
with probability at least 1− δ the exact number of witnesses in the
instance;

2 if the number of witnesses in the instance of Π is strictly greater than
M, always outputs “More than M.”

Moreover, if there is an algorithm solving the decision version of Π in time
g(k) · nO(1), then the expected running time of the randomised algorithm is
bounded by 2O(k) · g(k) · nO(1) ·M · log(δ−1).

At most f(k)nO(1) witnesses At least nk/(f(k)nO(1)) witnesses

0
n
k((?

10/11

Open problems

Can the randomised enumeration process be derandomised?

How common are self-contained k-witness problems whose decision
version is FPT but for which the extension problem is W[1]-hard?

Can we improve the algorithm to bound the expected time between
finding one witness and the next?

Thank you

11/11

Open problems

Can the randomised enumeration process be derandomised?

How common are self-contained k-witness problems whose decision
version is FPT but for which the extension problem is W[1]-hard?

Can we improve the algorithm to bound the expected time between
finding one witness and the next?

Thank you

11/11

Open problems

Can the randomised enumeration process be derandomised?

How common are self-contained k-witness problems whose decision
version is FPT but for which the extension problem is W[1]-hard?

Can we improve the algorithm to bound the expected time between
finding one witness and the next?

Thank you

11/11

Open problems

Can the randomised enumeration process be derandomised?

How common are self-contained k-witness problems whose decision
version is FPT but for which the extension problem is W[1]-hard?

Can we improve the algorithm to bound the expected time between
finding one witness and the next?

Thank you

11/11

