Randomised enumeration of small witnesses using a decision oracle

IPEC, Aarhus, 25th August 2016
Kitty Meeks

Witnesses and Oracles

Many problems involve finding a witness W (subset with some particular property) of size k in a universe U of size n.

Witnesses and Oracles

Many problems involve finding a witness W (subset with some particular property) of size k in a universe U of size n.

ORA (X)
Input: $X \subseteq U$
Output: 1 if some witness is entirely contained in $X ; 0$ otherwise.

Many problems involve finding a witness W (subset with some particular property) of size k in a universe U of size n.

ORA (X)
Input: $X \subseteq U$
Output: 1 if some witness is entirely contained in $X ; 0$ otherwise.

In self-contained k-witness problem, we can obtain an oracle of this kind by calling a decision algorithm with universe X rather than U (so if $W \subseteq X \subseteq U$ then W is a witness with respect to X if and only if it is a witness with respect to U).

Many problems involve finding a witness W (subset with some particular property) of size k in a universe U of size n.

ORA (X)
Input: $X \subseteq U$
Output: 1 if some witness is entirely contained in $X ; 0$ otherwise.

In self-contained k-witness problem, we can obtain an oracle of this kind by calling a decision algorithm with universe X rather than U (so if $W \subseteq X \subseteq U$ then W is a witness with respect to X if and only if it is a witness with respect to U).

Examples

k-CliQue k-PATH

Non-examples

k-VERTEX Cover
k-Dominating Set

Deciding, counting and enumerating

DECISION

Is there a witness?

Deciding, counting and enumerating

DECISION

Is there a witness?

APPROX COUNTING

Approximately how many witnesses?

Deciding, counting and enumerating

DECISION

Is there a witness?

APPROX COUNTING

Approximately how many witnesses?

EXACT COUNTING

Exactly how many witnesses?

Deciding, counting and enumerating

DECISION

Is there a witness?

EXTRACTION

Identify a single witness

APPROX COUNTING

Approximately how many witnesses?

EXACT COUNTING

Exactly how many witnesses?

Deciding, counting and enumerating

DECISION

Is there a witness?

EXTRACTION

Identify a single witness

APPROX COUNTING

Approximately how many witnesses?

UNIFORM SAMPLING

Pick a single witness uniformly at random

EXACT COUNTING

Exactly how many witnesses?

DECISION

Is there a witness?

EXTRACTION

Identify a single witness

UNIFORM SAMPLING

Pick a single witness uniformly at random

ENUMERATION

List all witnesses

If we can decide, we can find a witness

Theorem (Björklund, Kaski and Kowalik, ESA 2014)
There exists an algorithm that extracts a witness using at most

$$
2 k\left(\log _{2} \frac{n}{k}+2\right)
$$

queries to a deterministic decision algorithm.

With an extension oracle, we can find all witnesses

EXT-ORA (X, Y)
Input: $X \subseteq U$ and $Y \subseteq X$
Output: 1 if there exists a witness W with $Y \subseteq W \subseteq X ; 0$ otherwise.

EXT-ORA (X, Y)
Input: $X \subseteq U$ and $Y \subseteq X$
Output: 1 if there exists a witness W with $Y \subseteq W \subseteq X ; 0$ otherwise.

Extension can be harder than inclusion

Suppose that a k-vertex subset is a witness if it either induces a clique or an independent set.

Extension can be harder than inclusion

Suppose that a k-vertex subset is a witness if it either induces a clique or an independent set.

- The decision problem can be solved in time $f(k)$:
- By Ramsey, for sufficiently large graphs the answer is always "yes".

Extension can be harder than inclusion

Suppose that a k-vertex subset is a witness if it either induces a clique or an independent set.

- The decision problem can be solved in time $f(k)$:
- By Ramsey, for sufficiently large graphs the answer is always "yes".
- The extension version is W[1]-hard:
- Reduction from p-CliQUE.

Extension can be harder than inclusion

Suppose that a k-vertex subset is a witness if it either induces a clique or an independent set.

- The decision problem can be solved in time $f(k)$:
- By Ramsey, for sufficiently large graphs the answer is always "yes".
- The extension version is W[1]-hard:
- Reduction from p-CliQUE.

Enumerating without using extension

Theorem

There is a randomised algorithm to enumerate all witnesses of size k in a self-contained k-witness problem exactly once, whose expected number of calls to a deterministic decision oracle is at most $2^{O(k)} \log ^{2} n \cdot N$, where N is the total number of witnesses.

Moreover, if an oracle call can be executed in time $g(k) \cdot n^{O(1)}$, then the expected total running time of the algorithm is

$$
2^{O(k)} \cdot g(k) \cdot n^{O(1)} \cdot N
$$

Enumerating without using extension

Definition

A family \mathcal{F} of hash functions from $[n]$ to $[k]$ is said to be k-perfect if, for every subset $A \subset[n]$ of size k, there exists $f \in \mathcal{F}$ such that the restriction of f to A is injective.

Theorem (Alon, Yuster, Zwick, 1995)

For all $n, k \in \mathbb{N}$ there is a k-perfect family $\mathcal{F}_{n, k}$ of hash functions from $[n]$ to $[k]$ of cardinality $2^{O(k)} \cdot \log n$. Furthermore, given n and k, a representation of the family $\mathcal{F}_{n, k}$ can be computed in time $2^{O(k)} \cdot n \log n$.

Enumerating without using extension

Definition

A family \mathcal{F} of hash functions from $[n]$ to $[k]$ is said to be k-perfect if, for every subset $A \subset[n]$ of size k, there exists $f \in \mathcal{F}$ such that the restriction of f to A is injective.

Theorem (Alon, Yuster, Zwick, 1995)

For all $n, k \in \mathbb{N}$ there is a k-perfect family $\mathcal{F}_{n, k}$ of hash functions from $[n]$ to $[k]$ of cardinality $2^{O(k)} \cdot \log n$. Furthermore, given n and k, a representation of the family $\mathcal{F}_{n, k}$ can be computed in time $2^{O(k)} \cdot n \log n$.

- IDEA: create many coloured instances, and enumerate the colourful copies in each (omitting duplicates)

Enumerating without using extension

Definition

A family \mathcal{F} of hash functions from $[n]$ to $[k]$ is said to be k-perfect if, for every subset $A \subset[n]$ of size k, there exists $f \in \mathcal{F}$ such that the restriction of f to A is injective.

Theorem (Alon, Yuster, Zwick, 1995)

For all $n, k \in \mathbb{N}$ there is a k-perfect family $\mathcal{F}_{n, k}$ of hash functions from $[n]$ to $[k]$ of cardinality $2^{O(k)} \cdot \log n$. Furthermore, given n and k, a representation of the family $\mathcal{F}_{n, k}$ can be computed in time $2^{O(k)} \cdot n \log n$.

- IDEA: create many coloured instances, and enumerate the colourful copies in each (omitting duplicates)
- PROBLEM: although we're now looking for colourful witnesses, we still only have a decision algorithm for the uncoloured version...

Enumerating without using extension

If a witness is colourful:

- It will always survive in exactly one combination

Enumerating without using extension

If a witness is colourful:

- It will always survive in exactly one combination

If a witness contains vertices of only $\ell<k$ colours:

- the probability it survives in at least one combination is at most $2^{-(k-\ell)}$
- if it survives in any combination, it will survive in exactly $2^{k-\ell}$ combinations

Enumerating without using extension

If a witness is colourful:

- It will always survive in exactly one combination

If a witness contains vertices of only $\ell<k$ colours:

- the probability it survives in at least one combination is at most $2^{-(k-\ell)}$
- if it survives in any combination, it will survive in exactly $2^{k-\ell}$ combinations

It can then be shown that, for any witness, the expected number of combinations in which it survives at each level is at most one.

Application to counting

Theorem

Let Π be a self-contained k-witness problem, and suppose that $0<\delta \leq \frac{1}{2}$ and $M \in \mathbb{N}$. Then there exists a randomised algorithm which makes at most $2^{O(k)} \log ^{2} n M \log \left(\delta^{-1}\right)$ calls to a deterministic decision oracle for Π, and
(1) if the number of witnesses in the instance of Π is at most M, outputs with probability at least $1-\delta$ the exact number of witnesses in the instance;
(2) if the number of witnesses in the instance of Π is strictly greater than M, always outputs "More than M."

Moreover, if there is an algorithm solving the decision version of Π in time $g(k) \cdot n^{O(1)}$, then the expected running time of the randomised algorithm is bounded by $2^{O(k)} \cdot g(k) \cdot n^{O(1)} \cdot M \cdot \log \left(\delta^{-1}\right)$.

Application to counting

Theorem

Let Π be a self-contained k-witness problem, and suppose that $0<\delta \leq \frac{1}{2}$ and $M \in \mathbb{N}$. Then there exists a randomised algorithm which makes at most $2^{O(k)} \log ^{2} n M \log \left(\delta^{-1}\right)$ calls to a deterministic decision oracle for Π, and
(1) if the number of witnesses in the instance of Π is at most M, outputs with probability at least $1-\delta$ the exact number of witnesses in the instance;
(2) if the number of witnesses in the instance of Π is strictly greater than M, always outputs "More than M."
Moreover, if there is an algorithm solving the decision version of Π in time $g(k) \cdot n^{O(1)}$, then the expected running time of the randomised algorithm is bounded by $2^{O(k)} \cdot g(k) \cdot n^{O(1)} \cdot M \cdot \log \left(\delta^{-1}\right)$.

Application to counting

Theorem

Let Π be a self-contained k-witness problem, and suppose that $0<\delta \leq \frac{1}{2}$ and $M \in \mathbb{N}$. Then there exists a randomised algorithm which makes at most $2^{O(k)} \log ^{2} n M \log \left(\delta^{-1}\right)$ calls to a deterministic decision oracle for Π, and
(1) if the number of witnesses in the instance of Π is at most M, outputs with probability at least $1-\delta$ the exact number of witnesses in the instance;
(2) if the number of witnesses in the instance of Π is strictly greater than M, always outputs "More than M."

Moreover, if there is an algorithm solving the decision version of Π in time $g(k) \cdot n^{O(1)}$, then the expected running time of the randomised algorithm is bounded by $2^{O(k)} \cdot g(k) \cdot n^{O(1)} \cdot M \cdot \log \left(\delta^{-1}\right)$.

- Can the randomised enumeration process be derandomised?

Open problems

- Can the randomised enumeration process be derandomised?
- How common are self-contained k-witness problems whose decision version is FPT but for which the extension problem is W[1]-hard?

Open problems

- Can the randomised enumeration process be derandomised?
- How common are self-contained k-witness problems whose decision version is FPT but for which the extension problem is W[1]-hard?
- Can we improve the algorithm to bound the expected time between finding one witness and the next?

Open problems

- Can the randomised enumeration process be derandomised?
- How common are self-contained k-witness problems whose decision version is FPT but for which the extension problem is W[1]-hard?
- Can we improve the algorithm to bound the expected time between finding one witness and the next?

Thank you

