

Randomised enumeration of small witnesses using a decision oracle

IPEC, Aarhus, 25th August 2016 Kitty Meeks

ORA(*X*) Input: $X \subseteq U$ Output: 1 if some witness is entirely contained in *X*; 0 otherwise.

ORA(*X*) Input: $X \subseteq U$ Output: 1 if some witness is entirely contained in *X*; 0 otherwise.

In *self-contained k-witness problem*, we can obtain an oracle of this kind by calling a decision algorithm with universe *X* rather than *U* (so if $W \subseteq X \subseteq U$ then *W* is a witness with respect to *X* if and only if it is a witness with respect to *U*).

ORA(*X*) Input: $X \subseteq U$ Output: 1 if some witness is entirely contained in *X*; 0 otherwise.

In *self-contained k-witness problem*, we can obtain an oracle of this kind by calling a decision algorithm with universe *X* rather than *U* (so if $W \subseteq X \subseteq U$ then *W* is a witness with respect to *X* if and only if it is a witness with respect to *U*).

Examples *k*-CLIQUE *k*-PATH Non-examples k-Vertex Cover k-Dominating Set

DECISION

Is there a witness?

DECISION

Is there a witness?

APPROX COUNTING Approximately how many witnesses?

DECISION

Is there a witness?

APPROX COUNTING Approximately how many witnesses?

EXACT COUNTING

Exactly how many witnesses?

Deciding, counting and enumerating

DECISION Is there a witness?

EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses?

EXACT COUNTING

Exactly how many witnesses?

DECISION Is there a witness?

Jniversity

of Glasgow

EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses? UNIFORM SAMPLING Pick a single witness uniformly at random

EXACT COUNTING Exactly how many witnesses?

Deciding, counting and enumerating

University of Glasgow

DECISION Is there a witness? EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses? UNIFORM SAMPLING Pick a single witness uniformly at random

EXACT COUNTING

Exactly how many witnesses?

ENUMERATION

List all witnesses

Theorem (Björklund, Kaski and Kowalik, ESA 2014)

There exists an algorithm that extracts a witness using at most

$$2k\left(\log_2\frac{n}{k}+2\right)$$

queries to a deterministic decision algorithm.

University of Glasgow With an **extension** oracle, we can find all witnesses

EXT-ORA(X, Y)

Input: $X \subseteq U$ and $Y \subseteq X$ *Output:* 1 if there exists a witness W with $Y \subseteq W \subseteq X$; 0 otherwise.

Iniversity of Glasgow With an **extension** oracle, we can find all witnesses

EXT-ORA(X, Y)

Input: $X \subseteq U$ and $Y \subseteq X$ *Output:* 1 if there exists a witness W with $Y \subseteq W \subseteq X$; 0 otherwise.

- The decision problem can be solved in time f(k):
 - By Ramsey, for sufficiently large graphs the answer is always "yes".

- The decision problem can be solved in time f(k):
 - By Ramsey, for sufficiently large graphs the answer is always "yes".
- The extension version is W[1]-hard:
 - Reduction from **p-**CLIQUE.

- The decision problem can be solved in time f(k):
 - By Ramsey, for sufficiently large graphs the answer is always "yes".
- The extension version is W[1]-hard:
 - Reduction from **p-**CLIQUE.

There is a randomised algorithm to enumerate all witnesses of size k in a self-contained k-witness problem exactly once, whose expected number of calls to a deterministic decision oracle is at most $2^{O(k)} \log^2 n \cdot N$, where N is the total number of witnesses.

Moreover, if an oracle call can be executed in time $g(k) \cdot n^{O(1)}$, then the expected total running time of the algorithm is

 $2^{O(k)} \cdot g(k) \cdot n^{O(1)} \cdot N.$

Definition

A family \mathcal{F} of hash functions from [n] to [k] is said to be k-perfect if, for every subset $A \subset [n]$ of size k, there exists $f \in \mathcal{F}$ such that the restriction of f to A is injective.

Theorem (Alon, Yuster, Zwick, 1995)

For all $n, k \in \mathbb{N}$ there is a k-perfect family $\mathcal{F}_{n,k}$ of hash functions from [n] to [k] of cardinality $2^{O(k)} \cdot \log n$. Furthermore, given n and k, a representation of the family $\mathcal{F}_{n,k}$ can be computed in time $2^{O(k)} \cdot n \log n$.

Definition

A family \mathcal{F} of hash functions from [n] to [k] is said to be k-perfect if, for every subset $A \subset [n]$ of size k, there exists $f \in \mathcal{F}$ such that the restriction of f to A is injective.

Theorem (Alon, Yuster, Zwick, 1995)

For all $n, k \in \mathbb{N}$ there is a k-perfect family $\mathcal{F}_{n,k}$ of hash functions from [n] to [k] of cardinality $2^{O(k)} \cdot \log n$. Furthermore, given n and k, a representation of the family $\mathcal{F}_{n,k}$ can be computed in time $2^{O(k)} \cdot n \log n$.

• IDEA: create many coloured instances, and enumerate the colourful copies in each (omitting duplicates)

Definition

A family \mathcal{F} of hash functions from [n] to [k] is said to be k-perfect if, for every subset $A \subset [n]$ of size k, there exists $f \in \mathcal{F}$ such that the restriction of f to A is injective.

Theorem (Alon, Yuster, Zwick, 1995)

For all $n, k \in \mathbb{N}$ there is a k-perfect family $\mathcal{F}_{n,k}$ of hash functions from [n] to [k] of cardinality $2^{O(k)} \cdot \log n$. Furthermore, given n and k, a representation of the family $\mathcal{F}_{n,k}$ can be computed in time $2^{O(k)} \cdot n \log n$.

- IDEA: create many coloured instances, and enumerate the colourful copies in each (omitting duplicates)
- PROBLEM: although we're now looking for colourful witnesses, we still only have a decision algorithm for the uncoloured version...

If a witness is colourful:

• It will always survive in exactly one combination

If a witness is colourful:

- It will always survive in exactly one combination
- If a witness contains vertices of only $\ell < k$ colours:
 - the probability it survives in at least one combination is at most $2^{-(k-\ell)}$
 - if it survives in any combination, it will survive in exactly 2^{k−ℓ} combinations

If a witness is colourful:

- It will always survive in exactly one combination
- If a witness contains vertices of only $\ell < k$ colours:
 - the probability it survives in at least one combination is at most $2^{-(k-\ell)}$
 - if it survives in any combination, it will survive in exactly 2^{k−ℓ} combinations

It can then be shown that, for **any** witness, the **expected** number of combinations in which it survives at each level is at most one.

Let Π be a self-contained k-witness problem, and suppose that $0 < \delta \leq \frac{1}{2}$ and $M \in \mathbb{N}$. Then there exists a randomised algorithm which makes at most $2^{O(k)} \log^2 n M \log(\delta^{-1})$ calls to a deterministic decision oracle for Π , and

if the number of witnesses in the instance of Π is at most M, outputs with probability at least 1 − δ the exact number of witnesses in the instance;

Q if the number of witnesses in the instance of ∏ is strictly greater than M, always outputs "More than M."

Moreover, if there is an algorithm solving the decision version of Π in time $g(k) \cdot n^{O(1)}$, then the expected running time of the randomised algorithm is bounded by $2^{O(k)} \cdot g(k) \cdot n^{O(1)} \cdot M \cdot \log(\delta^{-1})$.

Let Π be a self-contained k-witness problem, and suppose that $0 < \delta \leq \frac{1}{2}$ and $M \in \mathbb{N}$. Then there exists a randomised algorithm which makes at most $2^{O(k)} \log^2 n M \log(\delta^{-1})$ calls to a deterministic decision oracle for Π , and

- *if the number of witnesses in the instance of* Π *is at most* M*, outputs with probability at least* 1δ *the exact number of witnesses in the instance;*
- *if the number of witnesses in the instance of* Π *is strictly greater than M, always outputs "More than M."*

Moreover, if there is an algorithm solving the decision version of Π in time $g(k) \cdot n^{O(1)}$, then the expected running time of the randomised algorithm is bounded by $2^{O(k)} \cdot g(k) \cdot n^{O(1)} \cdot M \cdot \log(\delta^{-1})$.

Let Π be a self-contained k-witness problem, and suppose that $0 < \delta \leq \frac{1}{2}$ and $M \in \mathbb{N}$. Then there exists a randomised algorithm which makes at most $2^{O(k)} \log^2 n M \log(\delta^{-1})$ calls to a deterministic decision oracle for Π , and

- *if the number of witnesses in the instance of* Π *is at most* M*, outputs with probability at least* 1δ *the exact number of witnesses in the instance;*
- *if the number of witnesses in the instance of* Π *is strictly greater than M, always outputs "More than M."*

Moreover, if there is an algorithm solving the decision version of Π in time $g(k) \cdot n^{O(1)}$, then the expected running time of the randomised algorithm is bounded by $2^{O(k)} \cdot g(k) \cdot n^{O(1)} \cdot M \cdot \log(\delta^{-1})$.

• Can the randomised enumeration process be derandomised?

- Can the randomised enumeration process be derandomised?
- How common are self-contained *k*-witness problems whose decision version is FPT but for which the extension problem is W[1]-hard?

- Can the randomised enumeration process be derandomised?
- How common are self-contained *k*-witness problems whose decision version is FPT but for which the extension problem is W[1]-hard?
- Can we improve the algorithm to bound the expected time between finding one witness and the next?

- Can the randomised enumeration process be derandomised?
- How common are self-contained *k*-witness problems whose decision version is FPT but for which the extension problem is W[1]-hard?
- Can we improve the algorithm to bound the expected time between finding one witness and the next?

Thank you