Deleting Edges to Save Cows: Using Graph Theory to Control the Spread of Disease in Livestock

Kitty Meeks

University of Glasgow

LMS Women in Mathematics Day, Edinburgh, 22nd April 2016

Joint work with Jessica Enright (University of Stirling)

MARKET

University of Glasgow

Vertex-deletion

Vertex-deletion

E.g. vaccinate all animals at a particular animal holding.

Vertex-deletion

E.g. vaccinate all animals at a particular animal holding.

Edge-deletion

Vertex-deletion

E.g. vaccinate all animals at a particular animal holding.

Edge-deletion

E.g.

Double fence lines

Vertex-deletion

E.g. vaccinate all animals at a particular animal holding.

Edge-deletion

E.g.

- Double fence lines
- Testing or quarantine for animals on a particular trade route

Vertex-deletion

E.g. vaccinate all animals at a particular animal holding.

Edge-deletion

E.g.

- Double fence lines
- ► Testing or quarantine for animals on a particular trade route

Cost of modifications The cost of deleting individual vertices/edges may vary; this can be captured with a weight function on vertices and/or edges.

Desirable properties may include:

Bounded component size

Desirable properties may include:

- Bounded component size
- Bounded degree

Desirable properties may include:

- Bounded component size
- Bounded degree
- Bounded *d*-neighbourhood

Desirable properties may include:

- Bounded component size
- Bounded degree
- Bounded *d*-neighbourhood
- Low connectivity

Desirable properties may include:

- Bounded component size
- Bounded degree
- Bounded *d*-neighbourhood
- Low connectivity

We may additionally want to:

 consider the total number of animals in e.g. a connected component, rather than just the number of animal holdings

Desirable properties may include:

- Bounded component size
- Bounded degree
- Bounded *d*-neighbourhood
- Low connectivity

We may additionally want to:

- consider the total number of animals in e.g. a connected component, rather than just the number of animal holdings
- place more or less strict restrictions on individual animal holdings

Bounding the component size by deleting edges

GOAL: Find the least costly set of edges to delete, so that the remaining graph has no connected component with more than h vertices.

Bounding the component size by deleting edges

GOAL: Find the least costly set of edges to delete, so that the remaining graph has no connected component with more than h vertices.

This problem has also been called:

- Min-Max Component Size Problem
- Minimum Worst Contamination Problem
- Component Order Edge Connectivity

Bounding the component size by deleting edges

GOAL: Find the least costly set of edges to delete, so that the remaining graph has no connected component with more than h vertices.

This problem has also been called:

- Min-Max Component Size Problem
- Minimum Worst Contamination Problem
- Component Order Edge Connectivity

PROBLEM: There is no polynomial-time algorithm to solve this problem in general unless P=NP (even if h = 3).

 There is an efficient problem to solve this problem on trees (Gross, Heinig, Iswara, Kazmiercaak, Luttrell, Saccoman and Suffel, 2013).

- There is an efficient problem to solve this problem on trees (Gross, Heinig, Iswara, Kazmiercaak, Luttrell, Saccoman and Suffel, 2013).
- Animal trade networks are very unlikely to form trees, but they might have some similarities to trees.

- There is an efficient problem to solve this problem on trees (Gross, Heinig, Iswara, Kazmiercaak, Luttrell, Saccoman and Suffel, 2013).
- Animal trade networks are very unlikely to form trees, but they might have some similarities to trees.
- ▶ The **treewidth** of a graph is a measure of how "tree-like" a graph is, in a specific sense. Trees have treewith equal to 1, and cycles have treewidth 2.

- There is an efficient problem to solve this problem on trees (Gross, Heinig, Iswara, Kazmiercaak, Luttrell, Saccoman and Suffel, 2013).
- Animal trade networks are very unlikely to form trees, but they might have some similarities to trees.
- ▶ The **treewidth** of a graph is a measure of how "tree-like" a graph is, in a specific sense. Trees have treewith equal to 1, and cycles have treewidth 2.
- Often algorithmic problems can be solved more efficiently on graphs with small treewidth.

(Some) cattle trade networks have small treewidth

Theorem (Enright and M., 2015)

Suppose we are given a (weighted) graph G on n vertices which has treewidth w. We can determine the least costly set of edges to delete, so that the remaining graph has no connected component with more than h vertices, in time $O((wh)^{2w}n)$.

New results

Theorem (Enright and M., 2016+)

Suppose we are given a (weighted) graph G on n vertices which has treewidth w. We can determine the least costly set of edges to delete, so that the remaining graph contains no graph from the set \mathcal{F} as a subgraph, in time $2^{O(|\mathcal{F}|w^r)}(n+2^r)$, if no element of \mathcal{F} has more than r vertices.

Budget as parameter, rather than desired component size

- Budget as parameter, rather than desired component size
- Geographic networks planar graphs

- Budget as parameter, rather than desired component size
- Geographic networks planar graphs
- Why do trade networks have small treewidth?

- Budget as parameter, rather than desired component size
- Geographic networks planar graphs
- Why do trade networks have small treewidth?

Thank you

