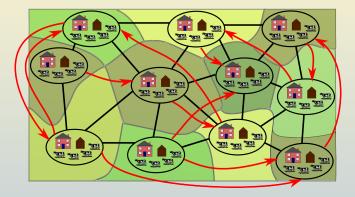


Deleting edges to save cows - an application of treewidth

UCLA, 14th February 2017 Kitty Meeks

Joint work with Jessica Enright (University of Stirling)





Vertex-deletion

Vertex-deletion

E.g. vaccinate all animals at a particular animal holding.

Vertex-deletion

E.g. vaccinate all animals at a particular animal holding.

Edge-deletion

Vertex-deletion

E.g. vaccinate all animals at a particular animal holding.

Edge-deletion

E.g.

• Double fence lines

Vertex-deletion

E.g. vaccinate all animals at a particular animal holding.

Edge-deletion

E.g.

- Double fence lines
- Testing or quarantine for animals on a particular trade route

Vertex-deletion

E.g. vaccinate all animals at a particular animal holding.

Edge-deletion

E.g.

- Double fence lines
- Testing or quarantine for animals on a particular trade route

Cost of modifications The cost of deleting individual vertices/edges may vary; this can be captured with a weight function on vertices and/or edges.

Bounded component size

- Bounded component size
- Bounded degree

- Bounded component size
- Bounded degree
- Bounded *d*-neighbourhood

- Bounded component size
- Bounded degree
- Bounded *d*-neighbourhood
- Low connectivity

- Bounded component size
- Bounded degree
- Bounded *d*-neighbourhood
- Low connectivity

We may additionally want to:

• consider the total number of animals in e.g. a connected component, rather than just the number of animal holdings

- Bounded component size
- Bounded degree
- Bounded *d*-neighbourhood
- Low connectivity

We may additionally want to:

- consider the total number of animals in e.g. a connected component, rather than just the number of animal holdings
- place more or less strict restrictions on individual animal holdings

Let C_h be the set of all connected graphs on h vertices.

Bounding the component size by deleting edges

Let C_h be the set of all connected graphs on h vertices.

Iniversity

 C_h -FREE EDGE DELETION *Input:* A Graph G = (V, E) and an integer k. *Question:* Does there exist $E' \subseteq E$ with |E'| = k such that $G \setminus E$ does not contain any $H \in C_h$ as an induced subgraph? Let C_h be the set of all connected graphs on h vertices.

 C_h -FREE EDGE DELETION *Input:* A Graph G = (V, E) and an integer k. *Question:* Does there exist $E' \subseteq E$ with |E'| = k such that $G \setminus E$ does not contain any $H \in C_h$ as an induced subgraph?

This problem has also been called:

niversity

- Min-Max Component Size Problem
- Minimum Worst Contamination Problem
- Component Order Edge Connectivity

• This problem is NP-complete in general, even when h = 3.

• This problem is NP-complete in general, even when h = 3.

Theorem (Cai, 1996)

 C_h -FREE EDGE DELETION can be solved in time $O(h^{2k} \cdot n^h)$, where n is the number of vertices in the input graph.

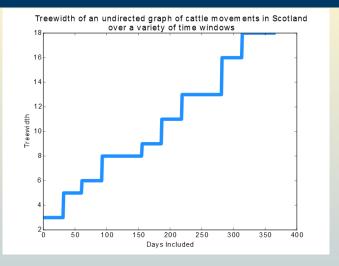
• This problem is NP-complete in general, even when h = 3.

Theorem (Cai, 1996)

 C_h -FREE EDGE DELETION can be solved in time $O(h^{2k} \cdot n^h)$, where n is the number of vertices in the input graph.

Theorem (Gross, Heinig, Iswara, Kazmiercaak, Luttrell, Saccoman and Suffel, 2013)

 C_h -FREE EDGE DELETION can be solved in polynomial time when restricted to trees.



(T, D) is a *tree decomposition* of *G* if *T* is a tree and $D = \{D(t) : t \in V(T)\}$ is a collection of non-empty subsets of V(G) (or *bags*), indexed by the nodes of *T*, satisfying:

- **②** for every $e = uv \in E(G)$, there exists $t \in V(T)$ such that $u, v \in D(t)$,
- o for every v ∈ V(G), if T(v) is defined to be the subgraph of T induced by nodes t with v ∈ D(t), then T(v) is connected.

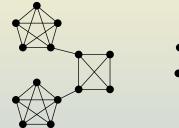
Treewidth is relevant

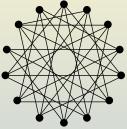
A plot of the treewidth of the largest component in an undirected version of the cattle movement graph in Scotland in 2009 over a number of different days included: all day sets start on January 1, 2009.

Theorem (Enright and M., 2017)

There exists an algorithm to solve C_h -FREE EDGE DELETION in time $O((wh)^{2w}n)$ on an input graph with n vertices whose treewidth is at most w.

Theorem (Enright and M., 2017)


There exists an algorithm to solve C_h -FREE EDGE DELETION in time $O((wh)^{2w}n)$ on an input graph with n vertices whose treewidth is at most w.


We recursively compute the minimum number of edges we delete, for each combination of:

- a partition of the vertices in the bag, indicating which are allowed to belong to the same component, and
- a function from blocks of the partition to [h], indicating the maximum number of vertices allowed so far in the component containing the block in question.

Theorem (Enright and M., 2015+)

Let Π be a monotone graph property defined by the set of forbidden subgraphs \mathcal{F} , where $\max\{|F| : F \in \mathcal{F}\}$ exists and is equal to h. Then EDGE DELETION TO Π can be solved in time $f(h, w) \cdot n$ on an input graph with n vertices whose treewidth is at most w, where f is an explicit computable function.

Algorithms in practice

Graph information				Tree decomposition method		CP method		
Graph	v(G)	e(G)	tw(G)	Minimum	Time	Minimum	Time	Time to
ID				deletion		deletion		confirma-
				found		found		tion
2010-0	104	110	4	38	53	90	27000	-
2010-3	45	45	3	11	4	25	21600	-
2010-4	38	38	3	20	7	24	25200	-
2010-5	37	40	4	7	64	7	1032	1046
2012-0	97	119	5	58	5400	93	7200	-
2012-1	72	74	3	20	11	38	32400	-
2012-4	31	30	2	12	3	12	1082	-
2012-5	49	52	3	15	7	30	19800	-
2013-1	45	47	4	20	35	30	19800	-
2013-3	61	62	4	19	38	36	7200	-
2013-4	35	38	4	15	5	20	3600	-
2013-6	39	41	3	14	4	17	7200	-
2014-0	32	49	4	28	445	28	2738	-
2014-1	47	47	3	18	6	24	7200	-
2014-2	57	59	4	17	10	33	19800	-
2014-3	41	40	2	15	5	31	360	-
2014-5	31	35	4	8	18	8	412	476
2014-6	48	49	3	21	11	21	10800	-
2014-7	31	32	3	16	4	16	7	-

• Why do trade networks have small treewidth?

- Why do trade networks have small treewidth?
- Budget as parameter, rather than desired component size

- Why do trade networks have small treewidth?
- Budget as parameter, rather than desired component size
- Geographic networks planar graphs, or powers of planar graphs

- Why do trade networks have small treewidth?
- Budget as parameter, rather than desired component size
- Geographic networks planar graphs, or powers of planar graphs
- Extra structure in directed graphs

- Why do trade networks have small treewidth?
- Budget as parameter, rather than desired component size
- Geographic networks planar graphs, or powers of planar graphs
- Extra structure in directed graphs
- Temporal connectivity

- Why do trade networks have small treewidth?
- Budget as parameter, rather than desired component size
- Geographic networks planar graphs, or powers of planar graphs
- Extra structure in directed graphs
- Temporal connectivity
- New parameters to capture structure of the input

- Why do trade networks have small treewidth?
- Budget as parameter, rather than desired component size
- Geographic networks planar graphs, or powers of planar graphs
- Extra structure in directed graphs
- Temporal connectivity
- New parameters to capture structure of the input
- More complicated or less costly goals

- Why do trade networks have small treewidth?
- Budget as parameter, rather than desired component size
- Geographic networks planar graphs, or powers of planar graphs
- Extra structure in directed graphs
- Temporal connectivity
- New parameters to capture structure of the input
- More complicated or less costly goals

THANK YOU