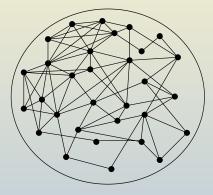


The complexity of finding and counting small subgraphs

OU Winter Combinatorics Meeting, 20th January 2016 Kitty Meeks

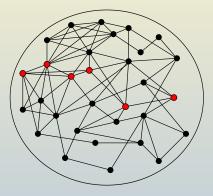
The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices that have particular properties.



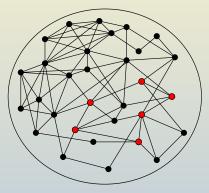
The problem

Given a graph on n vertices, we are interested in subgraphs with k vertices that have particular properties.

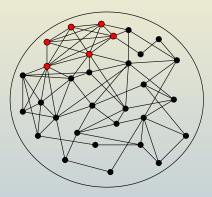


For example:

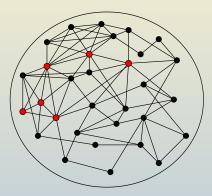
• Paths on k vertices



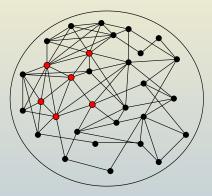
- Paths on k vertices
- Cycles on k vertices



- Paths on k vertices
- Cycles on k vertices
- Cliques on k vertices



- Paths on k vertices
- Cycles on k vertices
- Cliques on k vertices
- Connected *k*-vertex induced subgraphs



- Paths on k vertices
- Cycles on k vertices
- Cliques on k vertices
- Connected *k*-vertex induced subgraphs
- *k*-vertex induced subgraphs with an even number of edges

DECISION

Is there a witness?

DECISION

Is there a witness?

APPROX COUNTING Approximately how many witnesses?

DECISION

Is there a witness?

APPROX COUNTING Approximately how many witnesses?

EXACT COUNTING

Exactly how many witnesses?

Deciding, counting and enumerating

DECISION Is there a witness?

EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses?

EXACT COUNTING

Exactly how many witnesses?

DECISION Is there a witness?

Jniversity

of Glasgow

EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses? UNIFORM SAMPLING Pick a single witness uniformly at random

EXACT COUNTING Exactly how many witnesses?

Deciding, counting and enumerating

University of Glasgow

DECISION Is there a witness? EXTRACTION Identify a single witness

APPROX COUNTING Approximately how many witnesses? UNIFORM SAMPLING Pick a single witness uniformly at random

EXACT COUNTING

Exactly how many witnesses?

ENUMERATION

List all witnesses

- if k = 3 then we are interested in triangles
- if k = n then we are interested in Hamilton Cycles

- if k = 3 then we are interested in triangles
- if k = n then we are interested in Hamilton Cycles

We are interested in what happens as *n* and *k* both tend to infinity, independently, with $k \ll n$.

- if k = 3 then we are interested in triangles
- if k = n then we are interested in Hamilton Cycles

We are interested in what happens as *n* and *k* both tend to infinity, independently, with $k \ll n$.

• We can consider all possible k-vertex subgraphs in time $O(n^k)$.

- if k = 3 then we are interested in triangles
- if k = n then we are interested in Hamilton Cycles

We are interested in what happens as *n* and *k* both tend to infinity, independently, with $k \ll n$.

- We can consider all possible k-vertex subgraphs in time $O(n^k)$.
- We would like to be able to answer questions about *k*-vertex subgraphs in time $f(k) \cdot n^{O(1)}$.

Deciding, counting and enumerating

University of Glasgow

DECISION Is there a witness?

EXTRACTION Identify a single witness

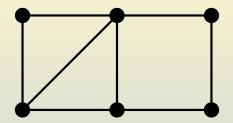
APPROX COUNTING Approximately how many witnesses? UNIFORM SAMPLING Pick a single witness uniformly at random

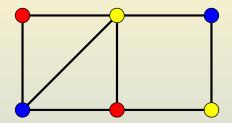
EXACT COUNTING

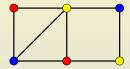
Exactly how many witnesses?

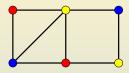
ENUMERATION

List all witnesses

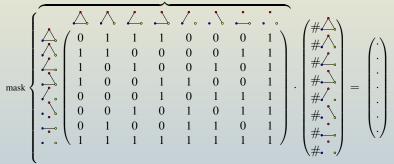


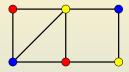




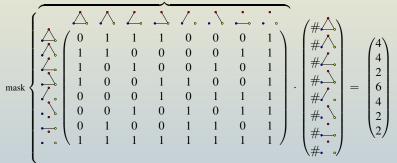


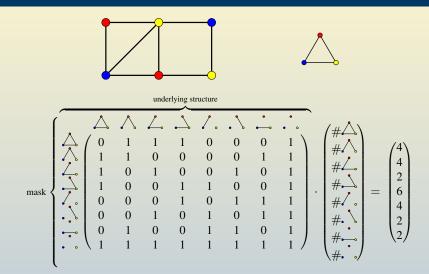
underlying structure





underlying structure





Method used by: Jerrum & M. ('14, '16); matrix inversion more generally used by Flum & Grohe ('04), Bläser & Curticapean ('12), Curticapean ('13).

• Does G contain a set of k vertices that induces either a clique or independent set?

- Does *G* contain a set of *k* vertices that induces either a clique or independent set?
- How many such subsets does G contain?

- Does *G* contain a set of *k* vertices that induces either a clique or independent set?
- How many such subsets does G contain?

Proposition

Let G = (V, E) be an *n*-vertex graph, where $n \ge 2^{2k}$. Then the number of *k*-vertex subsets $U \subset V$ such that U induces either a clique or independent set in G is at least

$$\frac{2^{2k}-k)!}{(2^{2k})!}\frac{n!}{(n-k)!}$$

- Does G contain a set of k vertices that induces either a clique or independent set?
- How many such subsets does G contain?

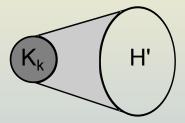
Proposition

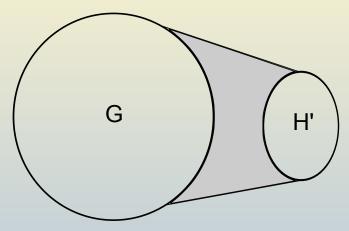
Let G = (V, E) be an n-vertex graph, where $n \ge 2^{2k}$. Then the number of *k*-vertex subsets $U \subset V$ such that U induces either a clique or independent set in G is at least

$$\frac{2^{2k}-k)!}{(2^{2k})!}\frac{n!}{(n-k)!}$$

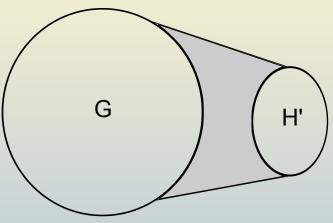
Method used by: Arvind & Raman ('02), Khot & Raman ('02), Jerrum & M. ('16).





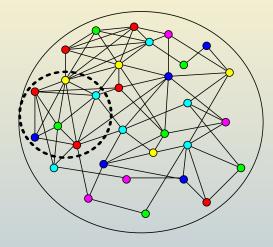


Suppose *H* has 2^{2k} vertices. If we can decide whether *G* contains an **induced** copy of *H*, we can decide whether *G* contains a *k*-clique.

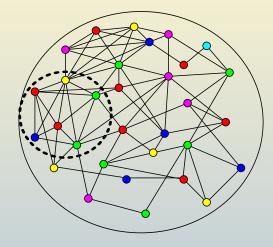


Method used by: Chen, Thurley & Weyer ('08), Khot & Raman ('02), Curticapean & Marx ('14), Jerrum & M. ('15).

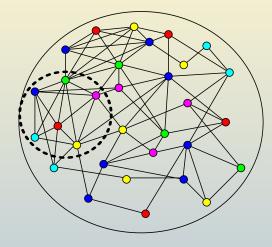
Tractability, using colour-coding



Tractability, using colour-coding

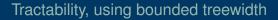


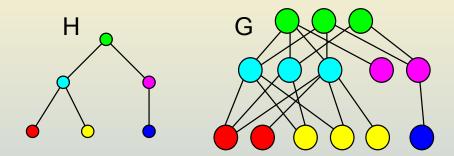
Tractability, using colour-coding

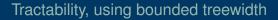


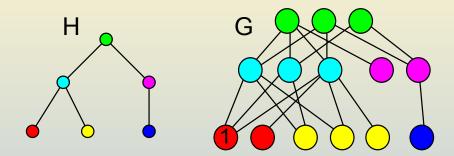
Theorem (Alon, Yuster and Zwick 1995)

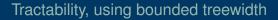
For all $n, k \in \mathbb{N}$, there is a k-perfect family $\mathcal{F}_{n,k}$ of hash functions from [n] to [k] of cardinality $2^{O(k)} \cdot \log n$, and (given n and k) the family $\mathcal{F}_{n,k}$ can be computed in time $2^{O(k)} \cdot n \cdot \log^2 n$.

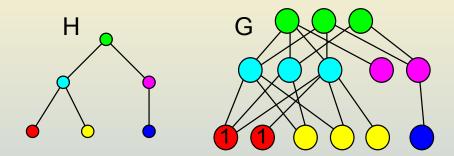


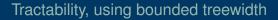


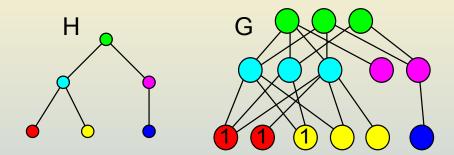


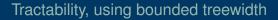


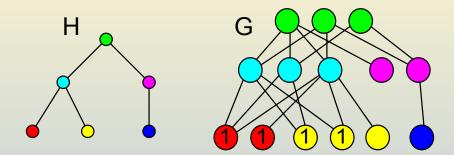


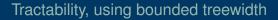


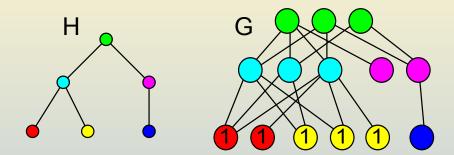


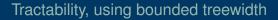


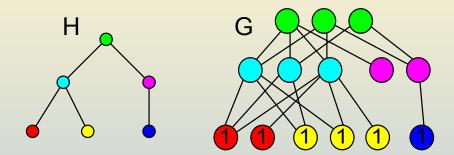


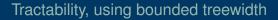


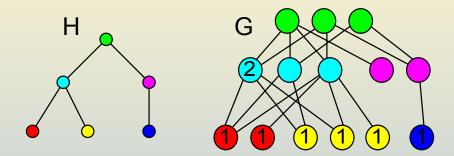


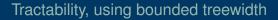


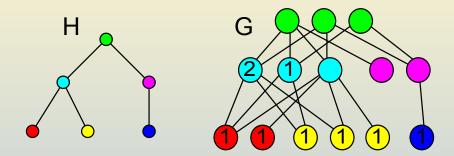


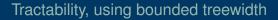


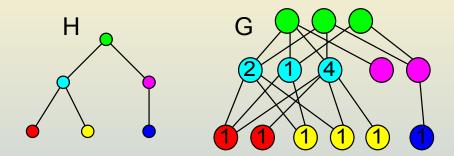


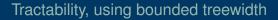


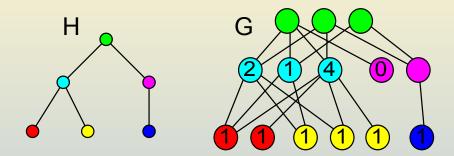


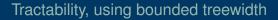


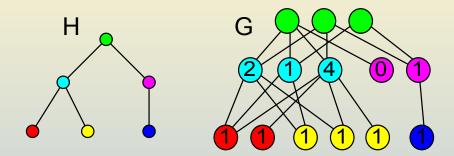


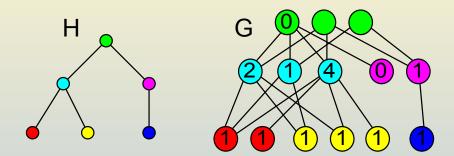


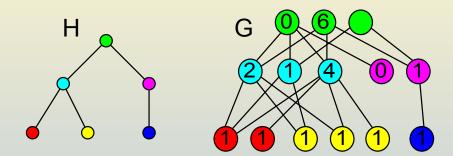


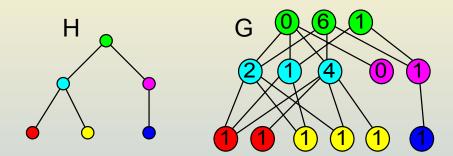


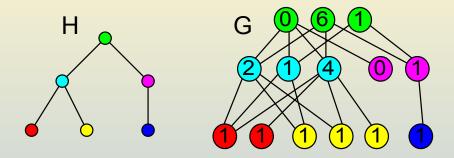












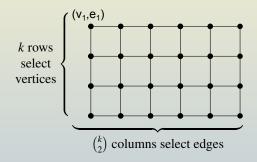
Method used by: Alon, Yuster & Zwick (1995), Arvind & Raman (2002), Jerrum & M. (2015).

Theorem (Excluded Grid Theorem, Robertson and Seymour 1986)

There is a computable function $w : N \to N$ *such that the* $(k \times k)$ *grid is a minor of every graph of treewidth at least* w(k).

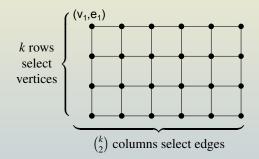
Theorem (Excluded Grid Theorem, Robertson and Seymour 1986)

There is a computable function $w : N \to N$ such that the $(k \times k)$ grid is a minor of every graph of treewidth at least w(k).



Theorem (Excluded Grid Theorem, Robertson and Seymour 1986)

There is a computable function $w : N \to N$ such that the $(k \times k)$ grid is a minor of every graph of treewidth at least w(k).



Method used by: Grohe, Schwentick & Segoufin (2001), Dalmau & Jonsson (2004), Grohe (2007), Färnqvist & Jonnson (2007), Chen, Thurley & Weyer (2008), Chen & Müller (2008), M. (2016).

• for which exact counting is tractable? (Other than the "trivial" examples...)

- for which exact counting is tractable? (Other than the "trivial" examples...)
- for which decision is tractable but approximate counting is hard?

- for which exact counting is tractable? (Other than the "trivial" examples...)
- for which decision is tractable but approximate counting is hard?

Thank you