List Colouring Graphs of Bounded Treewidth

Kitty Meeks Alex Scott

Mathematical Institute University of Oxford

Paris VI, May 2012

Vertex colouring

- Given a graph G = (V, E), $\phi : V \to \{1, \dots, k\}$ is a proper *c*-colouring of *G* if, for all $uv \in E$, $\phi(u) \neq \phi(v)$.
- The chromatic number $\chi(G)$ of G is the smallest c such that there exists a proper c-colouring of G.

CHROMATIC NUMBER

Input: A graph G = (V, E).

Question: What is $\chi(G)$?

- It is NP-complete to decide whether $\chi(G) \leq 3$.
- If G has fixed treewidth at most k, $\chi(G)$ can be computed in linear time (Arnborg and Proskurowski, 1989).

For graph G(V, E) and a collection of colour lists $\mathcal{L} = (L_v)_{v \in V(G)}$, there is a proper list colouring of (G, \mathcal{L}) if there is a proper colouring ϕ of G such that $c(v) \in L_v$ for all $v \in V$. LIST COLOURING

Input: A graph G = (V, E), together with a collection of colour lists $\mathcal{L} = (L_v)_{v \in V(G)}$.

Question: Is there a proper list colouring (G, \mathcal{L}) ?

For graph G(V, E) and a collection of colour lists $\mathcal{L} = (L_v)_{v \in V(G)}$, there is a proper list colouring of (G, \mathcal{L}) if there is a proper colouring ϕ of G such that $c(v) \in L_v$ for all $v \in V$. LIST COLOURING

Input: A graph G = (V, E), together with a collection of colour lists $\mathcal{L} = (L_v)_{v \in V(G)}$.

Question: Is there a proper list colouring (G, \mathcal{L}) ?

Theorem (Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen, 2011)

LIST COLOURING is W[1]-hard, parameterised by treewidth.

The list chromatic number ch(G) of G is the smallest integer c such that, for any assignment of lists $(L_{\nu})_{\nu \in V(G)}$ to the vertices of G with $|L_v| \ge c$ for each v, there exists a proper list colouring of $(G, \mathcal{L}).$

LIST CHROMATIC NUMBER

Input: A graph G = (V, E). Question: What is ch(G)?

The list chromatic number ch(G) of G is the smallest integer c such that, for any assignment of lists $(L_{\nu})_{\nu \in V(G)}$ to the vertices of G with $|L_v| \ge c$ for each v, there exists a proper list colouring of $(G, \mathcal{L}).$

LIST CHROMATIC NUMBER

Input: A graph G = (V, E).

```
Question: What is ch(G)?
```

Theorem (Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen, 2011)

The LIST CHROMATIC NUMBER problem, parameterised by the treewidth bound k, is fixed-parameter tractable, and solvable in linear time for any fixed k.

Edge Colouring

- Given a graph G = (V, E), a proper edge colouring of G is an assignment of colours to the edges of G such that no two incident edges receive the same colour.
- The edge chromatic number \(\chi'(G)\) of G is the smallest integer c such that there exists a proper edge colouring of G using c colours.
- It is NP-hard to determine whether χ'(G) ≤ 3 for cubic graphs (Holyer, 1981).
- χ'(G) can be computed in linear time on graphs of bounded treewidth (Zhou, Nakano and Nishizeki, 2005).

For graph G(V, E) and a collection of colour lists $\mathcal{L} = (L_v)_{v \in V(G)}$, there is a proper list colouring of (G, \mathcal{L}) if there is a proper list colouring ϕ of G such that $c(v) \in L_v$ for all $v \in V$. LIST EDGE COLOURING

Input: A graph
$$G = (V, E)$$
, together with a collection of colour lists $\mathcal{L} = (L_e)_{e \in E(G)}$.

Question: Is there a proper list edge colouring (G, \mathcal{L}) ?

For graph G(V, E) and a collection of colour lists $\mathcal{L} = (L_v)_{v \in V(G)}$, there is a proper list colouring of (G, \mathcal{L}) if there is a proper list colouring ϕ of G such that $c(v) \in L_v$ for all $v \in V$. LIST EDGE COLOURING

Input: A graph G = (V, E), together with a collection of colour lists $\mathcal{L} = (L_e)_{e \in E(G)}$.

Question: Is there a proper list edge colouring (G, \mathcal{L}) ?

Theorem (Zhou, Matsuo, Nishizeki, 2005)

LIST EDGE COLOURING is NP-hard on series-parallel graphs.

Theorem (Marx, 2005)

LIST EDGE COLOURING is NP-hard on outerplanar graphs.

Total Colouring

- Given a graph G = (V, E), a proper total colouring of G is an assignment of colours to the vertices and edges of G such that
 - no two adjacent vertices receive the same colour
 - no two incident edges receive the same colour
 - no edge receives the same colour as either of its endpoints.
- The total chromatic number χ_T(G) of G is the smallest integer c such that there exists a proper total colouring of G using c colours.
- It is NP-hard to determine χ_T(G) for regular bipartite graphs (McDiarmid and Sánchez-Arroyo, 1994).
- χ_T(G) can be computed in linear time on graphs of bounded treewidth (Isobe, Zhou and Nishizeki, 2007).

For graph G(V, E) and a collection of colour lists $\mathcal{L} = (L_x)_{x \in V \cup E}$, there is a proper list colouring of (G, \mathcal{L}) if there is a proper total colouring ϕ of G such that $c(x) \in L_x$ for all $x \in V \cup E$. LIST TOTAL COLOURING

Input: A graph G = (V, E), together with a collection of colour lists $\mathcal{L} = (L_x)_{x \in V \cup E}$.

Question: Is there a proper list total colouring (G, \mathcal{L}) ?

For graph G(V, E) and a collection of colour lists $\mathcal{L} = (L_x)_{x \in V \cup E}$, there is a proper list colouring of (G, \mathcal{L}) if there is a proper total colouring ϕ of G such that $c(x) \in L_x$ for all $x \in V \cup E$. LIST TOTAL COLOURING

Input: A graph G = (V, E), together with a collection of colour lists $\mathcal{L} = (L_x)_{x \in V \cup E}$.

Question: Is there a proper list total colouring (G, \mathcal{L}) ?

Theorem (Zhou, Matsuo, Nishizeki, 2005)

LIST TOTAL COLOURING is NP-hard on series-parallel graphs.

List Edge and Total Chromatic numbers

• The list edge chromatic number ch'(G) of G is the smallest integer c such that, for any assignment of lists $(L_e)_{e \in E(G)}$ to the edges of G with $|L_e| \ge c$ for each e, there exists a proper list edge colouring of (G, \mathcal{L}) .

$$\Delta(G) \leq \chi'(G) \leq \mathsf{ch}'(G) \leq 2\Delta(G) - 1$$

• The list total chromatic number ch_T of G is the smallest integer c such that, for any assignment of lists $(L_e)_{e \in E(G)}$ to the edges of G with $|L_e| \ge c$ for each e, there exists a proper list total colouring of (G, \mathcal{L}) .

$$\Delta(G) + 1 \leq \chi_{\mathcal{T}}(G) \leq \mathsf{ch}_{\mathcal{T}}(G) \leq 2\Delta(G) + 1$$

	General	Parameter	List version,	List Chromatic
	problem	treewidth	parameter	number, param-
			treewidth	eter treewidth
Vertex	NP-c	FPT	W[1]-hard	FPT
colouring				
Edge				
colouring				
Total				
colouring				

	General	Parameter	List version,	List Chromatic
	problem	treewidth	parameter	number, param-
			treewidth	eter treewidth
Vertex	NP-c	FPT	W[1]-hard	FPT
colouring				
Edge	NP-c			
colouring				
Total	NP-c			
colouring				

	General	Parameter	List version,	List Chromatic
	problem	treewidth	parameter	number, param-
			treewidth	eter treewidth
Vertex	NP-c	FPT	W[1]-hard	FPT
colouring				
Edge	NP-c	FPT		
colouring				
Total	NP-c	FPT		
colouring				

	General	Parameter	List version,	List Chromatic
	problem	treewidth	parameter	number, param-
			treewidth	eter treewidth
Vertex	NP-c	FPT	W[1]-hard	FPT
colouring				
Edge	NP-c	FPT	W[1]-hard	
colouring				
Total	NP-c	FPT	W[1]-hard	
colouring				

(ロ)、(型)、(E)、(E)、 E) の(の)

The Combinatorial Results

Theorem

Let G be a graph with treewidth at most k and $\Delta(G) \ge (k+2)2^{k+2}$. Then $ch'(G) = \Delta(G)$.

The Combinatorial Results

Theorem

Let G be a graph with treewidth at most k and $\Delta(G) \ge (k+2)2^{k+2}$. Then $ch'(G) = \Delta(G)$.

Theorem

Let G be a graph with treewidth at most k and $\Delta(G) \ge (k+2)2^{k+2}$. Then $\operatorname{ch}_T(G) = \Delta(G) + 1$.

Edge colouring: background

Theorem (Vizing, 1964)

$\chi'(G)$ is equal to either $\Delta(G)$ or $\Delta(G) + 1$.

Edge colouring: background

Theorem (Vizing, 1964)

 $\chi'(G)$ is equal to either $\Delta(G)$ or $\Delta(G) + 1$.

Conjecture (Vizing)

 $ch'(G) \leq \Delta(G) + 1.$

The List (Edge) Colouring Conjecture

Conjecture (List (Edge) Colouring Conjecture)

For any graph G,

$$ch'(G) = \chi'(G).$$

The List (Edge) Colouring Conjecture

Conjecture (List (Edge) Colouring Conjecture)

For any graph G,

$$\mathsf{ch}'(G) = \chi'(G).$$

• Would imply Vizing's conjecture that $ch'(G) \leq \Delta(G) + 1$.

Conjecture (List (Edge) Colouring Conjecture)

For any graph G,

$$\mathsf{ch}'(G) = \chi'(G).$$

■ Would imply Vizing's conjecture that ch'(G) ≤ ∆(G) + 1.

Theorem (Kahn, 1996)

For any $\epsilon > 0$, if $\Delta(G)$ is sufficiently large,

 $ch'(G) \leq (1 + \epsilon)\Delta(G).$

The List (Edge) Colouring Conjecture

Conjecture (List (Edge) Colouring Conjecture)

For any graph G,

 $ch'(G) = \chi'(G).$

 Our result proves a special case: if Δ(G) is sufficiently large compared with the treewidth of G,

$$\chi'(G) \leq ch'(G) = \Delta(G) \leq \chi'(G).$$

The Total Colouring Conjecture

Conjecture (Total Colouring Conjecture)

For any graph G,

 $\operatorname{ch}_{\mathcal{T}}(G) \leq \Delta(G) + 2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conjecture (Total Colouring Conjecture)

For any graph G,

 $\operatorname{ch}_{\mathcal{T}}(G) \leq \Delta(G) + 2.$

Again, we prove a special case of this conjecture: if $\Delta(G)$ is sufficiently large compared with the treewidth of G, we have the stronger bound

 $\operatorname{ch}_T(G) = \Delta(G) + 1.$

Theorem

Let G be a graph with treewidth at most k and $\Delta(G) \ge (k+2)2^{k+2}$. Then $ch'(G) = \Delta(G)$.

Sufficient to prove that, if G has treewidth at most k, then ch'(G) ≤ max{Δ(G), (k + 2)2^{k+2}}.

Theorem

Let G be a graph with treewidth at most k and $\Delta(G) \ge (k+2)2^{k+2}$. Then $ch'(G) = \Delta(G)$.

Sufficient to prove that, if G has treewidth at most k, then ch'(G) ≤ max{Δ(G), (k + 2)2^{k+2}}.

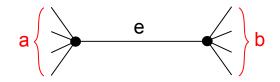
Let (G, L = {L_e : e ∈ E}) be an edge-minimal counterexample. Assume
 |L_e| = Δ₀ = max{Δ(G), (k + 2)2^{k+2}} for each e.

Theorem

Let G be a graph with treewidth at most k and $\Delta(G) \ge (k+2)2^{k+2}$. Then $ch'(G) = \Delta(G)$.

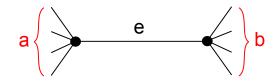
Sufficient to prove that, if G has treewidth at most k, then ch'(G) ≤ max{Δ(G), (k + 2)2^{k+2}}.

- Let (G, L = {L_e : e ∈ E}) be an edge-minimal counterexample. Assume
 |L_e| = Δ₀ = max{Δ(G), (k + 2)2^{k+2}} for each e.
- We may assume any proper subgraph G' of G has $ch'(G') \leq \Delta_0$.



 $a + b < \Delta_0$

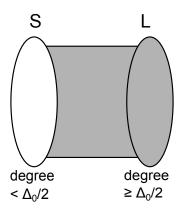
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



 $a + b < \Delta_0$

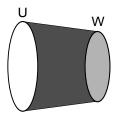
• We may assume every edge is incident with at least Δ_0 others.

• Every edge is incident with at least one vertex in *L*.



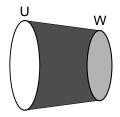
We want

- $\Gamma(u) = W \ \forall u \in U$
- $\bullet |U| \ge |W|$
- U independent



We want

- $\Gamma(u) = W \ \forall u \in U$
- $\bullet |U| \ge |W|$
- U independent



イロト 不得 とうせい イロト

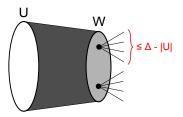
э

Theorem (Galvin, 1995)

If G is a bipartite graph then $ch'(G) = \Delta(G)$.

We want

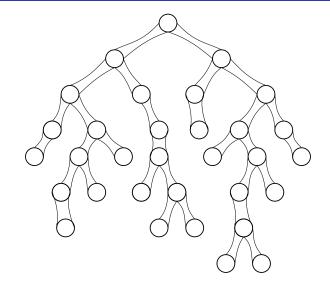
- $\Gamma(u) = W \ \forall u \in U$
- $\bullet |U| \ge |W|$
- U independent

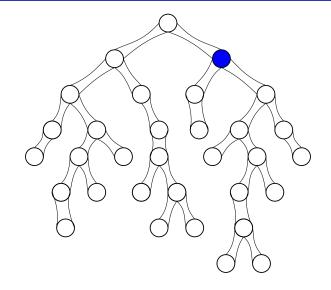


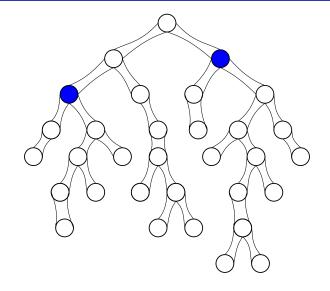
イロト 不得 とくほと くほと

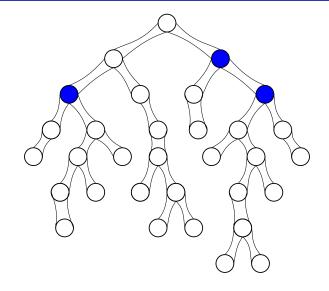
Theorem (Galvin, 1995)

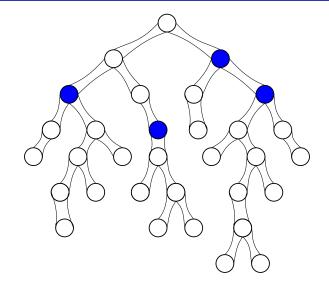
If G is a bipartite graph then $ch'(G) = \Delta(G)$.

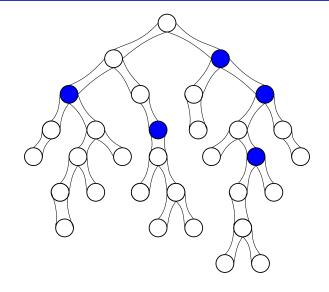


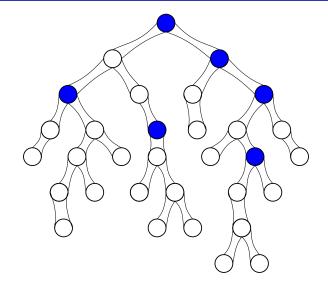


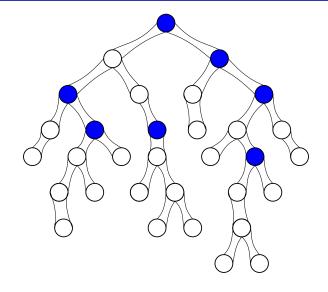


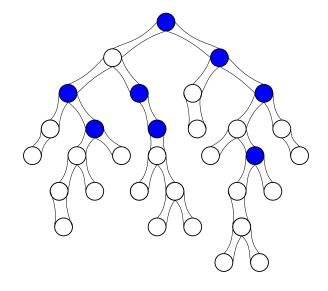




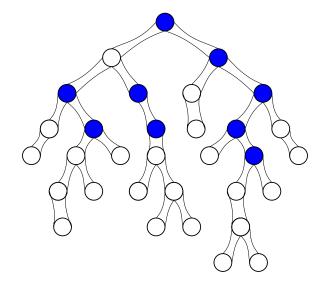


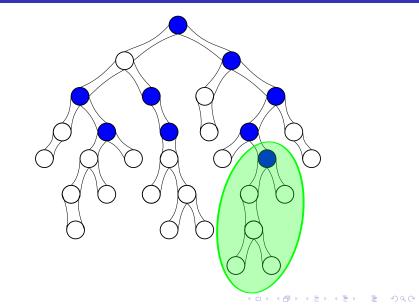


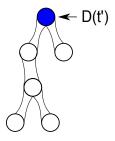




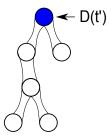
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?





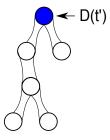


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

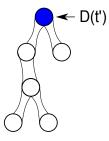


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• At most k + 1 vertices from L

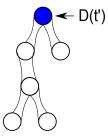


- At most k + 1 vertices from L
- At least $\Delta_0/2 k$ vertices not in D(t'), all from S



- At most k + 1 vertices from L
- At least $\Delta_0/2 k$ vertices not in D(t'), all from S
- At most 2^{k+1} different neighbourhoods for these vertices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



- At most k + 1 vertices from L
- At least $\Delta_0/2 k$ vertices not in D(t'), all from S
- At most 2^{k+1} different neighbourhoods for these vertices
- So there exists a subset U with $|U| \ge k + 1$ and every vertex in U having the same neighbourhood W $(|W| \le k + 1)$

List Total Chromatic Number: The Proof

Theorem

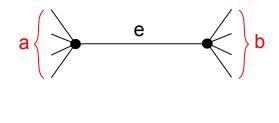
Let G be a graph with treewidth at most k and $\Delta(G) \ge (k+2)2^{k+2}$. Then $\operatorname{ch}_T(G) = \Delta(G) + 1$.

Sufficient to prove that, if G has treewidth at most k, then $ch_T(G) \le max{\Delta(G), (k+2)2^{k+2}} + 1 = \Delta_0 + 1.$

 As before, fix an edge-minimal counterexample (G, L = {L_e : e ∈ E}).

List Total Chromatic Number: The Proof

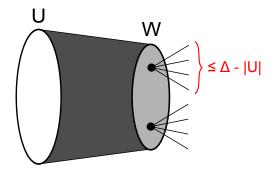
- Here we may assume every edge is incident with at least Δ_0-1 others.



 $a+b < \Delta_0 - 1$

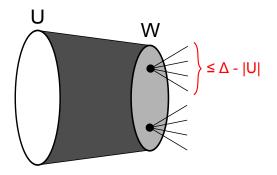
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Total Colouring



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

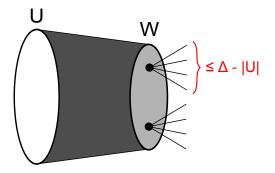
Total Colouring



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Extend colouring to edges as before

Total Colouring



- Extend colouring to edges as before
- Each vertex $u \in U$ has a list of $\Delta_0 > 2(k+1) \ge 2d(u)$ colours

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

	General	Parameter	List version,	List Chromatic
	problem	treewidth	parameter	number, param-
			treewidth	eter treewidth
Vertex	NP-c	FPT	W[1]-hard	FPT
colouring				
Edge	NP-c	FPT	W[1]-hard	
colouring				
Total	NP-c	FPT	W[1]-hard	
colouring				

<□ > < @ > < E > < E > E のQ @

Complexity Results

Theorem

LIST EDGE CHROMATIC NUMBER and LIST TOTAL CHROMATIC NUMBER are fixed parameter tractable, parameterised by the treewidth bound k, and are solvable in linear time for any fixed k.

Theorem

LIST EDGE CHROMATIC NUMBER and LIST TOTAL CHROMATIC NUMBER are fixed parameter tractable, parameterised by the treewidth bound k, and are solvable in linear time for any fixed k.

- If $\Delta(G) \ge (k+2)2^{k+2}$, we know the value of ch'(G) and $ch_T(G)$.
- It remains to deal with the case in which the maximum degree is bounded by a function of the treewidth k.

Line Graphs and Total Graphs

- Given a graph G = (V, E), the line graph L(G) of G is $(E, \{ef : e, f \in E \text{ and } e, f \text{ incident in } G\}).$
- A proper edge colouring of *G* corresponds to a proper vertex colouring of *L*(*G*).

Line Graphs and Total Graphs

- Given a graph G = (V, E), the line graph L(G) of G is $(E, \{ef : e, f \in E \text{ and } e, f \text{ incident in } G\}).$
- A proper edge colouring of *G* corresponds to a proper vertex colouring of *L*(*G*).
- Given a graph G = (V, E), the total graph T(G) of G has vertex set V ∪ E and edge set

 $E \cup \{ef : e, f \in E \text{ and } e, f \text{ incident in } G\}$ $\cup \{ve : v \in V, e \in E, e \text{ incident with } v\}).$

■ A proper total colouring of *G* corresponds to a proper vertex colouring of *T*(*G*).

Proposition

If G has treewidth k and maximum degree at most Δ , then L(G) has treewidth at most $(k + 1)\Delta$.

- Suppose $(T, D = \{D(t) : t \in T\})$ is a width k tree decomposition for G.
- Set $D'(t) = \{e \in E : e \text{ has an endpoint in } D(t)\}$, and $\mathcal{D}' = \{D'(t) : t \in T\}$.

- (T, \mathcal{D}') is a tree decomposition for L(G).
- $\max_{t \in \mathcal{T}} |D'(t)| \leq \max_{t \in \mathcal{T}} |D(t)| \cdot \Delta \leq (k+1)\Delta.$

Proposition

If G has treewidth k and maximum degree at most Δ , then T(G) has treewidth at most $(k + 1)(\Delta + 1)$.

- Suppose $(T, D = \{D(t) : t \in T\})$ is a width k tree decomposition for G.
- Set $D'(t) = D(t) \cup \{e \in E : e \text{ has an endpoint in } D(t)\}$, and $\mathcal{D}' = \{D'(t) : t \in T\}$.
- (T, \mathcal{D}') is a tree decomposition for T(G).
- $= \max_{t \in \mathcal{T}} |D'(t)| \le \max_{t \in \mathcal{T}} \{ |D(t)| + |D(t)| \cdot \Delta \le (k+1)(\Delta+1).$

- If both the treewidth and maximum degree of G are bounded, computing ch'(G) or ch_T(G) is equivalent to computing ch(H) for a graph H of bounded treewidth (H = L(G) or T(G)).
- This can be done in linear time:

Theorem (Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen, 2011)

The LIST CHROMATIC NUMBER problem, parameterised by the treewidth bound k, is fixed-parameter tractable, and solvable in linear time for any fixed k.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1 Determine whether $\Delta(G) \ge (k+2)2^{k+2}$.

- 1 Determine whether $\Delta(G) \ge (k+2)2^{k+2}$.
- 2 If $\Delta(G) \ge (k+2)2^{k+2}$ we know $ch'(G) = \Delta(G)$ and $ch_T(G) = \Delta(G) + 1$.

- 1 Determine whether $\Delta(G) \ge (k+2)2^{k+2}$.
- 2 If $\Delta(G) \ge (k+2)2^{k+2}$ we know $ch'(G) = \Delta(G)$ and $ch_T(G) = \Delta(G) + 1$.
- **3** Otherwise, L(G) and T(G) have bounded treewidth.
 - Compute a bounded width tree decomposition for *L*(*G*) or *T*(*G*).
 - Solve LIST CHROMATIC NUMBER for L(G) or T(G) in linear time.

Parameterised complexity of colouring problems - again!

	General	Parameter	List version,	List Chromatic
	problem	treewidth	parameter	number, param-
			treewidth	eter treewidth
Vertex	NP-c	FPT	W[1]-hard	FPT
colouring				
Edge	NP-c	FPT	W[1]-hard	FPT
colouring				
Total	NP-c	FPT	W[1]-hard	FPT
colouring				

(ロ)、

THANK YOU