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Vertex colouring

Given a graph G = (V ,E ), φ : V → {1, . . . , k} is a proper
c-colouring of G if, for all uv ∈ E , φ(u) 6= φ(v).

The chromatic number χ(G ) of G is the smallest c such that
there exists a proper c-colouring of G .

Chromatic Number

Input: A graph G = (V ,E ).

Question: What is χ(G )?

It is NP-complete to decide whether χ(G ) ≤ 3.

If G has fixed treewidth at most k , χ(G ) can be computed in
linear time (Arnborg and Proskurowski, 1989).



List Colouring

For graph G (V ,E ) and a collection of colour lists L = (Lv )v∈V (G),
there is a proper list colouring of (G ,L) if there is a proper
colouring φ of G such that c(v) ∈ Lv for all v ∈ V .
List Colouring

Input: A graph G = (V ,E ), together with a collection of
colour lists L = (Lv )v∈V (G).

Question: Is there a proper list colouring (G ,L)?

Theorem (Fellows, Fomin, Lokshtanov, Rosamond, Saurabh,
Szeider and Thomassen, 2011)

List Colouring is W[1]-hard, parameterised by treewidth.
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List Chromatic Number

The list chromatic number ch(G ) of G is the smallest integer c
such that, for any assignment of lists (Lv )v∈V (G) to the vertices of
G with |Lv | ≥ c for each v , there exists a proper list colouring of
(G ,L).
List Chromatic Number

Input: A graph G = (V ,E ).

Question: What is ch(G )?

Theorem (Fellows, Fomin, Lokshtanov, Rosamond, Saurabh,
Szeider and Thomassen, 2011)

The List Chromatic Number problem, parameterised by the
treewidth bound k, is fixed-parameter tractable, and solvable in
linear time for any fixed k.
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linear time for any fixed k.



Edge Colouring

Given a graph G = (V ,E ), a proper edge colouring of G is an
assignment of colours to the edges of G such that no two
incident edges receive the same colour.

The edge chromatic number χ′(G ) of G is the smallest
integer c such that there exists a proper edge colouring of G
using c colours.

It is NP-hard to determine whether χ′(G ) ≤ 3 for cubic
graphs (Holyer, 1981).

χ′(G ) can be computed in linear time on graphs of bounded
treewidth (Zhou, Nakano and Nishizeki, 2005).



List Edge Colouring

For graph G (V ,E ) and a collection of colour lists L = (Lv )v∈V (G),
there is a proper list colouring of (G ,L) if there is a proper list
colouring φ of G such that c(v) ∈ Lv for all v ∈ V .
List Edge Colouring

Input: A graph G = (V ,E ), together with a collection of
colour lists L = (Le)e∈E(G).

Question: Is there a proper list edge colouring (G ,L)?

Theorem (Zhou, Matsuo, Nishizeki, 2005)

List Edge Colouring is NP-hard on series-parallel graphs.

Theorem (Marx, 2005)

List Edge Colouring is NP-hard on outerplanar graphs.
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Total Colouring

Given a graph G = (V ,E ), a proper total colouring of G is an
assignment of colours to the vertices and edges of G such
that

no two adjacent vertices receive the same colour
no two incident edges receive the same colour
no edge receives the same colour as either of its endpoints.

The total chromatic number χT (G ) of G is the smallest
integer c such that there exists a proper total colouring of G
using c colours.

It is NP-hard to determine χT (G ) for regular bipartite graphs
(McDiarmid and Sánchez-Arroyo, 1994).

χT (G ) can be computed in linear time on graphs of bounded
treewidth (Isobe, Zhou and Nishizeki, 2007).



List Total Colouring

For graph G (V ,E ) and a collection of colour lists L = (Lx)x∈V∪E ,
there is a proper list colouring of (G ,L) if there is a proper total
colouring φ of G such that c(x) ∈ Lx for all x ∈ V ∪ E .
List Total Colouring

Input: A graph G = (V ,E ), together with a collection of
colour lists L = (Lx)x∈V∪E .

Question: Is there a proper list total colouring (G ,L)?

Theorem (Zhou, Matsuo, Nishizeki, 2005)

List Total Colouring is NP-hard on series-parallel graphs.
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Theorem (Zhou, Matsuo, Nishizeki, 2005)

List Total Colouring is NP-hard on series-parallel graphs.



List Edge and Total Chromatic numbers

The list edge chromatic number ch′(G ) of G is the smallest
integer c such that, for any assignment of lists (Le)e∈E(G) to
the edges of G with |Le | ≥ c for each e, there exists a proper
list edge colouring of (G ,L).

∆(G ) ≤ χ′(G ) ≤ ch′(G ) ≤ 2∆(G )− 1

The list total chromatic number chT of G is the smallest
integer c such that, for any assignment of lists (Le)e∈E(G) to
the edges of G with |Le | ≥ c for each e, there exists a proper
list total colouring of (G ,L).

∆(G ) + 1 ≤ χT (G ) ≤ chT (G ) ≤ 2∆(G ) + 1
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The Combinatorial Results

Theorem

Let G be a graph with treewidth at most k and
∆(G ) ≥ (k + 2)2k+2. Then ch′(G ) = ∆(G ).

Theorem

Let G be a graph with treewidth at most k and
∆(G ) ≥ (k + 2)2k+2. Then chT (G ) = ∆(G ) + 1.
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Edge colouring: background

Theorem (Vizing, 1964)

χ′(G ) is equal to either ∆(G ) or ∆(G ) + 1.

Conjecture (Vizing)

ch′(G ) ≤ ∆(G ) + 1.
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The List (Edge) Colouring Conjecture

Conjecture (List (Edge) Colouring Conjecture)

For any graph G ,
ch′(G ) = χ′(G ).

Would imply Vizing’s conjecture that ch′(G ) ≤ ∆(G ) + 1.

Theorem (Kahn, 1996)

For any ε > 0, if ∆(G ) is sufficiently large,

ch′(G ) ≤ (1 + ε)∆(G ).
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The List (Edge) Colouring Conjecture

Conjecture (List (Edge) Colouring Conjecture)

For any graph G ,
ch′(G ) = χ′(G ).

Our result proves a special case: if ∆(G ) is sufficiently large
compared with the treewidth of G ,

χ′(G ) ≤ ch′(G ) = ∆(G ) ≤ χ′(G ).



The Total Colouring Conjecture

Conjecture (Total Colouring Conjecture)

For any graph G ,
chT (G ) ≤ ∆(G ) + 2.

Again, we prove a special case of this conjecture: if ∆(G ) is
sufficiently large compared with the treewidth of G , we have the
stronger bound

chT (G ) = ∆(G ) + 1.



The Total Colouring Conjecture

Conjecture (Total Colouring Conjecture)
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List Edge Chromatic Number: The Proof

Theorem

Let G be a graph with treewidth at most k and
∆(G ) ≥ (k + 2)2k+2. Then ch′(G ) = ∆(G ).

Sufficient to prove that, if G has treewidth at most k , then
ch′(G ) ≤ max{∆(G ), (k + 2)2k+2}.

Let (G ,L = {Le : e ∈ E}) be an edge-minimal
counterexample. Assume
|Le | = ∆0 = max{∆(G ), (k + 2)2k+2} for each e.

We may assume any proper subgraph G ′ of G has
ch′(G ′) ≤ ∆0.
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List Edge Chromatic Number: The Proof

e
a b

a + b < ∆0

We may assume every edge is incident with at least ∆0 others.



List Edge Chromatic Number: The Proof

e
a b

a + b < ∆0

We may assume every edge is incident with at least ∆0 others.



List Edge Chromatic Number: The Proof

Every edge is incident with at least one vertex in L.

degree 
≥ Δ0/2

degree 
< Δ0/2

S L



List Edge Chromatic Number: The Proof

We want

Γ(u) = W ∀u ∈ U

|U| ≥ |W |
U independent

U
W

Theorem (Galvin,1995)

If G is a bipartite graph then ch′(G ) = ∆(G ).
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List Edge Chromatic Number: The Proof

We want

Γ(u) = W ∀u ∈ U

|U| ≥ |W |
U independent

U
W

≤ Δ - |U|

Theorem (Galvin,1995)

If G is a bipartite graph then ch′(G ) = ∆(G ).
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List Edge Chromatic Number: The Proof

D(t')

At most k + 1 vertices from L

At least ∆0/2− k vertices not in D(t ′), all from S

At most 2k+1 different neighbourhoods for these vertices

So there exists a subset U with |U| ≥ k + 1 and every vertex
in U having the same neighbourhood W (|W | ≤ k + 1)
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D(t')
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List Total Chromatic Number: The Proof

Theorem

Let G be a graph with treewidth at most k and
∆(G ) ≥ (k + 2)2k+2. Then chT (G ) = ∆(G ) + 1.

Sufficient to prove that, if G has treewidth at most k , then
chT (G ) ≤ max{∆(G ), (k + 2)2k+2}+ 1 = ∆0 + 1.

As before, fix an edge-minimal counterexample
(G ,L = {Le : e ∈ E}).



List Total Chromatic Number: The Proof

Here we may assume every edge is incident with at least
∆0 − 1 others.

e
a b

a + b < ∆0 − 1



Total Colouring

U
W

≤ Δ - |U|

Extend colouring to edges as before

Each vertex u ∈ U has a list of ∆0 > 2(k + 1) ≥ 2d(u) colours
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Complexity Results

Theorem

List Edge Chromatic Number and List Total
Chromatic Number are fixed parameter tractable,
parameterised by the treewidth bound k, and are solvable in linear
time for any fixed k.

If ∆(G ) ≥ (k + 2)2k+2, we know the value of ch′(G ) and
chT (G ).

It remains to deal with the case in which the maximum degree
is bounded by a function of the treewidth k .
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Line Graphs and Total Graphs

Given a graph G = (V ,E ), the line graph L(G ) of G is
(E , {ef : e, f ∈ E and e, f incident in G}).

A proper edge colouring of G corresponds to a proper vertex
colouring of L(G ).

Given a graph G = (V ,E ), the total graph T (G ) of G has
vertex set V ∪ E and edge set

E ∪ {ef : e, f ∈ E and e, f incident in G}
∪ {ve : v ∈ V , e ∈ E , e incident with v}).

A proper total colouring of G corresponds to a proper vertex
colouring of T (G ).



Line Graphs and Total Graphs
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Line Graphs and Total Graphs

Proposition

If G has treewidth k and maximum degree at most ∆, then L(G )
has treewidth at most (k + 1)∆.

Suppose (T ,D = {D(t) : t ∈ T}) is a width k tree
decomposition for G .

Set D ′(t) = {e ∈ E : e has an endpoint in D(t)}, and
D′ = {D ′(t) : t ∈ T}.
(T ,D′) is a tree decomposition for L(G ).

maxt∈T |D ′(t)| ≤ maxt∈T |D(t)| ·∆ ≤ (k + 1)∆.



Line Graphs and Total Graphs

Proposition

If G has treewidth k and maximum degree at most ∆, then T (G )
has treewidth at most (k + 1)(∆ + 1).

Suppose (T ,D = {D(t) : t ∈ T}) is a width k tree
decomposition for G .

Set D ′(t) = D(t) ∪ {e ∈ E : e has an endpoint in D(t)}, and
D′ = {D ′(t) : t ∈ T}.
(T ,D′) is a tree decomposition for T (G ).

maxt∈T |D ′(t)| ≤ maxt∈T{|D(t)|+|D(t)|·∆ ≤ (k +1)(∆+1).



Bounded Maximum Degree

If both the treewidth and maximum degree of G are bounded,
computing ch′(G ) or chT (G ) is equivalent to computing
ch(H) for a graph H of bounded treewidth (H = L(G ) or
T (G )).

This can be done in linear time:

Theorem (Fellows, Fomin, Lokshtanov, Rosamond, Saurabh,
Szeider and Thomassen, 2011)

The List Chromatic Number problem, parameterised by the
treewidth bound k, is fixed-parameter tractable, and solvable in
linear time for any fixed k.



Summary of Algorithms

Suppose we are given G together with a tree decomposition (T ,D)
of width k.

1 Determine whether ∆(G ) ≥ (k + 2)2k+2.

2 If ∆(G ) ≥ (k + 2)2k+2 we know ch′(G ) = ∆(G ) and
chT (G ) = ∆(G ) + 1.

3 Otherwise, L(G ) and T (G ) have bounded treewidth.

Compute a bounded width tree decomposition for L(G ) or
T (G ).
Solve List Chromatic Number for L(G ) or T (G ) in linear
time.



Summary of Algorithms

Suppose we are given G together with a tree decomposition (T ,D)
of width k.

1 Determine whether ∆(G ) ≥ (k + 2)2k+2.

2 If ∆(G ) ≥ (k + 2)2k+2 we know ch′(G ) = ∆(G ) and
chT (G ) = ∆(G ) + 1.

3 Otherwise, L(G ) and T (G ) have bounded treewidth.

Compute a bounded width tree decomposition for L(G ) or
T (G ).
Solve List Chromatic Number for L(G ) or T (G ) in linear
time.



Summary of Algorithms

Suppose we are given G together with a tree decomposition (T ,D)
of width k.

1 Determine whether ∆(G ) ≥ (k + 2)2k+2.

2 If ∆(G ) ≥ (k + 2)2k+2 we know ch′(G ) = ∆(G ) and
chT (G ) = ∆(G ) + 1.

3 Otherwise, L(G ) and T (G ) have bounded treewidth.

Compute a bounded width tree decomposition for L(G ) or
T (G ).
Solve List Chromatic Number for L(G ) or T (G ) in linear
time.



Summary of Algorithms

Suppose we are given G together with a tree decomposition (T ,D)
of width k.

1 Determine whether ∆(G ) ≥ (k + 2)2k+2.
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Parameterised complexity of colouring problems - again!

General
problem

Parameter
treewidth

List version,
parameter
treewidth

List Chromatic
number, param-
eter treewidth

Vertex
colouring

NP-c FPT W[1]-hard FPT

Edge
colouring

NP-c FPT W[1]-hard FPT

Total
colouring

NP-c FPT W[1]-hard FPT
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