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contain a Hamilton cycle?
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does G contain a perfect
matching?
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What is a parameterised counting problem?

Introduced by Flum and Grohe (2004)

Measure running time in terms of a parameter as well as the
total input size

Examples:

How many vertex-covers of size k are there in G ?
How many k-cliques are there in G ?
Given a graph G of treewidth at most k , how many Hamilton
cycles are there in G ?



What is a parameterised counting problem?

Introduced by Flum and Grohe (2004)

Measure running time in terms of a parameter as well as the
total input size

Examples:

How many vertex-covers of size k are there in G ?

How many k-cliques are there in G ?
Given a graph G of treewidth at most k , how many Hamilton
cycles are there in G ?



What is a parameterised counting problem?

Introduced by Flum and Grohe (2004)

Measure running time in terms of a parameter as well as the
total input size

Examples:

How many vertex-covers of size k are there in G ?
How many k-cliques are there in G ?

Given a graph G of treewidth at most k , how many Hamilton
cycles are there in G ?



What is a parameterised counting problem?

Introduced by Flum and Grohe (2004)

Measure running time in terms of a parameter as well as the
total input size

Examples:

How many vertex-covers of size k are there in G ?
How many k-cliques are there in G ?
Given a graph G of treewidth at most k , how many Hamilton
cycles are there in G ?



The theory of parameterised counting

Efficient algorithms: Fixed parameter tractable (FPT)
Running time f (k) · nO(1)

Intractable problems: #W[1]-hard
A #W[1]-complete problem: p-#Clique.
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#W[1]-completeness

To show the problem Π′ (with parameter κ′) is #W[1]-hard,
we give a reduction from a problem Π (with parameter κ) to
Π′.

An fpt Turing reduction from (Π, κ) to (Π′, κ′) is an algorithm
A with an oracle to Π′ such that

1 A computes Π,
2 A is an fpt-algorithm with respect to κ, and
3 there is a computable function g : N→ N such that for all

oracle queries “Π′(y) =?” posed by A on input x we have
κ′(y) ≤ g(κ(x)).

In this case we write (Π, κ) ≤fpt
T (Π′, κ′).
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Subgraph Counting Model

Let Φ be a family (φ1, φ2, . . .) of functions, such that φk is a
mapping from labelled graphs on k-vertices to {0, 1}.

p-#Induced Subgraph With Property(Φ) (ISWP(Φ))
Input: A graph G = (V ,E ) and an integer k .
Parameter: k.
Question: What is the cardinality of the set

{(v1, . . . , vk) ∈ V k : v1, . . . , vk all distinct,
and φk(G [v1, . . . , vk ]) = 1}?
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p-#Sub(H)
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Complexity Questions

Is the corresponding decision problem in FPT?

Is there a fixed parameter algorithm for p-#Induced
Subgraph With Property(Φ)?

Can we approximate p-#Induced Subgraph With
Property(Φ) efficiently?



Approximation Algorithms

An FPTRAS for a parameterised counting problem Π with
parameter k is a randomised approximation scheme that takes an
instance I of Π (with |I | = n), and numbers ε > 0 and 0 < δ < 1,
and in time f (k) · g(n, 1/ε, log(1/δ)) (where f is any function, and
g is a polynomial in n, 1/ε and log(1/δ)) outputs a rational
number z such that

P[(1− ε)Π(I ) ≤ z ≤ (1 + ε)Π(I )] ≥ 1− δ.
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Monotone properties I: p-#Sub(H)

Theorem (Arvind & Raman, 2002)

There is an FPTRAS for p-#Sub(H) whenever all graphs in H
have bounded treewidth.

Theorem (Curticapean & Marx, 2014)

p-#Sub(H) is in FPT if all graphs in H have bounded
vertex-cover number; otherwise p-#Sub(H) is #W[1]-complete.
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Monotone properties II: properties with more than one
minimal element

Theorem (Jerrum & M.)

Let Φ be a monotone property, and suppose that there exists a
constant t such that, for every k ∈ N, all minimal graphs satisfying
φk have treewidth at most t. Then there is an FPTRAS for
p-#Induced Subgraph With Property(Φ).
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p-#Connected Induced Subgraph is #W[1]-complete.
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Non-monotone properties

Theorem

Let Φ be a family (φ1, φ2, . . .) of functions φk from labelled
k-vertex graphs to {0, 1} that are not identically zero, such that
the function mapping k 7→ φk is computable. Suppose that

|{|E (H)| : |V (H)| = k and Φ is true for H}| = o(k2).

Then p-#Induced Subgraph With Property(Φ) is
#W[1]-complete.

E.g. p-#Planar Induced Subgraph, p-#Regular
Induced Subgraph
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Even induced subgraphs: FPT???

Theorem (Goldberg, Grohe, Jerrum & Thurley (2010); Lidl &
Niederreiter (1983))

Given a graph G , there is a polynomial-time algorithm which
computes the number of induced subgraphs of G having an even
number of edges.



Even induced subgraphs: decision

Let G be a graph on n ≥ 22k vertices. Then:

If k ≡ 0 mod 4 or k ≡ 1 mod 4 then G contains a k-vertex
subgraph with an even number of edges.

If k ≡ 2 mod 4 then G contains a k-vertex subgraph with an
even number of edges unless G is a clique.

If k ≡ 3 mod 4 then G contains a k-vertex subgraph with an
even number of edges unless G is either a clique or the
disjoint union of two cliques.



Even induced subgraphs: exact counting is
#W[1]-complete
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Inverting the matrix

Theorem

Let (P,≤) be a finite lattice and f : P → R a function. Set S to be the
upward closure of the support of f , that is,

S = {x ∈ P : ∃y ∈ P with y ≤ x and f (y) 6= 0},

and suppose that S = {x1, . . . , xn}. Let A = (aij)1≤i,j≤n be the matrix
given by aij = f (xi ∧ xj). Then

det(A) =
n∏

i=1

∑
xj≤xi
xj∈S

f (xj)µ(xj , xi ).

Based on results of Rajarama Bhat (1991) and Haukkanen (1996).



Even induced subgraphs: an FPTRAS

Lemma

Suppose that, for each k and any graph G on n vertices, the
number of k-vertex (labelled) subgraphs of G that satisfy φk is
either

1 zero, or

2 at least
1

g(k)p(n)

(
n

k

)
,

where p is a polynomial and g is a computable function.

Then there exists an FPTRAS for p-#ISWP(Φ).



Even induced subgraphs: an FPTRAS

Theorem

Let k ≥ 3 and let G be a graph on n ≥ 22k vertices. Then either
G contains no even k-vertex subgraph or else G contains at least

1

22k2k2n2

(
n

k

)
even k-vertex subgraphs.



Even induced subgraphs: an FPTRAS

Theorem (Erdős and Szekeres)

Let k ∈ N. Then there exists R(k) < 22k such that any graph on
n ≥ R(k) vertices contains either a clique or independent set on k
vertices.

Corollary

Let G = (V ,E ) be an n-vertex graph, where n ≥ 22k . Then the
number of k-vertex subsets U ⊂ V such that U induces either a
clique or independent set in G is at least

(22k − k)!

(22k)!

n!

(n − k)!
.



Corollary

Let G = (V ,E ) be an n-vertex graph, where n ≥ 22k . Then the
number of k-vertex subsets U ⊂ V such that U induces either a
clique or independent set in G is at least

(22k − k)!

(22k)!

n!

(n − k)!
.

If at least half of these “interesting” subsets are independent
sets, we are done.

Thus we may assume from now on that G contains at least
(22k−k)!
2(22k )!

n!
(n−k)! k-cliques.
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Definition

Let A ⊂ {1, . . . , k}. We say that a k-clique H in G is
A-replaceable if there are subsets U ⊂ V (H) and
W ⊂ V (G ) \ V (H), with |U| = |W | ∈ A, such that
G [(H \ U) ∪W ] has an even number of edges.

If every k-clique in G is {1, 2}-replaceable, we are done.

Thus we may assume from now on that there is at least one
k-clique H in G that is not {1, 2}-replaceable.

We also assume G contains at least one even k-vertex
subgraph.
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If
(k
2

)
is odd, the following have an even number of edges:

k-2 k-2

If k ≡ 2 mod 4, this also has an even number of edges:

k-1
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x
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a x
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H

a x

yb



Open problems

Can similar results be obtained for properties that only hold
for graphs H where

e(H) ≡ r mod p,

for p > 2?

What if we consider an arbitrary property that depends only
on the number of edges?
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THANK YOU


