Flood-filling Games on Graphs

Kitty Meeks

School of Mathematical Sciences Queen Mary, University of London

Joint work with Alex Scott (University of Oxford)

This is officially FUN

- The complexity of flood filling games, Arthur, Clifford, Jalsenius, Montanaro & Sach, Fun with Algorithms 2010
- An algorithmic analysis of the honey-bee game, Fleischer & Woeginger, Fun with Algorithms 2010
- Spanning trees and the complexity of flood filling games, M. & Scott, Fun with Algorithms 2012

- http://floodit.appspot.com
- Smartphone apps: Flood-It! 2 (iPhone), Flood-It! (Android)

- http://floodit.appspot.com
- Smartphone apps: Flood-It! 2 (iPhone), Flood-It! (Android)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2-player version: Honey-bee game

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

A good strategy?

Choose the colour that will add the most squares to the flooded area?

A good strategy?

- Choose the colour that will add the most squares to the flooded area?
- ► NO!

Figure: Example due to Clifford, Jalsenius, Montanaro and Sach

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Play on arbitrary, coloured (connected) graphs
- 2. Allow moves to change the colour of **any** monochromatic component

So a move (v, d) involves picking a vertex v and a colour d and giving every vertex in the same monochromatic component as v colour d.

- 1. Play on arbitrary, coloured (connected) graphs
- 2. Allow moves to change the colour of **any** monochromatic component

So a move (v, d) involves picking a vertex v and a colour d and giving every vertex in the same monochromatic component as v colour d.

- 1. Play on arbitrary, coloured (connected) graphs
- 2. Allow moves to change the colour of **any** monochromatic component

So a move (v, d) involves picking a vertex v and a colour d and giving every vertex in the same monochromatic component as v colour d.

- 1. Play on arbitrary, coloured (connected) graphs
- 2. Allow moves to change the colour of **any** monochromatic component

So a move (v, d) involves picking a vertex v and a colour d and giving every vertex in the same monochromatic component as v colour d.

- 1. Play on arbitrary, coloured (connected) graphs
- 2. Allow moves to change the colour of **any** monochromatic component

So a move (v, d) involves picking a vertex v and a colour d and giving every vertex in the same monochromatic component as v colour d.

- 1. Play on arbitrary, coloured (connected) graphs
- 2. Allow moves to change the colour of **any** monochromatic component

So a move (v, d) involves picking a vertex v and a colour d and giving every vertex in the same monochromatic component as v colour d.

- 1. Play on arbitrary, coloured (connected) graphs
- 2. Allow moves to change the colour of **any** monochromatic component

So a move (v, d) involves picking a vertex v and a colour d and giving every vertex in the same monochromatic component as v colour d.

- 1. Play on arbitrary, coloured (connected) graphs
- 2. Allow moves to change the colour of **any** monochromatic component

So a move (v, d) involves picking a vertex v and a colour d and giving every vertex in the same monochromatic component as v colour d.

- 1. Play on arbitrary, coloured (connected) graphs
- 2. Allow moves to change the colour of **any** monochromatic component

So a move (v, d) involves picking a vertex v and a colour d and giving every vertex in the same monochromatic component as v colour d.

Free-Flood-It

Given a coloured connected graph G, what is the minimum number of moves required to flood G (when moves can be played at any vertex)?

Free-Flood-It

Given a coloured connected graph G, what is the minimum number of moves required to flood G (when moves can be played at any vertex)?

FIXED-FLOOD-IT

Given a coloured connected graph G and a vertex $v \in V(G)$, what is the minimum number of moves that must be played at v to flood G?

Free-Flood-It

Given a coloured connected graph G, what is the minimum number of moves required to flood G (when moves can be played at any vertex)?

FIXED-FLOOD-IT

Given a coloured connected graph G and a vertex $v \in V(G)$, what is the minimum number of moves that must be played at v to flood G?

c-FREE-FLOOD-IT and c-FIXED-FLOOD-IT

The same two questions, except that the initial colouring uses only colours from some fixed set of size c.

Free-Flood-It

Given a coloured connected graph G, what is the minimum number of moves required to flood G (when moves can be played at any vertex)?

FIXED-FLOOD-IT

Given a coloured connected graph G and a vertex $v \in V(G)$, what is the minimum number of moves that must be played at v to flood G?

c-FREE-FLOOD-IT and c-FIXED-FLOOD-IT

The same two questions, except that the initial colouring uses only colours from some fixed set of size c.

- ► If G has n vertices, n 1 moves are always enough (even in the fixed case).
- ► If there are c colours, at least c 1 moves are needed (even in the free version).

Cliques

Exactly c - 1 moves are required.

Cliques

Exactly c - 1 moves are required.

Cliques

Exactly c - 1 moves are required.

Cliques

Exactly c - 1 moves are required.

Cliques

Exactly c - 1 moves are required.

Another easy(ish) case...

How many moves are required for a complete bipartite graph coloured with c colours?

2 colours is easy

(Proved independently by M. and Scott; Clifford, Jalsenius, Montanaro and Sach; Lagoutte, Noual and Thierry.)

2 colours is easy

(Proved independently by M. and Scott; Clifford, Jalsenius, Montanaro and Sach; Lagoutte, Noual and Thierry.)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ Q @

• The fixed version is trivial with two colours.
2 colours is easy

(Proved independently by M. and Scott; Clifford, Jalsenius, Montanaro and Sach; Lagoutte, Noual and Thierry.)

- The fixed version is trivial with two colours.
- In the free version, there is always an optimal strategy that involves playing all moves at the same vertex.
- This means that the minimum number of moves required is equal to the radius of the graph, which is easily computed in polynomial time.

A very brief introduction to computational complexity

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

A very brief introduction to computational complexity

- NP-complete problems are the "hardest" in NP.
- A polynomial-time algorithm for an NP-complete problem would mean P=NP.
- Showing a problem is NP-complete means that it "almost certainly" cannot be solved in polynomial time.

The original game is hard

Theorem (Arthur, Clifford, Jalsenius, Montanaro, Sach (2010)) 3-FIXED-FLOOD-IT and 3-FREE-FLOOD-IT are NP-hard on $n \times n$ boards.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The original game is hard

Theorem (Arthur, Clifford, Jalsenius, Montanaro, Sach (2010)) 3-FIXED-FLOOD-IT and 3-FREE-FLOOD-IT are NP-hard on $n \times n$ boards.

 Reduction from: SHORTEST COMMON SUPERSEQUENCE (SCS)
Input: Strings s₁,..., s_k (of length at most w) over a binary alphabet Σ = {0,1}, and an integer *I*.
Question: Do s₁,..., s_k have a common supersequence of length at most *I*?

Shown to be NP-complete by Räihä and Ukkonen.

The original game is hard (fixed version)

Representation of the sequence 10010

 Gadget to ensure red moves alternate with black or white moves

The original game is hard (fixed version)

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー 釣ん()~

The original game is hard (fixed version)

The proof also implies that there is no constant factor (independent of the number of colours) polynomial-time approximation algorithm.

	1 imes n	$2 \times n$	3 × <i>n</i>	$n \times n$
<i>c</i> = 2				
<i>c</i> = 3				NP-h
<i>c</i> = 4				NP-h
c unbounded				NP-h

Complexity status of *c*-FREE-FLOOD-IT and *c*-FIXED-FLOOD-IT on rectangular boards.

	1 imes n	$2 \times n$	3 × <i>n</i>	$n \times n$
<i>c</i> = 2	Р	Р	Р	Р
<i>c</i> = 3				NP-h
<i>c</i> = 4				NP-h
c unbounded				NP-h

Complexity status of *c*-FREE-FLOOD-IT and *c*-FIXED-FLOOD-IT on rectangular boards.

	1 imes n	$2 \times n$	3 × <i>n</i>	$n \times n$
<i>c</i> = 2	Р	Р	Р	Р
<i>c</i> = 3	Р			NP-h
<i>c</i> = 4	Р			NP-h
c unbounded	Р			NP-h

Complexity status of *c*-FREE-FLOOD-IT and *c*-FIXED-FLOOD-IT on rectangular boards.

	1 imes n	$2 \times n$	3 × <i>n</i>	$n \times n$
<i>c</i> = 2	Р	Р	Р	Р
<i>c</i> = 3	Р		?	NP-h
<i>c</i> = 4	Р		NP-h	NP-h
c unbounded	Р		NP-h	NP-h

Complexity status of *c*-FREE-FLOOD-IT and *c*-FIXED-FLOOD-IT on rectangular boards.

2xn boards

	c-Fixed-Flood-It	c -Free-Flood-It	
c fixed	P (Clifford et. al., 2012)	P (M.,Scott)	
<i>c</i> unbounded	P (Clifford et. al., 2012)	NP-h (M.,Scott)	

Hardness for other classes of graphs

 ▶ c-FREE-FLOOD-IT is NP-hard for trees, if c ≥ 4 (Fleischer and Woeginger, 2012).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Hardness for other classes of graphs

- ► c-FREE-FLOOD-IT is NP-hard for trees, if c ≥ 4 (Fleischer and Woeginger, 2012).
- FREE-FLOOD-IT is NP-hard for split graphs and proper interval graphs (Fukui, Otachi, Uehara, Uno and Uno, 2013).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

The number of moves required to flood a coloured graph G is equal to the minimum, taken over all spanning trees T of G, of the number of moves required to flood T.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

In general, a graph has an exponential number of spanning trees.

In general, a graph has an exponential number of spanning trees.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ Besides, FREE FLOOD IT is still NP-hard even on trees.

・ロト (個) (目) (目) (目) (の)

$P \neq NP$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Source: finditinscotland.com

Source: finditinscotland.com

The number of moves required to flood G with colour d is at most the sum of the numbers of moves required to flood A and Brespectively with colour d.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The number of moves required to flood a subgraph doesn't increase when we play in a larger graph.

The number of moves required to flood a subgraph doesn't increase when we play in a larger graph.

Application I: Graphs with polynomially many connected subgraphs

Theorem

FREE FLOOD IT can be solved in polynomial time on graphs that have only a polynomial number of connected subgraphs.

イロト 不得 トイヨト イヨト

Application I: Graphs with polynomially many connected subgraphs

Theorem

FREE FLOOD IT can be solved in polynomial time on graphs that have only a polynomial number of connected subgraphs.

・ロト ・ 一下・ ・ モト ・ モト・
Application I: Graphs with polynomially many connected subgraphs

Classes of graphs with only a polynomial number of connected subgraphs include:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- paths
- cycles

Application I: Graphs with polynomially many connected subgraphs

Classes of graphs with only a polynomial number of connected subgraphs include:

- paths
- cycles

subdivisions of any fixed graph H

Given a coloured graph G and a subset U of at most k vertices, k-LINKING FLOOD IT is the problem of determining the number of moves required to create a single monochromatic component containing U.

Theorem

k-LINKING FLOOD IT can be solved in time $O(|V|^{k+3}|E|c^22^k)$ on a graph G = (V, E) coloured with c colours.

Application II: Connecting k points

The number of moves required to connect U is equal to the minimum, taken over all subtrees T of G that contain U, of the number of moves required to flood T.

Application II: Connecting k points

The number of moves required to connect U is equal to the minimum, taken over all subtrees T of G that contain U, of the number of moves required to flood T.

Summary

Flood-filling problems are FUN!

- Flood-filling problems are FUN!
- Solving *c*-FREE-FLOOD-IT or *c*-FIXED-FLOOD-IT, for *c* > 2, is NP-hard in many situations.

Summary

- Flood-filling problems are FUN!
- Solving *c*-FREE-FLOOD-IT or *c*-FIXED-FLOOD-IT, for *c* > 2, is NP-hard in many situations.
- The number of moves to flood an arbitrary graph can be characterised in terms of the number of moves to flood its spanning trees.
- This gives some useful facts about the behaviour of flooding operations on arbitrary graphs, and can be used to give some polynomial-time algorithms.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Complexity of 3-FIXED-FLOOD-IT and 3-FREE-FLOOD-IT on 3 × n boards.

- Complexity of 3-FIXED-FLOOD-IT and 3-FREE-FLOOD-IT on 3 × n boards.
- Complexity of 3-FIXED-FLOOD-IT and 3-FREE-FLOOD-IT on trees.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Complexity of 3-FIXED-FLOOD-IT and 3-FREE-FLOOD-IT on 3 × n boards.
- Complexity of 3-FIXED-FLOOD-IT and 3-FREE-FLOOD-IT on trees.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► Is *k*-LINKING-FLOOD-IT fixed parameter tractable, with parameter *k*?

- Complexity of 3-FIXED-FLOOD-IT and 3-FREE-FLOOD-IT on 3 × n boards.
- Complexity of 3-FIXED-FLOOD-IT and 3-FREE-FLOOD-IT on trees.
- ► Is *k*-LINKING-FLOOD-IT fixed parameter tractable, with parameter *k*?
- ► Given a graph *G*,
 - 1. what colouring with *c* colours requires the most moves?

2. what proper colouring requires the fewest?

- Complexity of 3-FIXED-FLOOD-IT and 3-FREE-FLOOD-IT on 3 × n boards.
- Complexity of 3-FIXED-FLOOD-IT and 3-FREE-FLOOD-IT on trees.
- ► Is *k*-LINKING-FLOOD-IT fixed parameter tractable, with parameter *k*?
- ► Given a graph *G*,
 - 1. what colouring with c colours requires the most moves?

- 2. what proper colouring requires the fewest?
- Does the Loch Ness Monster exist?

Thank you

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.

Complete bipartite graphs

Either c - 1 or c moves are required.