
Flood-filling Games on Graphs

Kitty Meeks

School of Mathematical Sciences
Queen Mary, University of London

Joint work with Alex Scott (University of Oxford)

This is officially FUN

I The complexity of flood filling games, Arthur, Clifford,
Jalsenius, Montanaro & Sach, Fun with Algorithms 2010

I An algorithmic analysis of the honey-bee game, Fleischer &
Woeginger, Fun with Algorithms 2010

I Spanning trees and the complexity of flood filling games, M.
& Scott, Fun with Algorithms 2012

I http://floodit.appspot.com

I Smartphone apps: Flood-It! 2 (iPhone), Flood-It! (Android)

I 2-player version: Honey-bee game

I http://floodit.appspot.com

I Smartphone apps: Flood-It! 2 (iPhone), Flood-It! (Android)

I 2-player version: Honey-bee game

I http://floodit.appspot.com

I Smartphone apps: Flood-It! 2 (iPhone), Flood-It! (Android)

I 2-player version: Honey-bee game

The original Flood-It game

The original Flood-It game

The original Flood-It game

The original Flood-It game

The original Flood-It game

The original Flood-It game

The original Flood-It game

The original Flood-It game

A good strategy?

I Choose the colour that will add the most squares to the
flooded area?

I NO!

Figure: Example due to Clifford, Jalsenius, Montanaro and Sach

A good strategy?

I Choose the colour that will add the most squares to the
flooded area?

I NO!

Figure: Example due to Clifford, Jalsenius, Montanaro and Sach

Generalising the game

1. Play on arbitrary, coloured (connected) graphs

2. Allow moves to change the colour of any monochromatic
component

So a move (v , d) involves picking a vertex v and a colour d and
giving every vertex in the same monochromatic component as v
colour d .

Generalising the game

1. Play on arbitrary, coloured (connected) graphs

2. Allow moves to change the colour of any monochromatic
component

So a move (v , d) involves picking a vertex v and a colour d and
giving every vertex in the same monochromatic component as v
colour d .

Generalising the game

1. Play on arbitrary, coloured (connected) graphs

2. Allow moves to change the colour of any monochromatic
component

So a move (v , d) involves picking a vertex v and a colour d and
giving every vertex in the same monochromatic component as v
colour d .

Generalising the game

1. Play on arbitrary, coloured (connected) graphs

2. Allow moves to change the colour of any monochromatic
component

So a move (v , d) involves picking a vertex v and a colour d and
giving every vertex in the same monochromatic component as v
colour d .

Generalising the game

1. Play on arbitrary, coloured (connected) graphs

2. Allow moves to change the colour of any monochromatic
component

So a move (v , d) involves picking a vertex v and a colour d and
giving every vertex in the same monochromatic component as v
colour d .

Generalising the game

1. Play on arbitrary, coloured (connected) graphs

2. Allow moves to change the colour of any monochromatic
component

So a move (v , d) involves picking a vertex v and a colour d and
giving every vertex in the same monochromatic component as v
colour d .

Generalising the game

1. Play on arbitrary, coloured (connected) graphs

2. Allow moves to change the colour of any monochromatic
component

So a move (v , d) involves picking a vertex v and a colour d and
giving every vertex in the same monochromatic component as v
colour d .

Generalising the game

1. Play on arbitrary, coloured (connected) graphs

2. Allow moves to change the colour of any monochromatic
component

So a move (v , d) involves picking a vertex v and a colour d and
giving every vertex in the same monochromatic component as v
colour d .

Generalising the game

1. Play on arbitrary, coloured (connected) graphs

2. Allow moves to change the colour of any monochromatic
component

So a move (v , d) involves picking a vertex v and a colour d and
giving every vertex in the same monochromatic component as v
colour d .

Problems considered

Free-Flood-It
Given a coloured connected graph G , what is the
minimum number of moves required to flood G
(when moves can be played at any vertex)?

Fixed-Flood-It
Given a coloured connected graph G and a vertex
v ∈ V (G), what is the minimum number of moves
that must be played at v to flood G ?

c-Free-Flood-It and c-Fixed-Flood-It
The same two questions, except that the initial
colouring uses only colours from some fixed set of
size c .

I If G has n vertices, n − 1 moves are always enough (even in
the fixed case).

I If there are c colours, at least c − 1 moves are needed (even
in the free version).

Problems considered

Free-Flood-It
Given a coloured connected graph G , what is the
minimum number of moves required to flood G
(when moves can be played at any vertex)?

Fixed-Flood-It
Given a coloured connected graph G and a vertex
v ∈ V (G), what is the minimum number of moves
that must be played at v to flood G ?

c-Free-Flood-It and c-Fixed-Flood-It
The same two questions, except that the initial
colouring uses only colours from some fixed set of
size c .

I If G has n vertices, n − 1 moves are always enough (even in
the fixed case).

I If there are c colours, at least c − 1 moves are needed (even
in the free version).

Problems considered

Free-Flood-It
Given a coloured connected graph G , what is the
minimum number of moves required to flood G
(when moves can be played at any vertex)?

Fixed-Flood-It
Given a coloured connected graph G and a vertex
v ∈ V (G), what is the minimum number of moves
that must be played at v to flood G ?

c-Free-Flood-It and c-Fixed-Flood-It
The same two questions, except that the initial
colouring uses only colours from some fixed set of
size c .

I If G has n vertices, n − 1 moves are always enough (even in
the fixed case).

I If there are c colours, at least c − 1 moves are needed (even
in the free version).

Problems considered

Free-Flood-It
Given a coloured connected graph G , what is the
minimum number of moves required to flood G
(when moves can be played at any vertex)?

Fixed-Flood-It
Given a coloured connected graph G and a vertex
v ∈ V (G), what is the minimum number of moves
that must be played at v to flood G ?

c-Free-Flood-It and c-Fixed-Flood-It
The same two questions, except that the initial
colouring uses only colours from some fixed set of
size c .

I If G has n vertices, n − 1 moves are always enough (even in
the fixed case).

I If there are c colours, at least c − 1 moves are needed (even
in the free version).

An easy case

I Cliques

Exactly c − 1 moves are required.

An easy case

I Cliques

Exactly c − 1 moves are required.

An easy case

I Cliques

Exactly c − 1 moves are required.

An easy case

I Cliques

Exactly c − 1 moves are required.

An easy case

I Cliques

Exactly c − 1 moves are required.

Another easy(ish) case...

I How many moves are required for a complete bipartite graph
coloured with c colours?

2 colours is easy

(Proved independently by M. and Scott; Clifford, Jalsenius, Montanaro

and Sach; Lagoutte, Noual and Thierry.)

I The fixed version is trivial with two colours.

I In the free version, there is always an optimal strategy that
involves playing all moves at the same vertex.

I This means that the minimum number of moves required is
equal to the radius of the graph, which is easily computed in
polynomial time.

2 colours is easy

(Proved independently by M. and Scott; Clifford, Jalsenius, Montanaro

and Sach; Lagoutte, Noual and Thierry.)

I The fixed version is trivial with two colours.

I In the free version, there is always an optimal strategy that
involves playing all moves at the same vertex.

I This means that the minimum number of moves required is
equal to the radius of the graph, which is easily computed in
polynomial time.

2 colours is easy

(Proved independently by M. and Scott; Clifford, Jalsenius, Montanaro

and Sach; Lagoutte, Noual and Thierry.)

I The fixed version is trivial with two colours.

I In the free version, there is always an optimal strategy that
involves playing all moves at the same vertex.

I This means that the minimum number of moves required is
equal to the radius of the graph, which is easily computed in
polynomial time.

A very brief introduction to computational complexity

NP-complete

NP

P

I NP-complete problems are
the “hardest” in NP.

I A polynomial-time
algorithm for an
NP-complete problem
would mean P=NP.

I Showing a problem is
NP-complete means that it
“almost certainly” cannot
be solved in polynomial
time.

A very brief introduction to computational complexity

NP-complete

NP

P

I NP-complete problems are
the “hardest” in NP.

I A polynomial-time
algorithm for an
NP-complete problem
would mean P=NP.

I Showing a problem is
NP-complete means that it
“almost certainly” cannot
be solved in polynomial
time.

The original game is hard

Theorem (Arthur,Clifford,Jalsenius,Montanaro,Sach (2010))

3-Fixed-Flood-It and 3-Free-Flood-It are NP-hard on n× n
boards.

I Reduction from:
Shortest Common Supersequence (SCS)
Input: Strings s1, . . . , sk (of length at most w) over a binary
alphabet Σ = {0, 1}, and an integer l .
Question: Do s1, . . . , sk have a common supersequence of
length at most l?

I Shown to be NP-complete by Räihä and Ukkonen.

The original game is hard

Theorem (Arthur,Clifford,Jalsenius,Montanaro,Sach (2010))

3-Fixed-Flood-It and 3-Free-Flood-It are NP-hard on n× n
boards.

I Reduction from:
Shortest Common Supersequence (SCS)
Input: Strings s1, . . . , sk (of length at most w) over a binary
alphabet Σ = {0, 1}, and an integer l .
Question: Do s1, . . . , sk have a common supersequence of
length at most l?

I Shown to be NP-complete by Räihä and Ukkonen.

The original game is hard (fixed version)

I Representation of the sequence 10010

I Gadget to ensure red moves alternate with black or white
moves

The original game is hard (fixed version)

I The proof also implies that there is no constant factor
(independent of the number of colours) polynomial-time
approximation algorithm.

The original game is hard (fixed version)

I The proof also implies that there is no constant factor
(independent of the number of colours) polynomial-time
approximation algorithm.

Rectangular boards of fixed height

1× n 2× n 3× n n × n

c = 2

c = 3 NP-h
c = 4 NP-h

c unbounded NP-h

Complexity status of c-Free-Flood-It and c-Fixed-Flood-It
on rectangular boards.

Rectangular boards of fixed height

1× n 2× n 3× n n × n

c = 2 P P P P

c = 3 NP-h
c = 4 NP-h

c unbounded NP-h

Complexity status of c-Free-Flood-It and c-Fixed-Flood-It
on rectangular boards.

Rectangular boards of fixed height

1× n 2× n 3× n n × n

c = 2 P P P P

c = 3 P NP-h
c = 4 P NP-h

c unbounded P NP-h

Complexity status of c-Free-Flood-It and c-Fixed-Flood-It
on rectangular boards.

Rectangular boards of fixed height

1× n 2× n 3× n n × n

c = 2 P P P P

c = 3 P ? NP-h
c = 4 P NP-h NP-h

c unbounded P NP-h NP-h

Complexity status of c-Free-Flood-It and c-Fixed-Flood-It
on rectangular boards.

2xn boards

c-Fixed-Flood-It c-Free-Flood-It

c fixed P (Clifford et. al., 2012) P (M.,Scott)

c unbounded P (Clifford et. al., 2012) NP-h (M.,Scott)

Hardness for other classes of graphs

I c-Free-Flood-It is NP-hard for trees, if c ≥ 4 (Fleischer
and Woeginger, 2012).

I Free-Flood-It is NP-hard for split graphs and proper
interval graphs (Fukui, Otachi, Uehara, Uno and Uno, 2013).

Hardness for other classes of graphs

I c-Free-Flood-It is NP-hard for trees, if c ≥ 4 (Fleischer
and Woeginger, 2012).

I Free-Flood-It is NP-hard for split graphs and proper
interval graphs (Fukui, Otachi, Uehara, Uno and Uno, 2013).

Spanning trees

Theorem
The number of moves required to flood a coloured graph G is
equal to the minimum, taken over all spanning trees T of G , of
the number of moves required to flood T .

Spanning trees

Theorem
The number of moves required to flood a coloured graph G is
equal to the minimum, taken over all spanning trees T of G , of
the number of moves required to flood T .

Spanning trees

Theorem
The number of moves required to flood a coloured graph G is
equal to the minimum, taken over all spanning trees T of G , of
the number of moves required to flood T .

Spanning trees

Theorem
The number of moves required to flood a coloured graph G is
equal to the minimum, taken over all spanning trees T of G , of
the number of moves required to flood T .

Spanning trees

Theorem
The number of moves required to flood a coloured graph G is
equal to the minimum, taken over all spanning trees T of G , of
the number of moves required to flood T .

Spanning trees

Theorem
The number of moves required to flood a coloured graph G is
equal to the minimum, taken over all spanning trees T of G , of
the number of moves required to flood T .

Spanning trees

Theorem
The number of moves required to flood a coloured graph G is
equal to the minimum, taken over all spanning trees T of G , of
the number of moves required to flood T .

Spanning trees

Theorem
The number of moves required to flood a coloured graph G is
equal to the minimum, taken over all spanning trees T of G , of
the number of moves required to flood T .

Spanning trees

Theorem
The number of moves required to flood a coloured graph G is
equal to the minimum, taken over all spanning trees T of G , of
the number of moves required to flood T .

This is useless!

I In general, a graph has an exponential number of spanning
trees.

I Besides, Free Flood It is still NP-hard even on trees.

This is useless!

I In general, a graph has an exponential number of spanning
trees.

I Besides, Free Flood It is still NP-hard even on trees.

... or is it?

P = NP

... or is it?

P = NP

... or is it?

P = NP

... or is it?

Source: finditinscotland.com

... or is it?

Source: finditinscotland.com

... or is it?

A B

The number of moves required to flood G with colour d is at most
the sum of the numbers of moves required to flood A and B
respectively with colour d .

... or is it?

H

The number of moves required to flood a subgraph doesn’t
increase when we play in a larger graph.

... or is it?

H

G

The number of moves required to flood a subgraph doesn’t
increase when we play in a larger graph.

Application I: Graphs with polynomially many connected
subgraphs

Theorem
Free Flood It can be solved in polynomial time on graphs that
have only a polynomial number of connected subgraphs.

A

Application I: Graphs with polynomially many connected
subgraphs

Theorem
Free Flood It can be solved in polynomial time on graphs that
have only a polynomial number of connected subgraphs.

A

A1 A2

Application I: Graphs with polynomially many connected
subgraphs

Classes of graphs with only a polynomial number of connected
subgraphs include:

I paths

I cycles

I subdivisions of any fixed graph H

Application I: Graphs with polynomially many connected
subgraphs

Classes of graphs with only a polynomial number of connected
subgraphs include:

I paths

I cycles

I subdivisions of any fixed graph H

Application II: Connecting k points

Given a coloured graph G and a subset U of at most k vertices,
k-Linking Flood It is the problem of determining the number
of moves required to create a single monochromatic component
containing U.

Theorem
k-Linking Flood It can be solved in time O(|V |k+3|E |c22k) on
a graph G = (V ,E) coloured with c colours.

Application II: Connecting k points

G

The number of moves required to connect U is equal to the
minimum, taken over all subtrees T of G that contain U, of the
number of moves required to flood T .

Application II: Connecting k points

G

The number of moves required to connect U is equal to the
minimum, taken over all subtrees T of G that contain U, of the
number of moves required to flood T .

Summary

I Flood-filling problems are FUN!

I Solving c-Free-Flood-It or c-Fixed-Flood-It, for
c > 2, is NP-hard in many situations.

I The number of moves to flood an arbitrary graph can be
characterised in terms of the number of moves to flood its
spanning trees.

I This gives some useful facts about the behaviour of flooding
operations on arbitrary graphs, and can be used to give some
polynomial-time algorithms.

Summary

I Flood-filling problems are FUN!

I Solving c-Free-Flood-It or c-Fixed-Flood-It, for
c > 2, is NP-hard in many situations.

I The number of moves to flood an arbitrary graph can be
characterised in terms of the number of moves to flood its
spanning trees.

I This gives some useful facts about the behaviour of flooding
operations on arbitrary graphs, and can be used to give some
polynomial-time algorithms.

Summary

I Flood-filling problems are FUN!

I Solving c-Free-Flood-It or c-Fixed-Flood-It, for
c > 2, is NP-hard in many situations.

I The number of moves to flood an arbitrary graph can be
characterised in terms of the number of moves to flood its
spanning trees.

I This gives some useful facts about the behaviour of flooding
operations on arbitrary graphs, and can be used to give some
polynomial-time algorithms.

Summary

I Flood-filling problems are FUN!

I Solving c-Free-Flood-It or c-Fixed-Flood-It, for
c > 2, is NP-hard in many situations.

I The number of moves to flood an arbitrary graph can be
characterised in terms of the number of moves to flood its
spanning trees.

I This gives some useful facts about the behaviour of flooding
operations on arbitrary graphs, and can be used to give some
polynomial-time algorithms.

Open problems

I Complexity of 3-Fixed-Flood-It and 3-Free-Flood-It
on 3× n boards.

I Complexity of 3-Fixed-Flood-It and 3-Free-Flood-It
on trees.

I Is k-Linking-Flood-It fixed parameter tractable, with
parameter k?

I Given a graph G ,

1. what colouring with c colours requires the most moves?
2. what proper colouring requires the fewest?

I Does the Loch Ness Monster exist?

Open problems

I Complexity of 3-Fixed-Flood-It and 3-Free-Flood-It
on 3× n boards.

I Complexity of 3-Fixed-Flood-It and 3-Free-Flood-It
on trees.

I Is k-Linking-Flood-It fixed parameter tractable, with
parameter k?

I Given a graph G ,

1. what colouring with c colours requires the most moves?
2. what proper colouring requires the fewest?

I Does the Loch Ness Monster exist?

Open problems

I Complexity of 3-Fixed-Flood-It and 3-Free-Flood-It
on 3× n boards.

I Complexity of 3-Fixed-Flood-It and 3-Free-Flood-It
on trees.

I Is k-Linking-Flood-It fixed parameter tractable, with
parameter k?

I Given a graph G ,

1. what colouring with c colours requires the most moves?
2. what proper colouring requires the fewest?

I Does the Loch Ness Monster exist?

Open problems

I Complexity of 3-Fixed-Flood-It and 3-Free-Flood-It
on 3× n boards.

I Complexity of 3-Fixed-Flood-It and 3-Free-Flood-It
on trees.

I Is k-Linking-Flood-It fixed parameter tractable, with
parameter k?

I Given a graph G ,

1. what colouring with c colours requires the most moves?
2. what proper colouring requires the fewest?

I Does the Loch Ness Monster exist?

Open problems

I Complexity of 3-Fixed-Flood-It and 3-Free-Flood-It
on 3× n boards.

I Complexity of 3-Fixed-Flood-It and 3-Free-Flood-It
on trees.

I Is k-Linking-Flood-It fixed parameter tractable, with
parameter k?

I Given a graph G ,

1. what colouring with c colours requires the most moves?
2. what proper colouring requires the fewest?

I Does the Loch Ness Monster exist?

Thank you

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

Some easy cases

I Complete bipartite graphs

Either c − 1 or c moves are required.

