# List-colouring problems on graphs of bounded treewidth

Kitty Meeks

Queen Mary, University of London

Joint work with Alex Scott (University of Oxford)



# Parameterised Complexity

■ Analyse complexity in terms of the problem size, *n*, and a parameter, *k*.

# Parameterised Complexity

- Analyse complexity in terms of the problem size, n, and a parameter, k.
- A problem is *fixed parameter tractable* (FPT) if it can be solved in time  $f(k) \cdot p(n)$ , where p is a polynomial and f is any computable function.

# Parameterised Complexity

- Analyse complexity in terms of the problem size, n, and a parameter, k.
- A problem is *fixed parameter tractable* (FPT) if it can be solved in time  $f(k) \cdot p(n)$ , where p is a polynomial and f is any computable function.
- The standard method of showing that a problem is *not* FPT is to prove that it is W[1]-hard.

# Vertex colouring

- Given a graph G = (V, E),  $\phi : V \to \{1, ..., k\}$  is a proper *c-colouring* of G if, for all  $uv \in E$ ,  $\phi(u) \neq \phi(v)$ .
- The *chromatic number*  $\chi(G)$  of G is the smallest c such that there exists a proper c-colouring of G.

#### CHROMATIC NUMBER

Input: A graph G = (V, E).

Question: What is  $\chi(G)$ ?

- It is NP-complete to decide whether  $\chi(G) \leq 3$ .
- If G has fixed treewidth at most k,  $\chi(G)$  can be computed in linear time (Arnborg and Proskurowski, 1989).

# List Colouring

For graph G(V, E) and a collection of colour lists  $\mathcal{L} = (L_v)_{v \in V(G)}$ , there is a proper list colouring of  $(G, \mathcal{L})$  if there is a proper colouring  $\phi$  of G such that  $c(v) \in L_v$  for all  $v \in V$ . LIST COLOURING

Input: A graph G = (V, E), together with a collection of colour lists  $\mathcal{L} = (L_v)_{v \in V(G)}$ .

Question: Is there a proper list colouring  $(G, \mathcal{L})$ ?

# List Colouring

For graph G(V, E) and a collection of colour lists  $\mathcal{L} = (L_v)_{v \in V(G)}$ , there is a proper list colouring of  $(G, \mathcal{L})$  if there is a proper colouring  $\phi$  of G such that  $c(v) \in L_v$  for all  $v \in V$ . LIST COLOURING

Input: A graph G = (V, E), together with a collection of colour lists  $\mathcal{L} = (L_v)_{v \in V(G)}$ .

Question: Is there a proper list colouring  $(G, \mathcal{L})$ ?

Theorem (Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen, 2011)

LIST COLOURING is W[1]-hard, parameterised by treewidth.



### List Chromatic Number

The *list chromatic number*  $\operatorname{ch}(G)$  of G is the smallest integer c such that, for any assignment of lists  $(L_v)_{v \in V(G)}$  to the vertices of G with  $|L_v| \geq c$  for each v, there exists a proper list colouring of  $(G, \mathcal{L})$ .

LIST CHROMATIC NUMBER

Input: A graph G = (V, E).

Question: What is ch(G)?

### List Chromatic Number

The *list chromatic number*  $\operatorname{ch}(G)$  of G is the smallest integer c such that, for any assignment of lists  $(L_v)_{v \in V(G)}$  to the vertices of G with  $|L_v| \geq c$  for each v, there exists a proper list colouring of  $(G, \mathcal{L})$ .

LIST CHROMATIC NUMBER

Input: A graph G = (V, E).

Question: What is ch(G)?

Theorem (Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen, 2011)

The LIST CHROMATIC NUMBER problem, parameterised by the treewidth bound k, is fixed-parameter tractable, and solvable in linear time for any fixed k.

# **Edge Colouring**

- Given a graph G = (V, E), a proper edge colouring of G is an assignment of colours to the edges of G such that no two incident edges receive the same colour.
- The edge chromatic number  $\chi'(G)$  of G is the smallest integer c such that there exists a proper edge colouring of G using c colours.
- It is NP-hard to determine whether  $\chi'(G) \leq 3$  for cubic graphs (Holyer, 1981).
- $\chi'(G)$  can be computed in linear time on graphs of bounded treewidth (Zhou, Nakano and Nishizeki, 2005).

### Line Graphs

- Given a graph G = (V, E), the line graph L(G) of G is  $(E, \{ef : e, f \in E \text{ and } e, f \text{ incident in } G\})$ .
- A proper edge colouring of G corresponds to a proper vertex colouring of L(G).
- If G has treewidth k and maximum degree at most  $\Delta$ , then L(G) has treewidth at most  $(k+1)\Delta$ .

# List Edge Colouring

For graph G(V, E) and a collection of colour lists  $\mathcal{L} = (L_v)_{v \in V(G)}$ , there is a proper list colouring of  $(G, \mathcal{L})$  if there is a proper list colouring  $\phi$  of G such that  $c(v) \in L_v$  for all  $v \in V$ .

LIST EDGE COLOURING

Input: A graph G = (V, E), together with a collection of colour lists  $\mathcal{L} = (L_e)_{e \in E(G)}$ .

Question: Is there a proper list edge colouring  $(G, \mathcal{L})$ ?

# List Edge Colouring

For graph G(V, E) and a collection of colour lists  $\mathcal{L} = (L_v)_{v \in V(G)}$ , there is a proper list colouring of  $(G, \mathcal{L})$  if there is a proper list colouring  $\phi$  of G such that  $c(v) \in L_v$  for all  $v \in V$ .

LIST EDGE COLOURING

Input: A graph G = (V, E), together with a collection of colour lists  $\mathcal{L} = (L_e)_{e \in E(G)}$ .

Question: Is there a proper list edge colouring  $(G, \mathcal{L})$ ?

### Theorem (Zhou, Matsuo, Nishizeki, 2005)

LIST EDGE COLOURING is NP-hard on series-parallel graphs.

### Theorem (Marx, 2005)

LIST EDGE COLOURING is NP-hard on outerplanar graphs.



### **Total Colouring**

- Given a graph G = (V, E), a proper total colouring of G is an assignment of colours to the vertices and edges of G such that
  - no two adjacent vertices receive the same colour
  - no two incident edges receive the same colour
  - no edge receives the same colour as either of its endpoints.
- The total chromatic number  $\chi_T(G)$  of G is the smallest integer c such that there exists a proper total colouring of G using c colours.
- It is NP-hard to determine  $\chi_T(G)$  for regular bipartite graphs (McDiarmid and Sánchez-Arroyo, 1994).
- $\chi_T(G)$  can be computed in linear time on graphs of bounded treewidth (Isobe, Zhou and Nishizeki, 2007).

# Total Graphs

■ Given a graph G = (V, E), the total graph T(G) of G has vertex set  $V \cup E$  and edge set

$$E \cup \{ef : e, f \in E \text{ and } e, f \text{ incident in } G\}$$
  
  $\cup \{ve : v \in V, e \in E, e \text{ incident with } v\}$ ).

- A proper total colouring of G corresponds to a proper vertex colouring of T(G).
- If G has treewidth k and maximum degree at most  $\Delta$ , then T(G) has treewidth at most  $(k+1)(\Delta+1)$ .

### List Total Colouring

For graph G(V,E) and a collection of colour lists  $\mathcal{L}=(L_x)_{x\in V\cup E}$ , there is a proper list colouring of  $(G,\mathcal{L})$  if there is a proper total colouring  $\phi$  of G such that  $c(x)\in L_x$  for all  $x\in V\cup E$ . LIST TOTAL COLOURING

Input: A graph G = (V, E), together with a collection of colour lists  $\mathcal{L} = (L_x)_{x \in V \cup E}$ .

Question: Is there a proper list total colouring  $(G, \mathcal{L})$ ?

### List Total Colouring

For graph G(V, E) and a collection of colour lists  $\mathcal{L} = (L_x)_{x \in V \cup E}$ , there is a proper list colouring of  $(G, \mathcal{L})$  if there is a proper total colouring  $\phi$  of G such that  $c(x) \in L_x$  for all  $x \in V \cup E$ .

LIST TOTAL COLOURING

Input: A graph G = (V, E), together with a collection of colour lists  $\mathcal{L} = (L_x)_{x \in V \cup E}$ .

Question: Is there a proper list total colouring  $(G, \mathcal{L})$ ?

### Theorem (Zhou, Matsuo, Nishizeki, 2005)

LIST TOTAL COLOURING is NP-hard on series-parallel graphs.



### List Edge and Total Chromatic numbers

■ The *list edge chromatic number*  $\operatorname{ch}'(G)$  of G is the smallest integer c such that, for any assignment of lists  $(L_e)_{e \in E(G)}$  to the edges of G with  $|L_e| \geq c$  for each e, there exists a proper list edge colouring of  $(G, \mathcal{L})$ .

$$\Delta(G) \le \chi'(G) \le \mathsf{ch}'(G) \le 2\Delta(G) - 1$$

■ The *list total chromatic number*  $\operatorname{ch}_T$  of G is the smallest integer c such that, for any assignment of lists  $(L_e)_{e \in E(G)}$  to the edges of G with  $|L_e| \geq c$  for each e, there exists a proper list edge colouring of  $(G, \mathcal{L})$ .

$$\Delta(G) + 1 \le \chi_T(G) \le \operatorname{ch}_T(G) \le 2\Delta(G) + 1$$



|           | General | Parameter | List version, | List Chromatic |
|-----------|---------|-----------|---------------|----------------|
|           | problem | treewidth | parameter     | number, param- |
|           |         |           | treewidth     | eter treewidth |
| Vertex    | NP-c    | FPT       | W[1]-hard     | FPT            |
| colouring |         |           |               |                |
| Edge      |         |           |               |                |
| colouring |         |           |               |                |
| Total     |         |           |               |                |
| colouring |         |           |               |                |

|           | General | Parameter | List version, | List Chromatic |
|-----------|---------|-----------|---------------|----------------|
|           | problem | treewidth | parameter     | number, param- |
|           |         |           | treewidth     | eter treewidth |
| Vertex    | NP-c    | FPT       | W[1]-hard     | FPT            |
| colouring |         |           |               |                |
| Edge      | NP-c    |           |               |                |
| colouring |         |           |               |                |
| Total     | NP-c    |           |               |                |
| colouring |         |           |               |                |

|           | General | Parameter | List version, | List Chromatic |
|-----------|---------|-----------|---------------|----------------|
|           | problem | treewidth | parameter     | number, param- |
|           |         |           | treewidth     | eter treewidth |
| Vertex    | NP-c    | FPT       | W[1]-hard     | FPT            |
| colouring |         |           |               |                |
| Edge      | NP-c    | FPT       |               |                |
| colouring |         |           |               |                |
| Total     | NP-c    | FPT       |               |                |
| colouring |         |           |               |                |

|           | General | Parameter | List version, | List Chromatic |
|-----------|---------|-----------|---------------|----------------|
|           | problem | treewidth | parameter     | number, param- |
|           |         |           | treewidth     | eter treewidth |
| Vertex    | NP-c    | FPT       | W[1]-hard     | FPT            |
| colouring |         |           |               |                |
| Edge      | NP-c    | FPT       | W[1]-hard     |                |
| colouring |         |           |               |                |
| Total     | NP-c    | FPT       | W[1]-hard     |                |
| colouring |         |           |               |                |

### Theorem

LIST EDGE CHROMATIC NUMBER and LIST TOTAL CHROMATIC NUMBER are fixed parameter tractable, parameterised by the treewidth bound k, and are solvable in linear time for any fixed k.

#### $\mathsf{Theorem}$

LIST EDGE CHROMATIC NUMBER and LIST TOTAL CHROMATIC NUMBER are fixed parameter tractable, parameterised by the treewidth bound k, and are solvable in linear time for any fixed k.

- If G has treewidth k and bounded maximum degree, then L(G) and T(G) both have bounded treewidth.
- So it is possible in this case to compute the ch(L(G)) or ch(T(G)) in linear time.

#### $\mathsf{Theorem}$

LIST EDGE CHROMATIC NUMBER and LIST TOTAL CHROMATIC NUMBER are fixed parameter tractable, parameterised by the treewidth bound k, and are solvable in linear time for any fixed k.

- If G has treewidth k and bounded maximum degree, then L(G) and T(G) both have bounded treewidth.
- So it is possible in this case to compute the ch(L(G)) or ch(T(G)) in linear time.
- It remains to consider the case that  $\Delta(G)$  is very large compared with the treewidth.

### **Theorem**

Let G be a graph with treewidth at most k and  $\Delta(G) \ge (k+2)2^{k+2}$ . Then  $ch'(G) = \Delta(G)$ .



#### **Theorem**

Let G be a graph with treewidth at most k and  $\Delta(G) \geq (k+2)2^{k+2}$ . Then  $\operatorname{ch}'(G) = \Delta(G)$ .

So we have

$$\Delta(G) = \operatorname{ch}'(G) \ge \chi'(G) \ge \Delta(G),$$

and in particular  $ch'(G) = \chi'(G)$ .

 This is a special case of the List (Edge) Colouring Conjecture, which asserts that

$$\mathsf{ch}'(\mathsf{G}) = \chi'(\mathsf{G})$$

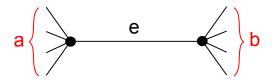
for every graph G.



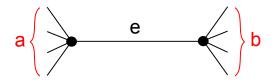
■ Sufficient to prove that, if G has treewidth at most k, then  $\operatorname{ch}'(G) \leq \max\{\Delta(G), (k+2)2^{k+2}\}.$ 

- Sufficient to prove that, if G has treewidth at most k, then  $\operatorname{ch}'(G) \leq \max\{\Delta(G), (k+2)2^{k+2}\}.$
- Let  $(G, \mathcal{L} = \{L_e : e \in E\})$  be an edge-minimal counterexample. Assume  $|L_e| = \Delta_0 = \max\{\Delta(G), (k+2)2^{k+2}\}$  for each e.

- Sufficient to prove that, if G has treewidth at most k, then  $\operatorname{ch}'(G) \leq \max\{\Delta(G), (k+2)2^{k+2}\}.$
- Let  $(G, \mathcal{L} = \{L_e : e \in E\})$  be an edge-minimal counterexample. Assume  $|L_e| = \Delta_0 = \max\{\Delta(G), (k+2)2^{k+2}\}$  for each e.
- We may assume any proper subgraph G' of G has  $\operatorname{ch}'(G') \leq \Delta_0$ .



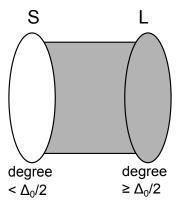
$$a + b < \Delta_0$$



$$a + b < \Delta_0$$

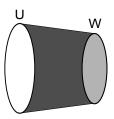
 $\blacksquare$  We may assume every edge is incident with at least  $\Delta_0$  others.

■ Every edge is incident with at least one vertex in *L*.



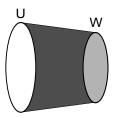
### We want

- $\Gamma(u) = W \ \forall u \in U$
- $|U| \ge |W|$
- U independent



#### We want

- $\Gamma(u) = W \ \forall u \in U$
- $|U| \ge |W|$
- U independent



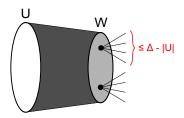
### Theorem (Galvin, 1995)

If G is a bipartite graph then  $ch'(G) = \Delta(G)$ .



#### We want

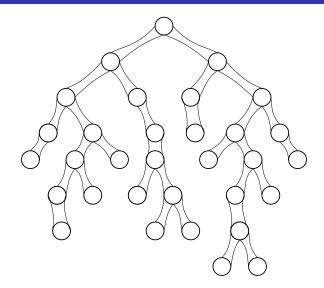
- $\Gamma(u) = W \ \forall u \in U$
- $|U| \ge |W|$
- U independent

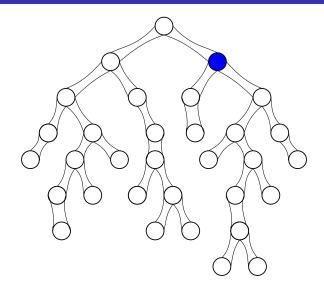


### Theorem (Galvin, 1995)

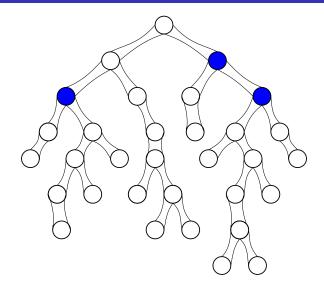
If G is a bipartite graph then  $ch'(G) = \Delta(G)$ .

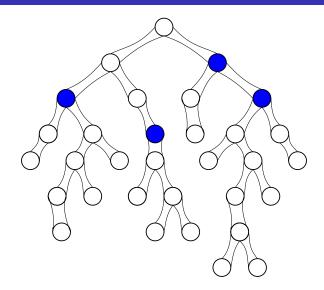


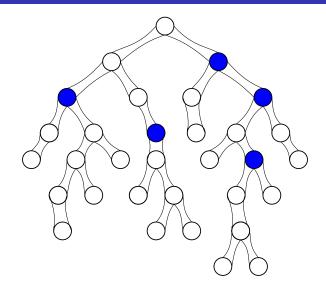


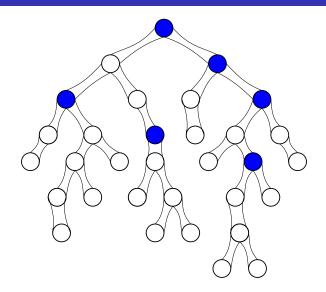


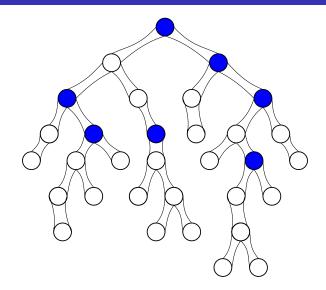


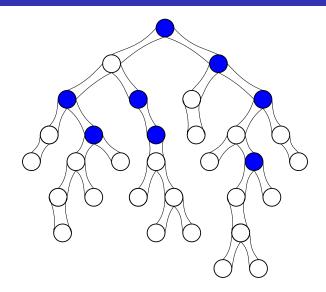


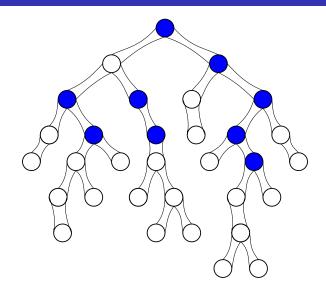


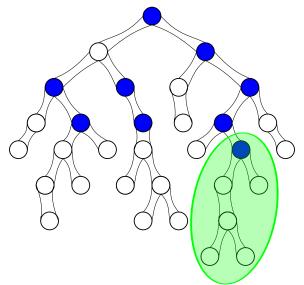


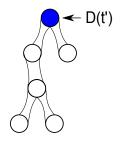


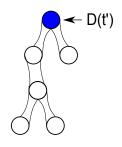




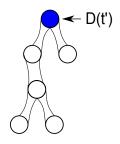




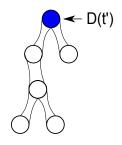




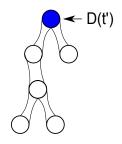
■ At most k + 1 vertices from L



- At most k + 1 vertices from L
- At least  $\Delta_0/2 k$  vertices not in D(t'), all from S



- At most k+1 vertices from L
- At least  $\Delta_0/2 k$  vertices not in D(t'), all from S
- lacktriangle At most  $2^{k+1}$  different neighbourhoods for these vertices



- At most k+1 vertices from L
- At least  $\Delta_0/2 k$  vertices not in D(t'), all from S
- At most  $2^{k+1}$  different neighbourhoods for these vertices
- So there exists a subset U with  $|U| \ge k + 1$  and every vertex in U having the same neighbourhood W ( $|W| \le k + 1$ )

#### **Total Colouring**

#### **Theorem**

Let G be a graph with treewidth at most k and  $\Delta(G) \geq (k+2)2^{k+2}$ . Then  $\operatorname{ch}_T(G) = \Delta(G) + 1$ .

■ This is a special case of the Total Colouring Conjecture, which asserts that

$$\operatorname{ch}_{\mathcal{T}}(G) \leq \Delta(G) + 2$$

for every graph G.

Suppose we are given G together with a tree decomposition  $(T, \mathcal{D})$  of width k.

Suppose we are given G together with a tree decomposition  $(T, \mathcal{D})$  of width k.

1 Determine whether  $\Delta(G) \ge (k+2)2^{k+2}$ .

Suppose we are given G together with a tree decomposition  $(T, \mathcal{D})$  of width k.

- 1 Determine whether  $\Delta(G) \geq (k+2)2^{k+2}$ .
- If  $\Delta(G) \ge (k+2)2^{k+2}$  we know  $\mathrm{ch}'(G) = \Delta(G)$  and  $\mathrm{ch}_{\mathcal{T}}(G) = \Delta(G) + 1$ .

Suppose we are given G together with a tree decomposition  $(T, \mathcal{D})$  of width k.

- 1 Determine whether  $\Delta(G) \geq (k+2)2^{k+2}$ .
- If  $\Delta(G) \ge (k+2)2^{k+2}$  we know  $\mathrm{ch}'(G) = \Delta(G)$  and  $\mathrm{ch}_T(G) = \Delta(G) + 1$ .
- 3 Otherwise, L(G) and T(G) have bounded treewidth.
  - Compute a bounded width tree decomposition for L(G) or T(G).
  - Solve List Chromatic Number for L(G) or T(G) in linear time.

## Parameterised complexity of colouring problems - again!

|           | General | Parameter | List version, | List Chromatic |
|-----------|---------|-----------|---------------|----------------|
|           | problem | treewidth | parameter     | number, param- |
|           |         |           | treewidth     | eter treewidth |
| Vertex    | NP-c    | FPT       | W[1]-hard     | FPT            |
| colouring |         |           |               |                |
| Edge      | NP-c    | FPT       | W[1]-hard     | FPT            |
| colouring |         |           |               |                |
| Total     | NP-c    | FPT       | W[1]-hard     | FPT            |
| colouring |         |           |               |                |

#### THANK YOU

http://arxiv.org/abs/1110.4077