
An Efficient Computation of the
Multiple-Bernoulli Language Model

Leif Azzopardi1 and David E. Losada2 ?

1 Information Language Processing Group, University of Amsterdam, Netherlands
leif@science.uva.nl

2 Grupo de Sistemas Inteligentes, Departamento de Electrónica y Computación,
Universidad de Santiago de Compostela, Spain

dlosada@dec.usc.es

Abstract. The Multiple Bernoulli (MB) Language Model has been gen-
erally considered too computationally expensive for practical purposes
and superseded by the more efficient multinomial approach. While, the
model has many attractive properties, little is actually known about the
retrieval effectiveness of the MB model due to its high cost of execution.
In this paper, we show how an efficient implementation of this model can
be achieved. The resulting method is comparable in terms of efficiency
to other standard term matching algorithms (such as the vector space
model, BM25 and the multinomial Language Model).

1 Introduction

The Multiple-Bernoulli Language Model was originally proposed for Information
Retrieval (IR) in [3] and has been recently extended in the context of Bayesian
Learning[2, 1]. The MB language model is an appealing IR model, providing a
coherent framework in which queries and documents are treated in a uniform
manner. Also, the model provides implicit length normalization, because doc-
uments which contain many non-query terms are penalized for being off topic.
This feature would suggest that the applicability of the model would favor partic-
ular IR tasks where length normalization is critical (such as in element retrieval).
Already, some evidence to this tune has been shown in the context of sentence
retrieval[1].

Although the computational complexity of the MB model could be thought to
be too high for the model to be implemented in a practical setting, we show here
that an efficient method can be designed to do retrieval efficiently. If we examine
the formulation of the MB model in Eq. 1, we can see that the probability of
generating a query q given the document model θd involves a computation across

? The second author is supported by the “Ramón y Cajal” R&D program, which is
funded in part by “Ministerio de Educación y Ciencia” and in part by FEDER funds.
This work was financially supported by “Ministerio de Educación y Ciencia” through
research project ref. TIN2005-08521-C02-01.

all terms ti in the vocabulary T , (i.e. ti ∈ T).

p(q|θd) =
∏
ti∈q

p(ti|θd)
∏

ti /∈q

(1− p(ti|θd)) (1)

In the worse case scenario a direct implementation for a collection of documents
would be equal to the number of terms in the vocabulary, |T | multiplied by the
number of documents in the collection, |D| (i.e. |T | × |D|).

2 Optimization

Instead of directly computing p(q|θd) for every d in the collection of document
D, an optimization of the model is possible, by decomposing the scoring pro-
cedure. First, we require a pre-computation given the set of model parameters
which define θd, before query time. This estimates the probability of an empty
query being generated from the document model. Then, at query time, the pre-
computed document score is adjusted according to the terms that appear in the
query. To facilitate the optimization, we shall require some extra definitions. Let
qe be the empty query, and let de be an empty document, where the number of
times ti occurs in the document is zero for any ti (denoted as n(ti, de) = 0). The
document model of de is θde and its use shall become apparent shortly.

2.1 Pre-Computation before Query Time:

The probability of the empty query qe given each document model θd is computed
offline.

p(qe|θd) =
∏

ti /∈qe

(1− p(ti|θd)) (2)

Since the query is empty, this involves a product across all vocabulary terms.
Whilst this value is document dependent, we can design an efficient method
for computing the p(qe|θd). This is accomplished by first scoring a hypothetical
empty document and then updating this score given the terms seen in the actual
document. Thus, we pre-compute the probability of the empty query given the
empty document model, p(qe|θde) as follows:

p(qe|θde) =
∏

ti /∈qe

(1− p(ti|θde)) (3)

Note that any term ti is unseen in the empty document and, therefore, the value
p(ti|θde) is computed using n(ti, de) = 0. Once we see the actual document d
we can compute the probability of producing the empty query, p(qe|θd), starting
from p(qe|θde). The approach can be illustrated as follows. Starting from p(qe|θde)
can be thought as an initial assumption that any document is empty. As we see
the actual document terms, we update the probability score, removing (1 −
p(ti|θde)) which was computed assuming n(ti, d) = 0. And then multiplying by

(1 − p(ti|θd)), which is computed using the actual term document counts (i.e.
n(ti, d) > 0). Formally,

p(qe|θd) = p(qe|θde
) ·

∏

ti∈d

1− p(ti|θd)
1− p(ti|θde

)
(4)

That is, we only need to go on the seen terms whereas the unseen terms
take its probability from the pre-computed p(qe|θde

), which needs only to be
computed once. This is the first significant saving because the number of unique
terms in the documents is usually several orders of magnitude less than the size of
the vocabulary, |T |. The reader may note that this imposes an implicit constraint
on the optimization, because of the assumption that p(ti|θd) = p(ti|θde) for
all the terms which are unseen in the document d. This equality holds in the
original Ponte and Croft formulation [3] as the unseen terms’ probabilities are
assumed to be equal to the probability in a background model. That is, there
is no document dependent factor in the unseen term probability. On the other
hand, in the context of Bayesian Learning, the case is slightly different. The
basic MB formulation of the p(ti|θd) formula in [2] and [1] also depend only
on background probabilities for unseen terms and, therefore, the same efficient
approach can be taken. However, in a variation of the MB model to deal with
non-binary term-document counts (called Model B in [2]), the above method
cannot be immediately applied as p(ti|θd) is not equal to p(ti|θde) because the
final term estimate is proportional to the length of a document. When this is the
case, then a generalization of the process designed here can be employed. Instead
of assuming one hypothetical document, which is empty (i.e.

∑
t n(t, de) = 0), a

set of hypothetical documents need to be constructed, where the length of each
hypothetical document is 1, . . . , n, n being the document length of the largest
document3. This enables the computation to be performed almost as efficiently,
but incurs higher storage/memory costs.

2.2 Computation at Query Time

For each query term we adjust the contribution from the query terms in the
empty document model (eq. 5). Next, we compute the factor involving the query-
document matching terms (eq. 6).

p(q|θd) = p(qe|θd) ·
∏
ti∈q

p(ti|θde)
1− p(ti|θde)

(5)

×
∏

ti∈q∩d

p(ti|θd)
p(ti|θde)

· 1− p(ti|θde)
1− p(ti|θd)

(6)

Note that the product across query terms in eq. 5 is document independent
and, thus, it only needs to be computed once for each query. The product across
matching terms in eq. 6 introduces the right score for a matching term, p(ti|θd),
3 Actually, only one hypothetical document is needed for each unique document length.

and removes the score introduced in the previous steps4. This speed up uses a
similar tactic to that suggested in [4] for the multinomial approach. However, in
the multinomial model unseen query terms are not considered and, hence, there
is no need for an initial query score.

3 Complexity Analysis

We described the computation complexity according to the number of term score
calculations are required. The before query time pre-computation of calculating
p(qe|θde

) (eq. 3) takes |T | steps and to compute the value p(qe|θd) for all the
documents (eq. 4) takes |D| · |T | ·s steps, where s is the sparsity expressed as the
percentage of non-zero entries in the document-term matrix. This is computed
offline and so does not directly affect on-line performance. At query time, the
online computations in eq. 5 involves |q| steps, and eq. 6 takes |d|·|q|·s iterations,
where |q| is the number of query terms. Under this optimization a very significant
reduction in the run time of the MB retrieval model can be achieved which makes
it comparable to other state of the art retrieval models.

4 Conclusion

We have presented an efficient method for computing the MB model, which
reduces significantly the expected matching time5. From prior research and our
own intuitions we believe that the MB model will be more effective in specific
retrieval scenarios, such as when the elements to be retrieved are short and
need to be focused or when the variation in size of retrievable elements is high.
Further work will be directed at identifying retrieval scenarios that can exploit
the attractive properties of the MB model.

References

1. D. E. Losada. Language modeling for sentence retrieval: a comparison between
multiple-bernoulli models and multinomial models. In Information Retrieval and
Theory Workshop, Glasgow, UK, 2005.

2. D. Metlzer, V. Lavrenko, and W. B. Croft. Formal multiple-bernoulli models for
language modeling. In Proc. 27th ACM Conference on Research and Development in
Information Retrieval, SIGIR’04, pages 540–541, Sheffield, UK, 2004. ACM press.

3. J. Ponte and W. B. Croft. A language modeling approach to information retrieval. In
Proc. 21st ACM Conference on Research and Development in Information Retrieval,
SIGIR’98, pages 275–281, Melbourne, Australia, 1998.

4. C. Zhai and J. Lafferty. A study of smoothing methods for language models applied
to information retrieval. ACM Transactions on Information Systems, 22(2):179–214,
2004.

4 Note that, for a matching term, after applying eqs 3, 4 and 5, we have a contribution

equal to
p(ti|θde)·(1−p(ti|θd))

(1−p(ti|θde))
. We just multiply by the inverse of this value.

5 We have implemented the MB proposed in [1] in LEMUR 4.0, and this code will be
made freely available.

