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ABSTRACT
Searching is inherently an interactive process usually requir-
ing numerous iterations of querying and assessing in order to
find the desired amount of relevant information. Essentially,
the search process can be viewed as a combination of inputs
(queries and assessments) which are used to “produce” out-
put (relevance). Under this view, it is possible to adapt
microeconomic theory to analyze and understand the dy-
namics of Interactive Information Retrieval. In this paper,
we treat the search process as an economics problem and
conduct extensive simulations on TREC test collections an-
alyzing various combinations of inputs in the “production”
of relevance. The analysis reveals that the total Cumula-
tive Gain obtained during the course of a search session is
functionally related to querying and assessing. Furthermore,
this relationship can be characterized mathematically by the
Cobbs-Douglas production function. Subsequent analysis
using cost models, that are grounded using cognitive load as
the cost, reveals which search strategies minimize the cost
of interaction for a given level of output. This paper demon-
strates how economics can be applied to formally model the
search process. This development establishes the theoretical
foundations of Interactive Information Retrieval, providing
numerous directions for empirical experimentation that are
motivated directly from theory.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval:Search Process; H.3.4 [Information
Storage and Retrieval]: Systems and Software:Performance
Evaluation

General Terms
Theory, Experimentation, Economics, Human Factors

Keywords
Retrieval Strategies, Production Theory, Prosumer Theory,
Consumer Theory, Simulation, Evaluation
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1. INTRODUCTION
Interaction in the search process is usually required in

order to find the desired amount of relevant information, es-
pecially in the context of topic retrieval. Often the user will
need to pose a number of queries and examine numerous
documents before their underlying information need is sat-
isfied [6, 18]. Given that searching for information requires
user effort (and thus a cost), it is interesting to consider what
kinds of search strategies a user could or should employ to
efficiently undertake their search task. Broadly speaking, we
can think of search strategies as different ways to interact
with an Information Retrieval (IR) system. So, for exam-
ple, to obtain the desired amount of relevant information in
a cost efficient manner, what search strategy should a user
employ? Should they:

1. pose a handful of queries and assess deeply into the
ranks,

2. pose numerous queries and assess only the top ranks,

3. or, invoke some other combination of interactions?

In this paper, we aim to examine such strategies by ap-
plying microeconomic theory to Interactive Information Re-
trieval (IIR). We argue that the process of interaction be-
tween a user and a system can be modeled as a series of
inputs (queries, assessments, etc) that “produce” an output
(utility/gain from finding relevant items). Under this view,
we can adapt techniques from microeconomics, in particular,
production theory to analyze the interaction in the search
process using formal methods. By framing the search pro-
cess as an economics problem, it is possible to ask questions
such as, what search strategy (i.e. combination of inputs)
will minimize user effort (i.e. cost) for a given level of util-
ity/gain (i.e. output) when using a particular retrieval sys-
tem (i.e. technology)?

Being able to answer such questions is important for IIR
because while numerous behavioural and observational stud-
ies have been conducted, there is a lack of any formal the-
ory to explain why such behaviours and observations are
witnessed [5]. For example, in practice users often issues
short queries [22], but longer queries have been shown to be
more effective [14]. Kestalous et al [16] tried to justify this
strategy empirically, and showed that a series of extremely
short queries can be quite effective for finding one highly
relevant document. But searching for a number of relevant
documents often requires numerous queries to be posed dur-
ing the search session [15]. And generally, users will usually
only examine the first page or so of the result list [22, 17].
However, users of Boolean systems will often examine up



to 200 documents [17, 11]. The variation in search strat-
egy is believed to be, in part, due to user adaption. Smith
and Kantor [19] showed that users can adapt to degraded
systems by modifying their search strategy. In their exper-
iments, users increased the number of queries they issued
to compensate for a poor system. While, this enabled the
users to find relevant material, it did come at a greater cost.
While these are interesting observations, is it possible to
explain why users interact and behave in such a manner?
To understand why, and perhaps show that these observed
behaviors are optimal or justified in some way, we need to
be able to formally model the search process. By applying
microeconomic theory to IIR it may be possible to: (i) de-
velop such formal models, (ii) provide arguments for partic-
ular courses of interaction, and (iii) suggest alternative ways
for users to interact with systems, such that they minimize
their effort/cost. To this end, we describe how microeco-
nomic theory can be applied to model the search process.
Then, we explore its application by performing a large scale
simulation that evaluates an array of search strategies on
various retrieval systems to determine which strategies are
feasible and which are cost efficient.

2. THE ECONOMICS IN IIR
Economics provides a series of tools and techniques for

analyzing social phenomena [23], and can be applied to IR
in a number of different ways. Varian in his SIGIR 1999
keynote address “Economics and Search” presented three
suggestions on how economics could be useful in IR [24]:
(1) to examine the economic value of information using con-
sumer theory, “where a consumer is making a choice to max-
imize expected utility or minimize expected cost”, (2) to
obtain better estimates of the probability of relevance, and
(3) to apply Stigler’s theory on Optimal Search Behavior
to IR. Despite these promising suggestions, little research
has been undertaken investigating the use of economics and
economic theory within IR. However, in line with (2), Wang
and Zhu [25] used mean-variance analysis from economics to
develop Modern Portfolio Theory to obtain better estimates
of document relevance. While, the work in [2] employed
methods from economics to conduct an analysis of query
length showing that the law of diminishing returns applies
to querying. These past works provide the inspiration and
motivation for this research. In particular, we follow Var-
ian’s first suggestion on applying consumer theory in IR.
However, here, we shall apply production theory, instead
(for reasons which we shall explain later). Thus, in the re-
mainder of this section, we shall describe how the theory of
production can be adapted to model the search process.

2.1 Modeling the Search Process
Interactive Information Retrieval is a non-trivial process

consisting of a multitude of factors, interactions and vari-
ables, from user context to system configurations [10]. Try-
ing to incorporate all of these complexities would result in a
rather unwieldy model. Since one of the goals of this paper is
to inform on the cost efficiency of different search strategies,
then we shall concentrate on the main interactions between
a user and a system.

The model that we shall be defining is based upon produc-
tion theory [23]. In production theory, a firm produces an
output (such as goods or services), and to do so requires in-
puts to the process (usually termed, capital and labour) [23].

The firm will utilize some form of technology to then pro-
duce the output given the inputs. The process of production
is similar to the search process, which we model as follows:
the output of the search process is the utility or gain ob-
tained from the relevant documents found, and the inputs
to the process we have chosen consist of: (i) the number
of queries, (ii) the length of queries, and (iii) the depth of
assessment per query. Each of these inputs will directly in-
fluence the number of relevant documents found during the
search process. For example, query length has been shown to
directly relate to performance [2], while the number of doc-
uments that are assessed provides an upper bound on the
total number of relevant documents which could be found.
Given this abstraction of the search process, we can define
a search strategy as a combination of inputs (Q,D) for a
given query length L, which a user could employ, where:

Q the number of queries that the user will issue,

D how many documents the user will assess per query.

So the particular combinations of inputs describe potential
user search strategies. Then the technology engaged by the
user to produce/find relevant documents is, of course, a par-
ticular retrieval system. Through the course of interacting
with the system the output of the search process, unlike pro-
duction theory, is not a good or service, but a certain amount
of utility. Here we consider the total Cumulative Gain ac-
quired over the search session as a measure of utility/output.
This abstraction reduces the search process down to the core
variables which directly influence how much utility a user re-
ceives through the course of interaction with the system.

Now, depending on the particular retrieval system em-
ployed, different technological constraints will be im-
posed upon the search process such that only certain com-
binations of inputs will produce a given or specified amount
of gain. In economic terminology, the set of all combina-
tions of inputs and outputs that are technologically feasible
can be referred to as the production set. However, for
the purposes of analysis what is of interest is the boundary
case given this production set which is defined by the maxi-
mum possible output for a given level of input. The function
describing this boundary case is referred to as the produc-
tion function. Applied to search, where we consider the
two inputs Q and D for a given L, we can devise a search
production function f(Q,D) which will quantify the max-
imum amount of Cumulative Gain that could be obtained
if the user issued Q queries, and assessed D documents per
query for a given L using a particular retrieval system1.

Figure 1 provides an example of the production set for
BM25 on the Associated Press Collection for the different
input combinations. The upper right hand region enclosed
by the black dotted line denotes the set of combinations of
Q and D which could be issued to obtain a particular level
of gain (i.e. this is the production set). The boundary case
denoted by the dotted line is referred to as an isoquant in
microeconomics, and denotes the minimum amount of the
inputs required to produce the particular level of gain. Note
the isoquant represents the most efficient usage given the
inputs. Using the isoquant it is possible to estimate the
search production function.
1
While, we could devise a function using all three inputs (Q, D and

L), but this would be add a lot more complexity to the model. In
order to facilitate explanation and to concentrate on introducing the
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Figure 1: Example: Queries vs Depth on Aquaint
collection for BM25. The isoquant denotes the min-
imum amount of the inputs to produce the specified
level of gain.

2.2 Model Limitations and Caveats
Firstly, in terms of the analogy with production theory, it

should be noted that the search process is not exactly like the
production process. This is because relevance is not really
produced, so to speak, it is found within documents. How-
ever, the relevant documents found provide the user with
some utility or gain. In our formulation the gain is consid-
ered the output of the search process. In mapping the search
process as an economics problems we also considered using
consumer theory as suggested by Varian [24]. In consumer
theory, a consumer receives utility from the bundles of the
goods that they consume [23]. However, this analogy was
less intuitive because searchers do not buy goods or services
in the search process. Instead, they exert effort like labour
in a production process when they query and assess. While
neither production theory nor consumer theory exactly fits
the search process2: the techniques used in both consumer
and production theory are similar i.e. they derive a utility
or production function that characterizes the consumer or
production process, and then examine the rates of change,
maximize utility/profit, minimize expense/cost, etc, see [23]
for more details). So either way we shall be applying similar
techniques.

Secondly, in terms of IIR, our abstraction of the search
process makes a number of assumptions about possible in-
teractions. In reality, users are likely to vary the depth of
assessment, the length of queries, and the number of queries
that they pose depending on how (un)successful their queries
are at returning relevant results given the retrieval system.
While, we assume the search strategies denoted by (Q,D)
are fixed for a given L, i.e. the user will issue Q queries,
each of length L, and assess D documents per query, this
helps constrain and reduce the possibilities to a manage-
able size so that we can perform the analysis. Rather than
thinking that these are fixed, if we consider that these vari-

economic concepts to IR, we shall leave such formulations to future
work.
2
Actually, the process appears to be an example of“prosumer theory”,

where the producer and the consumer are one and the same.

ables reflect how a user would search on average, i.e. if a
user on average examined D per query, and issued on aver-
age Q queries with an average length of L, then this model
provides a reasonable approximation of usage. Nonetheless,
this abstraction still provides a sufficiently rich representa-
tion of the search process which can still provide interesting
insights and explanations.

2.3 Research Objectives and Questions
Given this view of the search process, our main objective

is to estimate or describe the search production function
for interactive topic retrieval mathematically; and in doing
so provide a formal model for IIR. During the course of
this research we shall also consider the following research
questions:

• What combination of inputs are required to achieve a
particular level of utility?

• What is the trade-off between querying and assessing?
Or, what is the rate of change between querying and
assessing? and,

• Given a cost function, which search strategy or strate-
gies minimize the cost of searching?

3. EXPERIMENTAL METHODOLOGY
For the purposes of this study, three TREC test collections

were used: the AP 88-89 collection with TREC 1, 2 and 3
Topics (AP), the LA Times collection (LA) with TREC 6, 7,
and 8 Topics, and the Aquaint collection (AQ) with TREC
2005 Robust Topics (See Table 1). Each test collection was
indexed using the Lemur toolkit3, where the documents were
preprocessed using Porter Stemming and a standard stop
list. Since we are interested in interactive ad-hoc querying
and retrieval, where the goal is to retrieve a number of rel-
evant documents, we have selected only those topics that
have at least 50 relevant documents in Aquaint and AP, and
at least 40 relevant documents in LA. We used these cut
offs to ensure that there were enough relevant documents to
produce sensible values when we examined the various levels
of gain. Also, in terms of examining interaction, if we only
had a few of relevant documents per topic, then it is likely
that only one query would be needed, which would not be
particularly interesting.

3
http://www.lemurproject.org

Collections AP LA Aqauint
Docs 164,597 131,896 1,033,461

Topic Set TREC 123 TREC 678 Robust 05
No. of Topics Used 87 43 26
Avg. Query Len. 3.3 2.5 2.6

Mean Average Precision
BM25 0.2966 0.2145 0.2021
LM2K 0.2967 0.2143 0.2043

BM25AND 0.2038 0.1094 0.1331
TFIDF 0.1867 0.0683 0.0803

TF 0.1435 0.0501 0.0598
BOOL 0.1202 0.0683 0.0460

Table 1: TREC Collection and Topic Statistics for
Associated Press (AP), LA Times (LA) and Aquaint
(AQ), along with the Mean Average Precision for
the retrieval models used in this study.



To explore the influence of different retrieval systems on
search behavior we employed six different retrieval systems:
two probabilistic systems, BM25 and a Language Model
with Dirichlet Prior Smoothing (LM2K). The modified Okapi
BM25 function was used with b = 0.75, while the Dirichlet
Prior was set to 2000 for LM2K. Two vector space systems
were also employed one with TF.IDF weightings and other
TF weightings. These were included to contrast the proba-
bilistic models as TFIDF and TF usually perform poorly in
comparison. We also used two Boolean systems: one which
was configured to be Boolean with an implicit AND, sorted
by date order (referred to as BOOL), and another which was
Boolean with implicit AND, ranked by BM25 (referred to
as BM25AND). We used the implicit AND, because accord-
ing to [17], over 90% of searches under taken using Boolean
based models are AND queries, while other operators are
rarely used. As previously mentioned, for our experiments
we used session based Cumulative Gain (CG) as a measure
of the utility/output. However, during the analysis, we also
used normalized session based Cumulative Gain (NCG) so
that we could aggregate the results across topics.

3.1 Simulated Interaction
Simulation in Information Retrieval has recently attracted

a lot of attention, especially in Interactive IR [4]. Simula-
tion enables researchers to conduct carefully designed and
controlled experiments to elicit precise answers to research
questions and obtain novel insights into the retrieval pro-
cess [3, 20, 21, 27, 26]. In these studies, the simulations
were designed to replicate and mimic the different aspects
of the retrieval process as realistically as possible. In this
paper, we also employ simulation as part of the experimen-
tal methodology but to explore an array of possible search
strategies that could be employed. For example, it is unlikely
that a web user would, on average, examine hundreds of doc-
uments per query, but it is of interest to see whether this
strategy is better or worse than other strategies. In the fol-
lowing paragraphs we shall detail and justify the simulated
querying and interaction that was employed to generate the
data used in the analysis.

Querying: To provide the queries that will be issued
during simulated search sessions, we needed to generate a
number of queries per topic. In this paper, we adopt the
approach taken in [12], where controlled queries are created,
as opposed to probabilistically generating random queries
as suggested in [3]. The reason is that we wish to gen-
erate high quality queries, as opposed to queries of vary-
ing quality. The query generation process was as follows:
(1) given a document or set of documents d: construct a
weighted term vector w(t, d), (2) rank w(t, d) from highest
to lowest, and (3) select the top k terms to be the query
q. For our experiments, the weighted term vector is simply
the number of times a term appears in d. This is referred
to as the popular sampling strategy, which for generating
queries in English was shown to produce queries akin to real
queries [3]. For our experiments, we generated one query
per relevant document and an additional query given all the
relevant documents4. By generating queries in the manner
we should obtain high quality queries that provide the “best
case” scenario. This should enable us to obtain a reasonable

4
The query generation software was written using the Lemur 4.10

Toolkit and the code is available on request.

approximation of the isoquant i.e. boundary case. However,
it is interesting to note that the quality of queries produced
by the query generation method, far from being complete
unrealistic, is in line with the performance of the TREC
title queries. For example, when using BM25 the TREC
short queries for the AP, LA, and AQ collections resulted in
a MAP of 0.297, 0.215, and 0.202, respectively. While, for
generated queries of length 3, the performance, in terms of
MAP was 0.30, 0.1950 and 0.266, respectively. Also, on the
whole the queries generated appeared quite sensible: and
reflected the querying behavior observed in the study by
Keskustalo et al [16], referred to as S3. S3 was the most
common strategy they observed, and was where users would
issue multiple queries of length three: pivoting on two key
words, and then varying the third query term. See Table 2
for examples of some generated queries.

AP Topic 52 LA Topic 313 AQ Topic 303

TREC Title Query

south african sanction magnet levit maglev hubble telescop achiev
Generated Queries

group south govern rail line studi astronom galaxi univers
south govern state rail line metro galaxi astronom light
south africa sanction line rail vallei galaxi matter star
south africa apartheid train french speed telescop studi galaxi
south africa human train tgv engin telescop studi space
south jackson africa train public counti hubbl star dust

Table 2: TREC Title queries for topics 52, 313 and
303, along with the generated queries of length 3.

Interacting To build up the sequence of interactions we
used a greedy best-first approach to select the subset of
queries required to obtain the desired level of Cumulative
Gain utility. While this might not always achieve the opti-
mal subset of queries it should provide a good approximation
for the analysis. Thus, we assumed that the user will issue
the best possible query out of all the generated queries first,
then issued the next best, and so on until they have found
the desired amount of relevant material. The best or next
best query is determined by selecting the query which pro-
vided the largest increase to the total Cumulative Gain at
the given depth D. If the desired level of total Cumulative
Gain was not been reached, then the process is repeated until
the desired level of total Cumulative Gain has been reached,
or all queries were posed. For the total Cumulative Gain
during the search session the query had to retrieve relevant
documents which had not been seen at previous query iter-
ations. Once the desired level of utility had been reached,
the number of queries required Q was recorded for the given
assessment depth D and query length L. The number of
queries was a free parameter which was determined through
the simulated interaction - and averaged over all topics, so
from here on when we refer to Q as the number of queries,
strictly speaking we mean the average number of queries,
and similarly with (normalized) Cumulative Gain, we mean
the average (normalized) Cumulative Gain over all topics.

3.2 Experimental Setup
For each topic, we generated a series of queries of length

L = 3 which is a typical length for user queries [1, 17].
The assessment depths D considered were D = {5, 10, 15, 20,
25, 30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 200, 300, 400, 500,
700, 1000} documents per query. We selected this subset to
cover the top ranks, and first few pages of search results
(where it is typical for search results to be dispatched in
groups of 10 to 25) [17]. Also, we consider significantly
deeper depths (or multiple pages of search results) up to



the typical depth of assessment used at TREC (i.e. 1000).
While, most studies report that users only examine the top
ranks or first page or two of results [22, 17], it is of in-
terest to determine whether there are alternative strategies
which are more cost effective. As stated above, given the
depth D and length L, the number of queries Q required
to obtain Normalized Cumulative Gain levels of NCG =
{0.2, 0.4, 0.6, 0.8, 1.0} was determined according to the inter-
action algorithm employed. For each level of output NCG
the corresponding inputs D and Q which were needed to
obtain that output given length L were recorded and used
in the analysis.
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Figure 2: The trade off between the no. of queries
and the depth of assessment per query across re-
trieval models on the Aquaint collection. Top Plot:
NCG = 0.2, Bottom Plot: NCG=0.4.

4. ECONOMIC ANALYSIS
In this section, we shall focus mainly on presenting the

analysis using the simulated interaction data from the Aquaint
collection. However, the general findings, trend and patterns
observed were also obtained on the two other collections (see
Figure 4 for examples on these collections). We shall start
the analysis by examining the production set and estimat-
ing the search production function. The two input variables

which we shall pay most attention to is the number of queries
issued Q and the number of documents assessed per query
D (or assessment depth).

Production Set: Figure 2 shows the isoquants for each of
the different retrieval models for two gain levels. Combina-
tions where Q and D are greater than the boundary case
will yield similar or greater utility. The top plot shows the
combinations required to yield an NCG of 0.2, whereas the
bottom plot shows the combinations required to yield an
NCG of 0.4 for each retrieval model on the Aquaint collec-
tion (where L = 3). On inspection of these two plots, there
are a number of interesting observations to be made:

• As the gain level is increased from 0.2 to 0.4, more
queries are required and/or more assessments per query.
Naturally, this is to be expected because more docu-
ments need to be examined in order to achieve a higher
gain. For example, with BM25 it is possible to obtain
NCG=0.2 with a combination of Q = 2 and D = 25,
whereas to obtain NCG=0.4 while keeping one of the
inputs fixed then either: (a) Q = 2 and D increases to
75, or (b) D = 25 and Q increases to 5.

• For particular retrieval models some combinations do
not yield the desired level of gain. That is, given a
particular depth there is no subset of queries which
will obtained the specified gain. For example, in the
bottom plot, the Boolean Model, TFIDF, and TF do
not provide complete sets of feasible combinations over
the range of depths examined i.e. their production
sets contain fewer technically feasible input combina-
tions than the other retrieval models. For example,
using the TF model, a user would have to examine to
a depth of at least 140, before they could find a viable
search strategy where they could pose enough queries
to obtain an NCG of 0.4.

• On the other hand, BM25, BM25AND, and LM2K
provide a greater number of combinations ranging from
D = 5 up to D = 1000. This means that BM25,
LM2K and BM25AND provide more search strategies
to the user, such that: if a user prefers to issue many
queries or only a few queries, then provided they exam-
ine deeply enough, there are combinations which could
yield the desired gain.

• Also, the plots graphically show the trade-off between
querying and assessing: as depth D increases, we see
that the number of queries required decreases. Whereas,
if the number of queries is increased, then the depth
can be decreased. We shall examine this phenomena
in more detail later in our analysis.

With regards to standard IR evaluation, it is interesting
to note the difference between retrieval models. In Ta-
ble 1 we reported the standard measure of retrieval per-
formance, mean average precision, for each of the different
retrieval models. The results, not surprisingly, show that
BM25 and LM2K deliver substantially greater retrieval per-
formance than TFIDF, TF, BM25AND and BOOL. How-
ever, the graphs of the production set for these retrieval
models are far more illuminating: they show the array of
search strategies that are possible. Specifically, the plots
show how much querying and/or assessing is required in or-
der to obtain the same level of gain. These plots also show



NCG=0.2 NCG=0.6 NCG =1.0

Col. Model L K α r2 K α r2 K α r2

AP

BM25 3 5.118 0.608 0.952 6.161 0.566 0.996 4.417 0.586 0.998
LM2K 3 5.126 0.607 0.9501 5.921 0.563 0.994 3.918 0.565 0.999
BM25AND 3 5.105 0.612 0.9523 6.062 0.585 0.99 4.365 0.6457 0.994
BOOL 3 4.027 0.598 0.965 4.563 0.585 0.986 4.025 0.680 0.991
TFIDF 3 3.928 0.559 0.981 3.693 0.523 0.997 2.127 0.512 0.999
TF 3 3.704 0.571 0.968 2.998 0.501 0.992 2.246 0.479 0.998

AQ

BM25 3 4.819 0.624 0.943 5.394 0.576 0.995 3.733 0.606 0.999
LM2K 3 4.741 0.618 0.947 5.033 0.562 0.998 3.223 0.586 0.999
BM25AND 3 4.808 0.634 0.946 5.232 0.581 0.992 3.824 0.689 0.989
BOOL 3 3.114 0.589 0.963 3.471 0.607 0.997 - - -
TFIDF 3 2.466 0.569 0.984 1.694 0.503 0.996 - - -
TF 3 1.989 0.556 0.981 1.445 0.500 0.979 - - -

LA

BM25 3 4.008 0.718 0.812 3.82 0.603 0.998 2.876 0.686 0.989
LM2K 3 3.223 0.585 0.999 3.463 0.611 0.995 2.413 0.645 0.994
BM25AND 3 4.021 0.747 0.794 3.501 0.68 0.978 2.543 0.799 0.969
BOOL 3 2.805 0.871 0.977 2.443 0.663 0.986 2.805 0.871 0.978
TFIDF 3 1.962 0.653 0.991 1.377 0.553 0.977 - - -
TF 3 1.686 0.636 0.992 1.145 0.541 0.989 - - -

Table 3: Cobbs-Douglas Production Function Fitting Parameters (K,α) and the r2 value for 3 gains levels
across all models and collections. (-) indicates when no combinations were found for that gain level.

what kind of adaption is required to adjust to systems of
varying performance. We know from the work of Smith and
Cantor [19] that users can adapt to degraded systems, and
in their study they observed users compensating for a de-
graded system by issuing more queries. If we examine the
top plot in Figure 3, then we can see, for example, that for
BM25 Q = 2 and D = 25 to obtain an NCG=0.2, but for
TFIDF, if the user fixes D equal to 25, then they need to
posed 4 additional queries, i.e. Q = 6 to obtain the same
gain. These findings are consistent with the work in [19].
However, here we are enable to examine more precisely the
differences between systems, and predict how much more
interaction is required to compensate for degraded systems.

Search Production Function: While the plots are quite
illustrative showing the relationship between querying and
assessing, it is our objective to try and characterize this re-
lationship mathematically. Given the shape of the plots,
the data appears to be in the form of a Cobbs-Douglas pro-
duction function (which is one of several types of production
functions often used in microeconomics, see [23] for others).
Thus, we hypothesize that the search production function
would take the following form:

f(Q,D) = K.Qα.D(1−α) (1)

where f(Q,D) is the function that quantifies the total cumu-
lative gain given the inputs Q and D (conditioned on query
length L and retrieval system), K provides an indication of
the efficiency of the technology (i.e. a greater K will result
in more gain), and α is a mixing parameter determined by
the technology used. If α = 0.4, a 10% increase in querying
would lead to approximately a 4% increase in output.

To determine whether the isoquants could be modeled by
the Cobbs-Douglas search production function described in
Equation 1, we tried to estimate the parameters K and α
using the Curve Fitting tool provided in Matlab’s statistics
toolbox. Table 3 shows the fits for each model, for each col-
lection, when the query length was three and for the NCG
values 0.2, 0.6 and 1.0. The K and α values are shown along
with the coefficient of determination (i.e. the r2 value) for
each fit. The closer the r2 value is to 1 the better the fit is

to the data, given the specified parameters. For the partic-
ular retrieval models and gain levels, which have incomplete
isoquants across the range of D explored, then the estimate
of f(Q,D) will only hold where D is greater than or equal to
the depth at which a combination is technically feasible. For
example, when NCG = 0.4, TFIDF and TF in Figure 2 both
have incomplete isoquants and so their production function
is constrained.

For each model and collection, we can see that r2 for
most of the models is quite close to one, indicating that
the Cobbs-Douglas function is quite a good fit to the data,
and a reasonably good characterization of the gain produced
through querying and assessing. This is an important find-
ing because it means that instead of empirically estimating
the rates of changes we can use differentiation to obtain
the marginal product of querying and assessing, and the
marginal rate of technical substitution (see below). If we
consider the results for different retrieval models, we note
that (1) TFIDF and TF tend to have the lowest values of K
indicating these technologies are rather inefficient, while (2)
BM25 and LM2K have the highest values indicating that
they are more efficient at producing gain. While, this is
consistent with the retrieval models retrieval effectiveness
(i.e. MAP), the search production function quantifies the
retrieval models performance under interaction (and across
various possible ways in which the system could be used).

4.1 Marginals or Rates of Change
Of particular interest in microeconomics is the rates of

change between the inputs and output (and are often re-
ferred to as marginals). Here we describe the marginal prod-
uct of querying and the marginal product of assessing. These
describe how much the output changes, when an additional
query is submitted or an additional document is assessed
(i.e. how much more Cumulative Gain do we obtain if we
pose one more query, or assess one more document). Given
these marginals, then it is possible to determine the rate of
technical substitution. This would allow us to determine how
much more assessing is required if one less query was posed,
in the case where we substitute queries for assessments.



The Marginal Product of Querying is the increase in
output given an increase in querying i.e. if we issue an-
other querying how much more gain will we get for each
additional query. Given the search production function de-
fined in Equation 1 the marginal product of querying can be
obtained by differentiating with respect to Q:

MPQ =
δCG

δQ
= K.α.Q(1−α).D(1−α) (2)

Similarly the Marginal Product of Assessing is the in-
crease in output given an increase in assessing: and is ob-
tained by differentiating with respect to D:

MPD =
δCG

δD
= K.(1− α).Qα.D−α (3)

The marginal products of querying and assessing result in
diminishing marginal returns; where the gain gets smaller
if you hold one of the inputs constant while increasing the
other. So, if querying is held constant, and the depth of
assessment is increased then each additional document that
is assessed will add less and less to the Cumulative Gain.
This is consistent with what we would expect during search
because documents are usually ranked in decreasing order
of relevance [8]. One of the possible uses of the Marginal
Product of Assessing would be to predict when a user would
stop examining the ranked list. For example, if we assumed
that the user would like to obtain at least an additional g of
gain for every n documents that they assess, then we could
determine at what depth D the rate of change equals g/n.
Beyond that D the rate of change would be lower than the
desired and so the user would stop at depth D. While this
would be very interesting to determine and empirically test,
we shall leave such a direction to future work, and focus on
quantifying the relationship between querying and assessing.

The Technical Rate of Substitution: Instead of con-
sidering how much output changes by, the technical rate of
substitution considers how much of one input we need to
increase or decreases, if we decrease or increase the other
input in order to hold output at the same level. So for ex-
ample, how many more documents would we need to assess
per query, if we issued one less query. The technical rate of
substitution can be defined as:

TRS(Q,D) =
∆D

∆Q
= −MPQ

MPD
(4)

and it measures the rate at which querying can be substi-
tuted for assessing. While, TRS(D,Q) measures the rate
at which assessments can be substituted for querying. Note
that the TRS is the slope of the line of the search production
function. For convenience, we shall not report−MPQ/MPD,
but MPQ/MPD, so that it can be intuitively interpreted as
the number of additional documents that would have to be
assessed per query, if one query was given up.

In Table 4, we report the technical rate of substitution
of querying for assessing for BM25, TFIDF and Boolean at
several different levels of gain and at particular depths5. If
we take BM25 for example when the NCG = 0.2, then when
D = 5, a user would have to assess, on average, 1.1 extra
documents per query, if they give up one query. Whereas

5
Note, we have not displayed the TRS value when the average number

of queries is less than two . This is because the search process requires
at least one query to be posed - i.e. it does not make any sense to
pose less than one query.

when D = 30, they would have to assess, on average, ap-
proximately 25 extra documents per query, if they forgo one
query. Overall, the trend is that as depth increases, the TRS
also increases, and this appears to be at an increasing rate.
Essentially the technical rate of substitution enables us to
quantify the trade-off between querying and assessing. Next
we examine the cost of the different strategies to determine
which strategy is the most cost-efficient.

4.2 Cost of Interaction
In order to determine what search strategies minimize the

cost to the user, we have constructed a cost function to mea-
sure the effort required to obtain the desired level of output
for the given inputs. The user cost function we shall em-
ploy is a linear combination of querying and assessing, and
is defined as follows:

c(Q,D) = β.Q+Q.D (5)

where the cost is composed of two parts: the total cost of
querying, and the total cost of assessing i.e. the total num-
ber of documents examined6. Here, the total querying cost
is proportional to the number of queries issued Q. And the
relative cost of a document versus a query is dictated by the
parameter β. If β is greater than one than it is relatively
more expensive to pose a query than to assess a document,
and vice versa. For these experiments, we determined β by
drawing upon the user experiments conducted in [9], where
the cognitive load of various interactions in the informa-
tion seeking process were measured. In these experiments,
a dual-task method was used which measured how long it
takes for the participant to respond to a secondary task (in
milliseconds). It was found, on average, that assessing doc-
uments placed a load of 2266 ms on the user, while posing
queries was somewhat more taxing with a load of 2628 ms
(values taken from Table 11 in [9]). Since we need a rela-
tive cost between querying and assessing then we assigned
β = 2628/2266 = 1.1598. This estimate provides a reason-
able indication of the relative costs based on the available
data which provides some grounding for our analysis. Essen-
tially, this user cost function estimates the relative cognitive
effort of querying and assessing. Given that we are exam-
ining various search strategies under similar circumstances
it should be adequate to make a reasonably fair comparison
between strategies. However, in the future it would be in-
teresting to explore alternative cost functions and different
parameterizations.

Search Strategy Cost Efficiency: For each input com-
bination, we calculated the cost to the user and we have re-
ported the costs for various combinations in Table 4. The
asterisk indicates if the combination was the minimum cost
in the set. In Figure 3, for BM25, TFIDF and Boolean re-
trieval models, we have also plotted Q vs. D for each gain
level in the top plots, whilst in the bottom plots we show
the corresponding cost across the depths at each level. From
inspecting the plots, we can see that as the gain increases so
does the cost. For a given level of gain, we can also see that
the most cost efficient strategies tend to be the ones where

6
We acknowledge that this is a rather simple user cost function, but

it does capture the main elements of interest and is similar to the cost
function proposed in [13] for evaluating faceted browsing strategies.
We shall leave the development of non-linear cost models, which cater
for other factors like user frustration and fatigue when assessing [7],
or the increasing costs of generating queries [18] to future work.



NCG=0.2 NCG=0.4 NCG=0.6
Model Q D Cost TRS Q D Cost TRS Q D Cost TRS

BM25

7.5 5 63 1.1 19.3 5 163 0.4 41.1 5 348 0.2
4.5 10 60 3.7 11.2 10 151 1.2 24.7 10 333 0.5
3.2 15 59* 7.8 8.1 15 150* 2.5 17.6 15 326* 1.1
2.7 20 62 12.5 6.5 20 152 4.2 14 20 328 1.9
2 30 66 25.2 4.9 30 164 8.3 10.2 30 343 3.8

TFIDF

8.2 20 193* 3.2 11.4 80 955 7 14.9 180 2731 12.1
6.2 30 206 6.4 9.3 100 958 10.9 14.2 200 2882* 14.1
4.9 40 213 10.8 7.5 120 928* 16.1 9.5 300 2887 31.4
4.1 50 219 16.2 6.6 140 951 21.3 6.9 400 2787 57.7
3.6 60 229 22 5.6 160 916 28.7 5.4 500 2705 92.8

BOOL

7.3 15 135* 2.9 9.8 40 428* 5.5 9.3 120 1154* 19.1
5.7 20 135 5.0 8.3 50 442 8.2 8.2 140 1181 25.3
4.2 30 140 10.3 6.9 60 440 11.7 7.3 160 1186 32.8
3.1 40 137 18.3 5.4 80 452 19.9 6.8 180 1246 39.4
2.7 50 144 26.6 4.5 100 464 30.1 6.3 200 1292 46.8

Table 4: Costs and Rate of Technical Substitutions: For each retrieval model, shown for the first five com-
binations of Q and D that result in the specified NCG, along with the cost c(Q,D), TRS of Q for D (which
is how many more documents would need to be assessed if one query was given up at the given depth). *
indicate the depth length which obtains the overall minimum for a given level of gain.

less documents are assessed (i.e. assessing lots of documents
imposes a high cost to the user). However, to get the most
out of each query usually a number of documents need to be
assessed, and of course, the strategy needs to be technically
feasible. We can see from the top plots in Figure 3, that for
TFIDF and BOOL, in particular, that not all combinations
are possible. In these cases, it is the combination with the
lowest depth that minimizes costs (usually around a depth
of 100-200 documents). For BM25, which provides the user
with a greater array of strategies to choose from, we see that
the minimum cost is around a depth of 10 to 20 documents.
If we inspect the costs in the Table 4, then we see that for
BM25 the depth that, on average, provides the lowest cost to
the user is examining 15 documents per query7. Recall, that
this depth is approximately the number of documents a user
typically examines [22, 17]. This suggests that state of the
art systems which deliver reasonably good performance (like
BM25 on these collections) may induce similar behavior in
users (i.e. an emphasis on querying more, rather than assess-
ing deeply). For TFIDF and BOOL, however, the strategies
that minimized cost varied across the levels of gain. Es-
sentially, as the desired gain increased, more queries and
greater depths were required. Interestingly, for the Boolean
retrieval model for higher gain levels, the user would have to
examine up to 120 documents per query to reach an NCG of
0.6. According to the studies in [17] and [11], this statistic
reflects the number of documents users typically examine
when using Boolean systems. While for TFIDF, these re-
sults show that, a user may be able to adapt to a degraded
system (i.e. BM25 vs TFIDF) but this is going to substan-
tially increase the cost to the users. These findings are not
definitive explanations for observed user behavior, but they
do provide some credence to observed behaviors. Nonethe-
less, the application of economic theory to IIR process has
thrown up a number of possibilities to hypothesize about
and test search strategies: and this analysis shows that for
a reasonably good retrieval system, like BM25 on these col-
lections, then examining only the top 15 or documents, and

7
This was observed for gain levels up to 0.8. To obtain NCG = 1.0

then at least 50 documents needed to be examined per query.

posing as many queries as needed to obtain the desired level
of gain is a viable and cost efficient strategy to employ.

What happens when β changes? On a hypothetical
note it is interesting to consider what would happen if we
varied the relative cost β. For example, let’s assume that
the search system employed provides query assistance func-
tionality like query suggestion [15], which reduces the effort
of posing queries (i.e. β decreases). In this case, queries be-
come cheaper, and the preferred search strategy would tend
to towards strategies where more queries are posed and less
documents examined. While, if queries were more costly
to pose (i.e. β increases), perhaps because there was no
automatic spelling corrections or exact matching was en-
forced, then the preferred search strategy would would tend
towards strategies where less queries were issued, but more
documents examined. This is because assessing documents,
under this condition, would be relatively cheaper than pos-
ing additional queries. This example shows how a formal
model for IIR can be used to better understand and explain
the dynamics within the search process.

5. DISCUSSION AND CONCLUSION
In this paper, we have shown how production theory from

microeconomics can be applied to IIR by modeling the search-
ing process as if it were a production process. Then, through
the course of the analysis we have shown how the tools and
techniques from microeconomics can used to describe the dy-
namics of querying and assessing on various test collections
and retrieval models. For instance, we found that BM25 sup-
ported a greater variety of search strategies when compared
to TFIDF and BOOL. A result that would not have oth-
erwise been found through standard evaluations. We also
found that it was possible to mathematically describe the
search process through the Cobbs-Douglas production func-
tion. From this, we were able to derive the technical rate
of substitution from the search production function in order
to calculate the trade-off between querying and assessing.
After we mapped the inputs to a cost function, we were able
to show that for BM25 the search strategy that minimized
the cost was when D was around 15. This suggests that a
user would only need to examine the first page or so of re-
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Figure 3: Top: Query vs. Depth, and Bottom: Cost vs. Depth, for the different levels of gain. From Left to
Right: BM25, TFIDF and Boolean retrieval models.

sults per query, and continue to pose queries until they reach
their desired level of gain to operate the retrieval system effi-
ciently. On the other hand, for retrieval models like TFIDF
and BOOL, our study suggests that users would needs to
delve deeper into the rankings and issue substantially more
queries in order to achieve the same level of gain. These
findings are consistent with previous findings obtained from
studying users [22, 17, 19] suggesting that there is an eco-
nomic justification for such search strategies. In our final
example, we showed how the theory can be used to generate
hypotheses about how users would change their search strat-
egy depending on whether the cost of a query increased or
decreased. This work demonstrates that the formal models
and methods from microeconomic theory are useful for de-
scribing, explaining and hypothesizing about IIR. However,
further research is required to empirically explore and test
the models and theory developed here, and to address the
limitations of this work.

During the course of this research we have tried to point
out the main limitations. In particular, we mentioned that
the abstraction of the search process could be improved to
include more variables and factors (such as query length, and
interactions which are not fixed). However, given the initial
model of the search process, we were still able to reveal a
number of interesting findings regarding the economics of
interaction. When we applied production theory to IIR we
had to re-consider what the output was – and what was“pro-
duced” by the search process. However, this was overcome
by considering the gain obtained from finding the relevant
documents as the output of the process. Another limitation
at the modeling level was that we employed a linear user
cost function. However, there is a growing body of work ex-

amining the cost of interaction, which has begun to emerge
over the past couple of years [20, 7, 9, 13]. As this area
develops then the findings from such studies will enable the
development of more accurate cost functions, so that search
strategies can be evaluated more precisely.

To sum up, we have shown that microeconomic theory
provides a number of valuable tools and techniques for un-
derstanding IIR. The mapping of production theory to the
search process provided a novel way in which we can for-
mally model IIR. Thus, this work provides the foundations
on which to build formal models for describing, understand-
ing and explaining the interactions between a user and sys-
tem, i.e. we can explore the economics of IIR. Clearly, there
are a number of ways in which we can develop this work fur-
ther, from refining the initial models of the search process
to applying the theory in practice. In future work we shall:

(i) develop production functions that incorporate other in-
puts such as query length,

(ii) refine the model of the search process to introduce other
variations in interaction, for example, examining snip-
pets in the results list, and then selectively picking
documents to assess,

(iii) given the Marginal Product of Assessing predict when
users will stop examining the ranked list,

(iv) develop non-linear user cost functions which incorpo-
rate factors like user fatigue and frustration, as well as
the factor in the costs involved when trying to formu-
late the nth query on a particular topic, and

(v) investigate how the quality, length and order of the
queries affects interaction.
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Figure 4: The trade off between No. of Queries and Assessment Depth across the different retrieval models
on AP (Left), LA (Middle) and Aquaint (Right). Note how BM25 and LM2K require less input to obtain
the desired gain. They also provide more possible combinations to obtain the desired gain compared to the
other retrieval models.
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