
Dijkstra’s Algorithm

Iterative algorithm to build shortest path tree rooted at
arbitrary source node, S.

• Let nodes be n1, n2, …, nL and let A ={n1, n2, …, nL }.

• Define c: A×A→ℜ:
o if ni and nj are neighbours, c(ni, nj) is the cost

associated with the link connecting n1 and n2;

o if ni and nj are not neighbours, c(ni, nj) = ∞.

• At each step node closest to S not yet in the tree is
added.

• At end iteration k:
o let Dk(ni) be the best distance known from S to ni

;
o Nk is set of nodes included in the tree.

Initial step: Set N0 = {S} and D0(x) = c(S,x).
Iterative step: For k=1, ..., L-1,

 Find a node y∉ Nk-1 s.t. Dk-1(y) is a minimum and set
 Nk := Nk-1 U {y}
 If k = L-1 then stop, otherwise:

 Dk(x) := min[Dk-1(x), Dk-1(y) + c(y,x)] ∀x∉Nk

Example

n1

n2
n6

n3

n5

2

6

1

1

2

1 3

1

n4

3

k=? Nk n2 n3 n4 n5 n6
Init {n1} 2

(n1-n2)
6

(n1-n3)
∞

1
(n1-n5)

∞

1 {n1,n5} 2
(n1-n2)

4
(n1-n5-n3)

2
(n1-n5-n4)

 3
(n1-n5-n6)

2 {n1,n5,n2} 4
(n1-n5-n3)

2
(n1-n5-n4)

 3
(n1-n5-n6)

3 {n1,n5,n2,n4} 4
(n1-n5-n3)

 3
(n1-n5-n6)

4 {n1,n5,n2,n4,n6} 4
(n1-n5-n3)

5 {n1,n5,n2,n4,n6,n3}

Example

Shortest Path Tree

Simplified routing table for n1

Destination Outgoing link Distance

n2 n1— n2 2

n3 n1— n5 4

n4 n1— n5 2

n5 n1— n5 1

n6 n1— n5 3

n 1

n 2

n 5

n 6

n 3

n 4

2

1
1

3

2

Bellman-Ford Algorithm

Notation. Let x and y be arbitrary nodes.
Neigh(x) is the set of neighbours of x,

l(x,y) is the length of the link joining neighbours x and y.

x, maintains a distance vector, Dx, of best known
distances to every other node, and a routing vector, fx, of
best known output links to every other node.

2 2

() ()

() ()
() ()

. .
 ;

. .

. .

1 1

n x n x

d x f x
d x f x

d f

= =

x xD f

Dx is updated thus:

 ()
() [() (,)]i iy Neigh x

d x Min d y x y
∈

= + l

If di(x) is a minimum for y = yk, fx is updated thus:

 ()i kf x y=

Example

n1

n2
n6

n3

n5

3

6

1

1

2

1 3

1

n4

3

n
n
n
n
n
n

1

2

3

4

5

6

3
6

1

−

∞

∞

n
n
n
n
n
n

1

2

3

4

5

6

3

1
3

−
∞

∞

n
n
n
n
n
n

1

2

3

4

5

6

6

3
1

∞
−
∞

n
n
n
n
n
n

1

2

3

4

5

6

1
3
3
1

2
−

n
n
n
n
n
n

1

2

3

4

5

6

1

1

∞

∞
−

∞

n
n
n
n
n
n

1

2

3

4

5

6

1

2

∞
∞

∞

−

Distance vector calculation for n1, first iteration.

Dest Current
best dist

Best dist
offered by n2

Best dist
offered by n3

Best dist
offered by n5

New vectors

 Dist Via
n2 3 0+3 ∞ 3+1 3 n2

n3 6 ∞ 0+6 3+1 4 n5

n4 ∞ 1+3 ∞ 1+1 2 n5

n5 1 3+3 3+6 0+1 1 n5

n6 ∞ ∞ 1+6 2+1 3 n5

Convergence Problems

Count to infinity problem

 n1 n2 n3 n4

1 3 2 Best distance to n1

Assume each link has cost 1.

Suppose Link n1—n2 fails…

n3 offers route to n1 of cost 2 to node n2. Oh dear…

It gets worse…

Distance to n1 seen by: n2 n3 n4

After 1st exchange 3 2 3

After 2nd exchange 3 4 3

After 3rd exchange 5 4 5

Some solutions.

Split horizon: don’t allow routers to advertise
destinations in direction from which those destinations
were learned.

Split horizon with poison reverse: advertise destinations
in direction learned as distance of ∞.

