Dijkstra's Algorithm

Iterative algorithm to build shortest path tree rooted at arbitrary source node, *S*.

- Let nodes be $n_1, n_2, ..., n_L$ and let $A = \{n_1, n_2, ..., n_L\}$.
- Define **c**: A×A®ℜ:
 - if n_i and n_j are neighbours, $\mathbf{c}(n_i, n_j)$ is the cost associated with the link connecting n_1 and n_2 ;
 - o if n_i and n_j are not neighbours, $\mathbf{c}(n_i, n_j) = \infty$.
- At each step node closest to **S** not yet in the tree is added.
- At end iteration k:
 - let $D_k(n_i)$ be the best distance known from S to n_i ;
 - \circ *N_k* is set of nodes included in the tree.

Initial step: Set $N_0 = \{S\}$ and $D_0(x) = \mathbf{c}(S, x)$. Iterative step: For k=1, ..., L-1, Find a node $y \notin N_{k-1}$ s.t. $D_{k-1}(y)$ is a minimum and set $N_k := N_{k-1} \cup \{y\}$ If k = L-1 then **stop**, otherwise: $D_k(x) := \min[D_{k-1}(x), D_{k-1}(y) + \mathbf{c}(y, x)] \quad \forall x \notin N_k$

$$n_4$$

k= ?	N _k	n ₂	n 3	n 4	n 5	n 6
Init	{n ₁ }	2	6	∞	1	œ
		(n ₁ -n ₂)	(n ₁ -n ₃)		(n₁-n₅)	
1	{n ₁ ,n ₅ }	2	4	2		3
		(n₁-n₂)	(n ₁ -n ₅ -n ₃)	(n ₁ -n ₅ -n ₄)		(n ₁ -n ₅ -n ₆)
2	{n ₁ ,n ₅ ,n ₂ }		4	2		3
			(n ₁ -n ₅ -n ₃)	(n₁-n₅-n₄)		(n ₁ -n ₅ -n ₆)
3	$\{n_1, n_5, n_2, n_4\}$		4			3
			(n ₁ -n ₅ -n ₃)			(n₁-n₅-n ₆)
4	{n ₁ ,n ₅ ,n ₂ ,n ₄ ,n ₆ }		4			
			(n₁-n₅-n₃)			
5	$\{n_1, n_5, n_2, n_4, n_6, n_3\}$					

Example

Shortest Path Tree

Simplified routing table for n_1

Destination	Outgoing link	Distance
<i>n</i> ₂	$n_1 - n_2$	2
<i>n</i> ₃	$n_1 - n_5$	4
n_4	$n_1 - n_5$	2
n_5	$n_1 - n_5$	1
<i>n</i> ₆	$n_1 - n_5$	3

Bellman-Ford Algorithm

Notation. Let *x* and *y* be arbitrary nodes.

Neigh(x) is the set of neighbours of x,

 $\ell(x,y)$ is the *length* of the link joining neighbours x and y. x, maintains a distance vector, $\mathbf{D}_{\mathbf{x}}$, of best known distances to every other node, and a routing vector, $\mathbf{f}_{\mathbf{x}}$, of best known output links to every other node.

$$\mathbf{D}_{\mathbf{x}} = \begin{bmatrix} d_{1}(x) \\ d_{2}(x) \\ \vdots \\ \vdots \\ \vdots \\ d_{n(x)} \end{bmatrix}; \qquad \mathbf{f}_{\mathbf{x}} = \begin{bmatrix} f_{1}(x) \\ f_{2}(x) \\ \vdots \\ \vdots \\ \vdots \\ f_{n(x)} \end{bmatrix}$$

 $\mathbf{D}_{\mathbf{x}}$ is updated thus:

$$d_i(x) = \underset{y \in Neigh(x)}{Min} [d_i(y) + \ell(x, y)]$$

If $d_i(x)$ is a minimum for $y = y_k$, $\mathbf{f_x}$ is updated thus: $f_i(x) = y_k$

Distance vector calculation for n_1 , first iteration.

Dest	Current best dist	Best dist offered by n ₂	Best dist offered by n ₃	Best dist offered by n ₅	New vectors	
					Dist	Via
n ₂	3	0+3	¥	3+1	3	<i>n</i> ₂
n 3	6	¥	0+6	3+1	4	n ₅
n 4	¥	1+3	¥	1+1	2	n ₅
n 5	1	3+3	3+6	0+1	1	n ₅
n 6	¥	¥	1+6	2+1	3	n ₅

Convergence Problems

Count to infinity problem

Suppose Link $n_1 - n_2$ fails...

 n_3 offers route to n_1 of cost 2 to node n_2 . Oh dear...

It gets worse ...

Distance to n_1 seen by:	n 2	<i>n</i> ₃	<i>n</i> ₄
After 1 st exchange	3	2	3
After 2 nd exchange	3	4	3
After 3 rd exchange	5	4	5

Some solutions.

Split horizon: don't allow routers to advertise destinations in direction from which those destinations were learned.

Split horizon with poison reverse: advertise destinations in direction learned as distance of ∞ .