Dijkstra's Algorithm

Iterative algorithm to build shortest path tree rooted at arbitrary source node, S.

- Let nodes be $n_{1}, n_{2}, \ldots, n_{L}$ and let $A=\left\{n_{1}, n_{2}, \ldots, n_{L}\right\}$.
- Define c: $A \times A \rightarrow \mathfrak{R}$:
- if n_{i} and n_{j} are neighbours, $\mathbf{c}\left(n_{i}, n_{j}\right)$ is the cost associated with the link connecting n_{1} and n_{2};
- if n_{i} and n_{j} are not neighbours, $\mathbf{c}\left(n_{i}, n_{j}\right)=\infty$.
- At each step node closest to S not yet in the tree is added.
- At end iteration k :
- let $D_{k}\left(n_{i}\right)$ be the best distance known from S to n_{i} ;
- N_{k} is set of nodes included in the tree.

Initial step: Set $N_{0}=\{S\}$ and $D_{0}(x)=\mathbf{c}(S, x)$.
Iterative step: For $k=1, \ldots, L-1$,
Find a node $\mathrm{y} \notin N_{k-1}$ s.t. $D_{k-1}(y)$ is a minimum and set

$$
N_{k}:=N_{k-1} \cup\{y\}
$$

If $k=L-1$ then stop, otherwise:

$$
D_{k}(x):=\min \left[D_{k-1}(x), D_{k-1}(y)+\mathbf{c}(y, x)\right] \quad \forall x \notin N_{k}
$$

Example

k=?	N_{k}	n_{2}	n_{3}	n_{4}	n_{5}	n_{6}
Init	$\left\{n_{1}\right\}$	$\begin{gathered} 2 \\ \left(n_{1}-n_{2}\right) \end{gathered}$	$\begin{gathered} 6 \\ \left(n_{1}-n_{3}\right) \end{gathered}$	∞	$\begin{gathered} 1 \\ \left(n_{1}-n_{5}\right) \end{gathered}$	∞
1	$\left\{\mathrm{n}_{1}, \mathrm{n}_{5}\right\}$	$\begin{gathered} 2 \\ \left(n_{1}-n_{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ \left(n_{1}-n_{5}-n_{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ \left(n_{1}-n_{5}-n_{4}\right) \\ \hline \end{gathered}$		$\begin{gathered} 3 \\ \left(n_{1}-n_{5}-n_{6}\right) \\ \hline \end{gathered}$
2	$\left\{\mathrm{n}_{1}, \mathrm{n}_{5}, \mathrm{n}_{2}\right\}$		$\begin{gathered} 4 \\ \left(n_{1}-n_{5}-n_{3}\right) \end{gathered}$	$\begin{gathered} 2 \\ \left(n_{1}-n_{5}-n_{4}\right) \end{gathered}$		$\begin{gathered} 3 \\ \left(n_{1}-n_{5}-n_{6}\right) \end{gathered}$
3	$\left\{\mathrm{n}_{1}, \mathrm{n}_{5}, \mathrm{n}_{2}, \mathrm{n}_{4}\right\}$		$\begin{gathered} 4 \\ \left(n_{1}-n_{5}-n_{3}\right) \end{gathered}$			$\begin{gathered} 3 \\ \left(n_{1}-n_{5}-n_{6}\right) \end{gathered}$
4	$\left\{\mathrm{n}_{1}, \mathrm{n}_{5}, \mathrm{n}_{2}, \mathrm{n}_{4}, \mathrm{n}_{6}\right\}$		$\begin{gathered} 4 \\ \left(n_{1}-n_{5}-n_{3}\right) \end{gathered}$			
5	$\left\{\mathrm{n}_{1}, \mathrm{n}_{5}, \mathrm{n}_{2}, \mathrm{n}_{4}, \mathrm{n}_{6}, \mathrm{n}_{3}\right\}$					

Example

Shortest Path Tree

Simplified routing table for n_{1}

Destination	Outgoing link	Distance
n_{2}	$n_{1}-n_{2}$	2
n_{3}	$n_{1}-n_{5}$	4
n_{4}	$n_{1}-n_{5}$	2
n_{5}	$n_{1}-n_{5}$	1
n_{6}	$n_{1}-n_{5}$	3

Bellman-Ford Algorithm

Notation. Let x and y be arbitrary nodes.
$\operatorname{Neigh}(x)$ is the set of neighbours of x,
$\ell(x, y)$ is the length of the link joining neighbours x and y.
x, maintains a distance vector, $\mathbf{D}_{\mathbf{x}}$, of best known distances to every other node, and a routing vector, $\mathbf{f}_{\mathbf{x}}$, of best known output links to every other node.

$$
\mathbf{D}_{\mathbf{x}}=\left[\begin{array}{c}
d_{1}(x) \\
d_{2}(x) \\
\cdot \\
\cdot \\
\cdot \\
d_{n(x)}
\end{array}\right] ; \quad \quad \mathbf{f}_{\mathbf{x}}=\left[\begin{array}{c}
f_{1}(x) \\
f_{2}(x) \\
\cdot \\
\cdot \\
\cdot \\
f_{n(x)}
\end{array}\right]
$$

$\mathbf{D}_{\mathbf{x}}$ is updated thus:

$$
d_{i}(x)=\underset{y \in \operatorname{Neigh}(x)}{\operatorname{Min}}\left[d_{i}(y)+\ell(x, y)\right]
$$

If $d_{i}(x)$ is a minimum for $y=y_{\mathrm{k}}, \mathbf{f}_{\mathbf{x}}$ is updated thus:

$$
f_{i}(x)=y_{k}
$$

Example

Distance vector calculation for \boldsymbol{n}_{1}, first iteration.

Dest	Current best dist	Best dist offered by n_{2}	Best dist offered by n_{3}	Best dist offered by n_{5}	New vectors	
					Dist	Via
n_{2}	3	$0+3$	∞	$3+1$	3	n_{2}
n_{3}	6	∞	$0+6$	$3+1$	4	n_{5}
n_{4}	∞	$1+3$	∞	$1+1$	2	n_{5}
n_{5}	1	$3+3$	$3+6$	$0+1$	1	n_{5}
n_{6}	∞	∞	$1+6$	$2+1$	3	n_{5}

Convergence Problems

Count to infinity problem

Assume each link has cost 1.
Suppose Link n_{1} - n_{2} fails...
n_{3} offers route to n_{1} of cost 2 to node n_{2}. Oh dear...
It gets worse...

Distance to n_{1} seen by:	n_{2}	n_{3}	n_{4}
After $1^{\text {st }}$ exchange	3	2	3
After $2^{\text {nd }}$ exchange	3	4	3
After $3^{\text {rd }}$ exchange	5	4	5

Some solutions.
Split horizon: don't allow routers to advertise destinations in direction from which those destinations were learned.

Split horizon with poison reverse: advertise destinations in direction learned as distance of ∞.

