
Dijkstra’s Algorithm 
 

Iterative algorithm to build shortest path tree rooted at 
arbitrary source node, S. 

• Let nodes be n1, n2, …, nL and let A ={n1, n2, …, nL }.   

• Define c: A×A→ℜ: 
o if ni and nj are neighbours, c(ni, nj)  is the cost 

associated with the link connecting n1 and n2; 

o if ni and nj are not neighbours, c(ni, nj)  = ∞. 

• At each step node closest to S not yet in the tree is 
added. 

• At end iteration k:  
o let Dk(ni) be the best distance known from S to ni 

; 
o Nk is set of nodes included in the tree. 

 
 

Initial step: Set N0 = {S} and D0(x) = c(S,x). 
Iterative step: For k=1, ..., L-1, 

 Find a node y∉ Nk-1  s.t. Dk-1(y) is a minimum and set   
  Nk := Nk-1 U {y} 
 If k = L-1 then stop, otherwise: 

  Dk(x) := min[Dk-1(x), Dk-1(y) + c(y,x)]   ∀x∉Nk 
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Example 
 

Shortest Path Tree 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simplified routing table for n1 

 
Destination Outgoing  link Distance 

n2 n1— n2 2 

n3 n1— n5 4 

n4 n1— n5 2 

n5 n1— n5 1 

n6 n1— n5 3 

n 1 

n 2 

n 5 

n 6 

n 3 

n 4 

2 

1 
1 

3 

2 



Bellman-Ford Algorithm 
 

Notation. Let x and y be arbitrary nodes.  
Neigh(x) is the set of neighbours of x,  

l(x,y) is the length of the link joining neighbours x and y. 

x, maintains a distance vector, Dx, of best known 
distances to every other node, and a routing vector, fx, of 
best known output links to every other node.  
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Dx is updated thus: 

 ( )
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If di(x) is a minimum for y = yk, fx is updated thus: 

 ( )i kf x y=  
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Distance vector calculation for n1, first iteration. 
 
 

Dest Current 
best dist 

Best dist 
offered by n2 

Best dist 
offered by n3 

Best dist 
offered by n5 

New vectors 

     Dist Via 
n2 3 0+3 ∞ 3+1 3 n2 

n3 6 ∞ 0+6 3+1 4 n5 

n4 ∞ 1+3 ∞ 1+1 2 n5 

n5 1 3+3 3+6 0+1 1 n5 

n6 ∞ ∞ 1+6 2+1 3 n5 

 



Convergence Problems 
 

Count to infinity problem 
 
 n1 n2 n3 n4 

1 3 2 Best distance to n1 
 

Assume each link has cost 1. 
 
Suppose Link n1—n2 fails… 
 
n3  offers route to n1 of cost 2 to node n2. Oh dear… 
 
It gets worse… 
 

Distance to n1 seen by: n2 n3 n4 

After 1st  exchange 3 2 3 

After 2nd  exchange 3 4 3 

After 3rd exchange 5 4 5 

 
Some solutions.  
 
Split horizon: don’t allow routers to advertise 
destinations in direction from which those destinations 
were learned. 
 
Split horizon with poison reverse: advertise destinations 
in direction learned as distance of ∞. 


