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In this paper we propose a new approach to the design of ubiquitous computing (ubicomp) systems. One 
of ubicomp’s design ideals is systems that adapt so as to maintain contextual fit. However, the contexts 
and uses of ubicomp systems are varied and changing, which makes achieving this ideal challenging—
especially when using traditional design approaches grounded in static definitions of types or classes, i.e. 
in static computational structures. Here we outline an alternative approach to system design, a ‘vision’ for 
ubiquitous computing, which relies on dynamically coupling together several complementary 
representations of class. One of these is a population of instances, each of which may differ in its 
structure, context and use. We offer examples of tools and analyses that set these representations within 
an ongoing socio-technical process that, we propose, offers significant potential for satisfying ubicomp’s 
requirement for adapting system structure so as to sustain contextual fit. 
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1. INTRODUCTION 

Ubiquitous computing (ubicomp) has emerged as a key 
area of computer science. It deals with systems that fit 
with user context and interaction, and takes a holistic 
view spanning technology, use and users, in which “the 
unit of design should be social people, in their 
environment, plus your device” (Weiser 1994). Robin 
Milner reflected on the ubicomp ‘vision’ in (Milner 2006) 
and advocated “exploratory projects that aim to define 
the kinds of experience that lie at the core of the vision. 
This requires experiments that create specific socio-
technical environments and ask humans to enter them. 
[...] Here we look for synergy between the societal 
vision on the one hand, and the development of 
scientific models and engineering principles on the 
other.” This paper outlines an approach in accord with 
this synergy, in that it supports and connects users, 
evaluators and developers engaged in the process of 
creating and sustaining ubicomp systems’ contextual 
fit. Understanding and improving this iterative socio–
technical process is vitally important for ubicomp 
because it is what creates and sustains systems’ value 
and utility.  
 
A central feature of the proposed approach is the 

combination of 
several ways of 
representing a 
software class. 
One is the 

established 

typological way, in which we assume an exact match 
between the class definition and the data structures 
and methods in each instance. There is an implicit and 
unproblematic assumption that the values of variables 
in different instances may vary over time (i.e. on the 
basis of each instance’s history of use). We also 
propose a new way of representing a class, as a 
population. Here, variation may go further: the software 
structures in different instances may also vary over 
time, and so we may find that the class definition and 
an instance’s data structures and methods do not 
match exactly. Given many instances, however, we 
can make probabilistic statements about this match or, 
more generally speaking, find useful patterns of 
similarity and difference within a population. We outline 
engineering principles based on analysing variations 
within populations of instances, and using patterns in 
populations to adapt class definitions. 
 
Making systems more adaptable or adaptive is crucial 
to ubicomp’s progress because contexts, needs and 
uses are often more dynamic, subtle and hard to 
predict than in other areas of computer science. Actual 
use of ubicomp systems may differ from designers’ 
preconceptions when, for example, mobile users are 
interacting in the uncontrolled environment of city 
streets. Software based on such preconceptions may 
become increasingly unhelpful or inappropriate unless 
it adapts or is adapted with use. Developers aiming to 
create new ubicomp systems or adapt existing ones in 
a timely fashion need to understand users’ changing 
contexts and uses, but it is prohibitively difficult to be 
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with users all the time in their everyday lives, observing 
and recording where they go, what they do, and their 
interaction with people nearby and—via networked 
mobile devices, for example—other people in quite 
different contexts (Crabtree 2006). Moreover, users 
increasingly change their systems, empowered by 
design approaches such as plug-in architectures, and 
repositories such as Apple’s App Store, Google’s 
Android Market and BigBoss’ Cydia. Everyday mobile 
devices such as phones demonstrate significant user-
driven change and complexity. Large numbers of 
people commonly make significant adaptations to their 
phones, downloading applications, updates and plug-
ins from repositories. Software interdependencies may 
be indirect, as when a user mentally retains shared 
context while switching between applications, but 
contextual interdependence at the application or 
component level is increasingly apparent, e.g. 
components offering services for others is the norm in 
the Android operating system. We see not only variety 
and dynamism with regard to people’s practices, 
contexts and uses, but also variety and dynamism in 
software structures that end users adapt for 
themselves. Adaptation of software and patterns of use 
is therefore increasingly common, but also chaotic and 
opaque to evaluators and developers.  
 
Our work aims to address this issue by combining the 
aforementioned work on representations of software 
classes with work on socio-technical practices involving 
users, evaluators and developers. In this we are also 
motivated by work such as (Wegner 1997). Wegner 
demonstrated that a Turing machine extended with 
human interaction—a combination that Wegner calls 
an ‘interaction machine’—is more powerful in 
computational terms than a Turing machine alone. In 
this context, we point out a useful similarity between 
interaction machines and socio-technical processes. A 
system’s formal representations may be finite, but they 
don’t have to be static or decoupled from human 
interaction. We aim to use the computational power of 
the interaction machine, coupling software structure 
with human interaction in a way designed to support 
ongoing adaptation. The ‘system’ we aim to design is 
therefore a dynamic process with computational and 
human elements feeding into each other over time.  
 
This paper is therefore about holistic design, in that we 
discuss fundamental models, tools using such models, 
and interactions and practices involving those tools. In 
doing this, we aim to maintain a strong connection to 
core scientific and engineering issues in computer 
science. Rather than moving wholesale into disciplines 
such as sociology, we aim to use them to drive new 
approaches to central concepts and problems in 
computer science. The next section, for example, 
borrows from biology, sociology and other disciplines 
as we begin to set out a novel approach to class and 
software structure, and a design requirement our 
system: duality of structure, in which computational 
structure both influences and is influenced by use. 

Section 3 looks for lessons in an area of prior work that 
moved even further away from the mainstream 
typological approach, prototype-based programming 
languages. Section 4 gives more detail of representing 
a class as a population of potentially varied instances. 
Section 5 looks at actions that drive transformations 
between populations and other forms of class 
representation, thus creating an iterative socio-
technical process that exhibits duality of structure. 
Section 6 offers a summary, and concludes the paper. 

2. TOWARDS A POPULATION APPROACH 

In this section we draw concepts from several 
disciplines in order to frame a population approach to 
software structure. We initially use biology, and its 
paradigm shift towards evolution. This shift was away 
from a typological approach in which all members of a 
species are seen as having the same DNA, physical 
characteristics, etc., and to a population-based 
approach in which a species is understood as being 
made up of a population of unique individuals that have 
strong resemblances to each other but also small 
differences—differences that allow for gradual 
evolution of species through natural selection. 
Biologists deal with abstractions or generalisations 
over populations, but they understand them to be 
approximations because of the variation among 
species members. Steels (2000) presents an 
interesting analogy between biological species and 
computational structures. He suggests that a 
population approach to software structures (such as 
types and classes) allows for gradual evolution through 
adaptation and selection, and he has carried out 
experiments in which robots using very basic rules of 
mimicry and selection can generate complex 
vocabularies and grammars (Steels 2003).  
 
More philosophically, the population approach fits well 
with Wittgenstein’s idea of family resemblances 
(Wittgenstein 1958), and his critique of the typological 
notion that in everyday language one can specify the 
necessary and sufficient properties of objects to specify 
all possible members of a class or category. Here we 
are shifting from an analogy between computation and 
biology, to an analogy between computation and 
language, but still applying the population idea. In 
discussing the many features that can be part of 
language (writing, speaking, gestures, pictures, 
shapes, etc.) Wittgenstein (1958, §65) writes: “instead 
of producing something common to all we call 
language, I am saying that these phenomena have no 
one thing in common which makes us use the same 
word for all,—but that they are related to one another in 
many different ways.” Adding to this critique, 
experimental psychology has shown that family 
resemblance is better than the typological approach in 
describing what everyday linguistic categories are 
based on. Major papers such as (Rosch and Mervis 
1975) showed this, although books such as (Lakoff 
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1987) are perhaps better known presentations of these 
findings. 
 
We suggest that the typological approach that 
Wittgenstein criticised, and which biology has moved 
on from, is mainstream within computing—even if it is 
not universal. We apply the typological approach in 
programming when a category of computational 
objects, such as a class or type, is made by defining 
the necessary and sufficient properties of all members, 
e.g. the traditional type definition consisting of 
encapsulated variables and functions, or a class 
definition consisting of internal variables, methods and 
a superclass—or perhaps an external interface or 
signature, made up of a similar set of elements, to 
which all members of that class conform.  
 
Using the typological approach would seem less 
appropriate in the context of current trends such as 
component-based programming, and the related plug-
in approach that is increasingly common in web 
browsers, mail tools and IDEs. For example, if one 
were to define what Firefox or Eclipse is, in terms of 
software structure, one would be hard put to define a 
single configuration that accurately describes it. Even if 
one had an accurate snapshot at one time, the 
community of users and developers is continually 
changing the configurations of plug-ins and 
components used ‘in the wild’. Instead, a varied and 
evolving population of software configurations would 
seem a better approach to representing the number, 
variety and dynamics of configurations found in the real 
world. 
 
The typological approach is of particular prominence in 
the use of ‘ontology’ in software engineering and the 
Semantic Web. One of the best known definitions of 
ontology discussed on the Semantic Web 
organisation’s own web site (semanticweb.org) is Tom 
Gruber’s “An ontology is a formal specification of a 
shared conceptualization” but, as the site points out, 
ontologies “do not have a universally accepted 
definition” and critics (such as Clay Shirky) have 
cogently argued that this typological approach to 
ontology is overrated (Shirky 2006). Here we suggest 
that the Semantic Web’s strengths and weaknesses 
both stem from its typological approach. If we assume 
that what a system models and supports is uniform and 
static, instead of varied and dynamic, this affords 
simpler design processes, algorithms that are less 
computationally expensive, and programs that are 
predictably useful in many contexts. There is, of 
course, work on ‘ontology evolution’, such as (Noy 
2004), and we should understand and learn from such 
work, but when an ontology is considered to be 
fundamentally a taxonomy or type hierarchy, i.e. a 
structure in a given state, then evolution is a problem of 
changing the model rather than an essential part of 
what is modelled and supported.  
 

Some researchers have considered more flexible and 
dynamic approaches than the mainstream typological 
approach. Notable early work includes predicate types, 
as used in the Viron language (Pratt 1983). Predicate 
types allow the type (or types) of an individual object to 
be dynamically, multiply and contextually defined: 

[The] predicate view of types abandons the attempt 
to keep types disjoint, and permits each individual to 
be of many types. For example 3 may 
simultaneously be of type real, integer, positive 
integer, integer mod 4, mod 5, mod 6, etc. You 
yourself may simultaneously be a human, a teacher, 
an American, a Democrat, a Presbyterian, a non-
smoker, and so on. There is no such thing in the 
physical world as THE type of an object, although 
any given context may suggest a particular predicate 
as being the most appropriate predicate to be called 
the type of that object in that context.  

Predicate types involve run-time checking of the 
methods and variables in an object to see if they match 
a given named predicate. Predicate types allow 
arbitrary tests of type (or class) membership to be 
made, potentially including the probabilistic tests 
proposed in this paper—although, as far as the author 
is aware, the population approach has not been 
applied to predicate types, or to software types more 
generally. On the other hand, this same openness 
means that ‘anything goes’, in that there are no 
common principles to guide designers, and no 
structural coherence that would give purchase to 
automatic or semi-automatic analysis of programs and 
logs of their execution, context and use.  
 
We propose that a population approach offers such 
principles and coherence. We aim to strike a 
productive balance between openness to adaptation 
and variation, and family resemblance as a means to 
find or impose structure. Configurations based on the 
same original class definition are likely to have strong 
resemblances to each other, but also small differences 
due to gradual adaptation of structure and the build-up 
of usage history. Class membership might then be 
tested using probabilistic measures, and class 
definition might similarly be made more responsive, 
flexible and dynamic. Computational structures and 
use thus feed into and trigger change in each other 
over time. We model and support a process in which 
structure is a resource for use, and one such use is 
adaptation of structure. 
 
We therefore treat ontology not as structure in a given 
state, but as socially embedded use of structure, i.e. as 
a socio-technical process. Here we draw from 
philosophers such as Heidegger (1962), and from 
sociologists such as Giddens (1986). Giddens calls this 
kind of process duality of structure, in which structure is 
“the medium and outcome of the conduct it recursively 
organizes”. Subjectivity, contextuality, sociality and 
evolution of structure are fundamental aspects of 
human activity, rather than external issues 
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problematically imposed on our foundations. We 
suggest that duality of computational structure is a key 
design requirement for ubicomp, even though such an 
approach is likely to have effects such as complex 
design processes, algorithms that are computationally 
expensive, and programs whose utility in specific 
contexts is difficult to predict. As mentioned above, in 
ubicomp it is already established that we cannot predict 
utility or use well but (as later sections discuss) we can 
change part of what we explicitly model and support, 
so as to sustain contextual fit. Later in the paper we 
offer initial suggestions as to manageable design 
processes and appropriate algorithmic choices.  
 
To summarise, in this section we have argued that the 
traditional typological approach brings assumptions of 
static uniformity that have costs and benefits—and 
alternatives worthy of exploration. Especially for 
ubicomp, the population approach opens possibilities 
for a better fit between the modelling at the core of 
system design and the variation and dynamism of 
software configurations and uses. In particular, we aim 
to treat membership of a class as potentially stochastic 
property, rather than as a discrete absolute. We can 
choose when (or in which contexts) to relax the 
constraint that members of a class show 100% 
uniformity—and when to enforce it. We suggest that a 
population approach to ‘class’ may be best seen as an 
extension of traditional approaches rather than as a 
rejection of them. Nevertheless, it is useful to consider 
what would happen if we simply rejected formal 
abstractions such as class, type and grammar, or 
treated them as secondary, as by-products or (in 
philosophical terms) as epiphenomenal. Arguments for 
this standpoint have been explored in computer 
science before, and by reviewing them we may make it 
clearer when and why we should use such 
abstractions. This is the subject of the next section. 

3. WHAT IF WE DID NOT HAVE CLASSES? 

Perhaps the most powerful counter-example to the 
typological approach in mainstream computer science 
is prototype-based programming languages. Given a 
thorough overview in (Noble et al. 1999), these 
languages do not use ‘class’ in ways like Java or other 
familiar object-oriented (and class-based) languages. 
They treat it as secondary, if anything, and so 
examining them may be instructive.  
 
Prototype-based programming is grounded not only in 
experience of programming language design but in 
philosophical reflections on how abstractions are 
represented and used (in particular the shift from 
Aristotle’s ideals to the family resemblances of 
Wittgenstein) and also in evidence from psychology 
(e.g. Rosch & Mervis, and Lakoff, as mentioned 
above). Self was the first and foremost prototype-
based language, but JavaScript is a well-known current 
example. The first chapter of (Noble 1999)—Classes 

vs. Prototypes, by Antero Taivalsaari, previously 
published as (Taivalsaari 1997)—gives a good 
conceptual overview of the prototype-based approach. 
Taivalsaari introduces prototype-based programming 
thus: 

In the recent years an alternative to the traditional 
class-based object-oriented language model has 
emerged. In this prototype-based paradigm there are 
no classes. Rather, new kinds of objects are formed 
more directly by composing concrete, full-fledged 
objects, which are often referred to as prototypes. 
When compared to class-based languages, 
prototype-based languages are conceptually simpler, 
and have many other characteristics that make them 
suitable especially to the development of evolving, 
exploratory and distributed software systems. 

Taivalsaari describes his language, Kevo, as being 
based on family resemblances. At one point (on p15) 
he makes a useful point about how types are tools for 
ensuring or describing compatibility in use: 

As the criterion of similarity, object interface 
compatibility is used, meaning that objects are 
considered to be similar if they have the same 
external interface/signature. In an ideal situation, 
object comparison should be based on behavioral 
compatibility, i.e., ensuring that objects react to 
external stimuli identically, but in practice coming up 
with an algorithm that could determine 100% surely 
and efficiently whether two objects are behaviorally 
compatible is impossible. 

The traditional approach to behavioural compatibility is 
algorithmically working out all the ways instances might 
potentially be used in the future, via compatibility of 
external interfaces/signatures. We cannot solve the 
halting problem, which presumably is what Taivalsaari 
refers to here, but we suggest that we may be able to 
improve our algorithms through the use of additional 
sources of evidence—historical evidence—about 
compatibility.  
 
More generally, the issue of compatibility is part of the 
issue of defining or understanding the behaviour or use 
of class instances. We can look at how objects are 
actually used in the real world, tracking configurations, 
and logging inputs and outputs in order to make 
behavioural comparisons based on ongoing and past 
activity. More generally, we suggest that we can use 
the history of instances’ use as part of a definition of 
what a class is. Rather than a narrow traditional focus 
solely on the structures that afford potential 
interactions, we broaden our view of ‘class’ to include 
real interactions.  
 
As an exploratory example of this, U. Glasgow’s 
Domino system used patterns of software components’ 
co-occurrence in past use, in order to extend its 
definition of compatibility and to support adaptation of 
component ensembles (Bell et al., 2006). Given a 
particular running program, made up of an ensemble of 
components, programmers’ definitions of interfaces 
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and dependencies specify which new components 
might be technically feasible to add into that ensemble. 
However, such definitions say little about which of 
those objectively compatible components might be 
most interesting or useful to add in a given context. For 
example, a component may be regularly broadcasting 
a string, and listening for strings in return. A vast 
number of uninteresting and useless components may 
match this behaviour, i.e. objective compatibility 
underspecifies utility. Domino’s component 
recommender used usage histories to, firstly, rank 
each objectively compatible new component on the 
basis of how often users had it running along with other 
components in the current ensemble. We did not see 
this as a rigid determination of contextual fit, but as 
creating a resource for the user to either use or ignore 
when deciding what changes to make, if any—a 
decision about fit with future contexts and uses that, we 
suggest, only the individual user is qualified to make. 
Domino’s second use of history was in resolving 
ambiguity in how to integrate a new component into an 
ensemble: when there were several potential ways to 
connect a new component into the currently running 
components, then the default was to connect it in the 
way that had been most used in the past. Again we 
emphasise the use of both a priori definitions of 
compatibility as well as ongoing history of use. The 
former is expressed by the programmer in a traditional 
objective way, ensuring a minimal degree of 
correctness, safety and predictability. The latter is of 
course expressed by users, and does not determine or 
guarantee subjective contextual fit; instead it is 
historical evidence that may be used to help achieve it. 
 
In summary, by looking at prototype-based languages 
we can see a different relationship between 
computational structures and the activity of 
programmers and users than in more mainstream 
computer science. If traditional work, centred on formal 
abstractions over consistently uniform sets of 
elements, is at one extreme in terms of tightness of 
structure, prototype-based languages go towards the 
opposite extreme. The flexibility and dynamism of 
prototypes seems very relevant to us in achieving and 
sustaining contextual fit, but they do this at a perhaps 
excessive cost: having few (or no) abstractions over 
collections of instances, using consistencies among 
instances to gain system support for analysing, 
understanding and managing system designs and 
deployments.  
 
In addition, looking at prototype-based languages 
highlighted what we suggest is a significant and useful 
concept for us: a class is a definition of instance 
behaviour and use, rather than only of instance 
structure. Such behaviour is normally identified and 
summarised by signatures, e.g. by class names, 
method names, parameter lists, etc., but details 
including which classes will get used, which methods 
will get called and which values parameters will take 
are not expressed in such signatures. Such details 

cannot be predicted or modelled in advance exactly, 
but they can be approximated by looking at histories. 
Traditional a priori modelling based on signatures is of 
course useful and important, but in later sections we’ll 
look further at complementary forms of definition and 
modelling, e.g. more forms of modelling a posteriori on 
the basis of logged histories of use. 

4. TOOLS FOR WORKING WITH POPULATIONS 

A class is a generalisation over its instances; a 
shorthand for or abbreviation of its many instances. It is 
a tool used in managing, understanding and changing 
those objects. In the typological approach, the class 
definition and the data structures and methods in each 
instance match exactly, even though the values of 
variables in different instances may vary over time (i.e. 
on the basis of each instance’s history of use). We can 
use the class definition as a ‘cookie cutter’ template for 
instance creation, and checks and changes can be 
done once instead of being applied over and over 
again on the instances of that class. We might check a 
class definition to see if it matches a specification, and 
then say with confidence that all instances match that 
specification. We might get a profile of run-time 
performance for a given class, based on logs of many 
runs of many instances on different inputs. We might 
use the class name when we send a message out to all 
instances, so as to let them know of an update or 
check the value in each of a given variable.  
 
Section 2 referred to Wittgenstein’s argument that, in 
everyday language, we don’t always need definitions in 
the typological style, based on the uniform, necessary 
and sufficient properties of sets of objects. We may not 
be able to define all of what we feel to be within a given 
category, and any definition is provisional because we 
may always come up with a new example of an object 
that should be in that category—even though it differs 
from all existing members. Instead, we treat such 
definitions as tools with strengths and limitations like 
any other tools, and to be used with an implicit 
understanding that there might be some variation or 
limitation in their applicability. This variation brings 
benefits, such as flexibility with regard to contextual fit, 
and openness to adaptation, and costs in terms of 
having to handle exceptions and variations.  
 
We propose to apply the population approach to 
software structures, and yet maintain some of the 
same benefits that traditional approaches have in 
terms of management, understanding and change. 
Software structures in different instances may vary, 
and so there might be some variation in the 
applicability or match of the shorthand of class 
definitions. There seem to be two basic issues to 
address here: detail and dynamism. A population 
approach means that, at a given time, the details of 
instances of a class may be slightly different, in terms 
of internal software structures as well as internal data 
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values. Tests and actions that are valid or applicable to 
some instances may not work for all of them. Instead of 
total uniformity of instances, and discrete tests that are 
either true or false, we are likely to have variability of 
instances, and therefore results that are statistical 
distributions of true and false. For example, we might 
test whether a program crashes when given a 
particular input. Traditionally, we could test once, and 
the answer would be ‘true’ or ‘false’. In systems 
supporting adaptation and integration of components, 
the original program may crash but some modified 
versions might not. The test may then return the 
answer like ’75%’, i.e. the percentage of instances that 
crash. More detailed analysis might return specifics 
about structure and use, such as ‘90% of unmodified 
instances crash, while 10% of instances with 
component A added crash’ and ’10% of instances used 
in urban areas crash, while 95% of those used in rural 
areas crash’. Also, when software structures change 
dynamically, tests and actions done at one time may 
not be valid or applicable later on. For example, the 
modified version of the program may spread among 
users, and so a week after our first test the percentage 
of crashing instances may be 25% instead of 75%. 
Modifications may spread faster in some communities 
than others, so after a week the test may return ‘9% in 
urban areas and 73% in rural areas’. 
 
The population approach means that we (developers 
and evaluators) give up a degree of control over 
instances’ structure, have less precision about exactly 
what is happening in deployed systems, and increase 
the complexity of our system management, testing and 
change. We ought to develop new tools and 
approaches in order to work in such a situation. In 
addition, since some control has passed to users, we 
ought to help them understand, manage, assess and 
change their systems, so that they can adapt their 
systems to suit their contexts of use—contexts that 
they are likely to understand better than us. We 
suggest that the new tools and approaches of 
developers and evaluators should support work with 
users, so as to collectively understand what is 
happening in deployed systems, and jointly handle the 
complexity of management, testing and change. We 
have to work out what users can and will do, given our 
direct engagement with them as well as our tool–
building for them, and we have to be creative with 
regard to our own practices too. 
 
As another preliminary example, at Glasgow we have 
recently been experimenting with ways to handle 
variation in instance structure and use within Domino-
based applications for the Apple iPhone (Hall et al. 
2009). Users may install and remove components, and 
so we cannot assume that all users have the same set 
of components in their instances of an application, or 
the same versions of those components. We have 
created an access control system for new component 
releases, to let us control which devices have access 
to particular versions of components. So, when a new 

component deployment needs to be tested, it can be 
made available to only chosen ‘test’ devices—and thus 
to ‘test users’ who are willing to assist our debugging 
and development. Then, once it is considered safe, it 
can be made available to all users to add to their 
application if it is both compatible with their current 
configuration and something they wish to add. We can 
also control which version each device should upgrade 
to, which gives us the ability to try out different features 
on different user subgroups. We are developing 
analysis tools that use fast ‘spring models’ (Chalmers 
1996) to make 2D layouts of either components or 
configurations. In layouts of components, components 
that tend to co-occur in running configurations tend to 
cluster together, while components that are not used 
together push each other apart. Layouts of 
configurations are complementary, in that 
configurations that share components tend to cluster 
together, while configurations with fewer overlaps push 
each other apart. The resulting layouts show patterns 
and structures among sub-populations of components 
and configurations respectively, offering overview of 
trends in deployed systems as well as opportunities for 
interactively ‘drilling down’ to examine more detailed 
patterns and statistics. We are making tools involving 
such layouts for ourselves, as developers and 
evaluators, as well as for end users who wish to see 
more detail of how their current configuration compares 
to others and how it might be changed. 
 
We suggest that a central resource for such new tools 
and practices is logs (i.e. histories) of system structure 
and use. It is relatively easy to log component 
configurations being instantiated and modified, but it 
also seems vital to link from these histories back into 
the abbreviations and abstractions of classes. Key to 
this is the concept highlighted in the previous section, 
namely that a class may serve as a definition or 
description of the structure of its many instances, but it 
is also a definition of the behaviour or use of its many 
instances. Here we mean ‘use’ in the sense of actions 
represented within the system, e.g. an instance being 
loaded into a runtime environment, communicating with 
infrastructure, sensors and other components, firing 
methods, and changing its variables and structures. In 
other words, instances’ histories collectively form an 
alternative description of the behaviour of the class, 
which we can put to good use.  

 
For example, a traditional definition of a class Foo may 
succinctly specify that a Foo object has one method 
that takes two real numbers as parameters. It may be 
more specific and say that this pair of numbers is a 
(latitude, longitude) pair, describing the location of use 
of the instance. However, it is unlikely to go so far as 
saying in which locations the class is best used, most 
commonly used or most reliably used (in the sense of 
not crashing or raising an exception). That detail may 
or may not be known in advance, but it is in either case 
abbreviated—in the sense that it is cut out or ignored. 
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More than that, our usual ‘fundamental’ techniques for 
analysing classes don’t deal with such detail. A 
traditional definition is also unlikely to say which other 
classes or components it is best used with, which 
hardware it might suit best, and which mode of 
transport it might be best for... and other contextual 
detail that may be of significance to use.  

 
Such detail is made accessible to us, though, when we 
have rich logs of instances’ use. Rather as implied in 
the discussion of Kevo above, by extending our notions 
of class to include history we can enrich understanding, 
management, testing and change. Histories add to the 
features of objects we can use in our tools and 
methods, to discriminate and differentiate between 
objects, to categorise and group them, and to ground 
ongoing design work. For example, we may be able to 
correlate changes to use and/or structure with new 
patterns of crashes and exceptions. Conversely, we 
should be able to determine when a previously 
coherent pattern of instance configurations divides into 
two different and smoothly functioning clusters that 
should be managed separately in subsequent design 
work—perhaps even being treated as new separate 
classes. An example might be a program for mobile 
phones, with a core set of components related to 
finding and sharing locations of interest in a city. One 
group of users might add in new components that 
enhance its use for documenting sites of cultural 
interest, while another group of users consistently add 
in components that let them play a high-tech form of 
‘hide and seek’. Developers might start to design 
further components for archival and curatorial 
classification to further extend the new ‘cultural’ class, 
and game scoreboards and action replays for the 
‘game’ class.  
 
It seems important to emphasise that the features we 
use to distinguish clusters or subpopulations need not 
be limited to software structures alone. In terms of the 
user experience, there will most likely be a wider 
context of people, places and activity that is key to a 
person’s interpretation of the meaning or significance 
of a piece of software in use. While we may not be able 
to model the subtleties and subjectivities of their 
interpretations, it would seem most likely that we could 
find useful patterns in logged features beyond software 
components, such as locations, times of day, people 
nearby, accelerometer-based patterns of movement, 
ambient sound, hardware devices used in combination 
with the program (e.g. headphones, large displays) and 
so forth. Maintaining an iterative and inclusive 
approach, the initial logging would be built according to 
the developer’s view of what was ‘core’ in an 
application and its use. Then, by offering users optional 
new components to show what was logged, comment 
on it and control its distribution, we may help users 
influence consequent analyses and design responses. 
 
A concrete example of this clustering based on 
features other than code was in our mobile multiplayer 

game called Treasure (Barkhuus et al. 2005). Most 
players, through use of the system and their interaction 
with other players, developed patterns of system use 
that conformed to one of two general strategies, which 
we called hunting and gathering. Hunters ranged over 
wide areas, collecting many of the ‘coins’ that were at 
the core of game play in each long sweep, whereas the 
more conservative gatherers made many short forays 
for a few coins at a time. These two strategies were 
reflected in different patterns of location, proximity to 
other players, and use of the system interface, but the 
system structure for each user was the same.  
 
If we had decided to extend Treasure in order to fit with 
players’ use, we would have had two strategies to 
choose between. If we were making a Domino version 
of Treasure, we might duplicate its current functionality 
in a core set of components, but also create one or 
more optional components to help each user see which 
strategy we think they conform to, and reflect on, 
compare and advance these two strategies. These two 
overlapping clusters of components might then be 
treated as two new classes. We should be aware that 
the process of change may continue: users are likely to 
continue to change their software configurations and 
their strategies in order to play well and to present 
themselves to others in the ways they wish. We also 
should be aware that being categorised may in itself be 
a trigger of change, e.g. one might become more 
aware of how one plays, and see that one is in a 
cluster that is correlated with losing the game. We see 
such reflection and change as normal, and to be 
supported, i.e. as users, evaluators and developers 
jointly feeding into an ongoing process of development 
of sub-populations, in which patterns of system 
structure, context and use shift and evolve as a result 
of their activities. 
 
Continuing with the idea that a class is a generalisation 
over many object instances, that helps when 
managing, understanding and changing populations of 
instances, we suggest that we may go beyond only 
observing patterns that combine structure, context and 
use. We may also define such patterns as part of the 
design of a class. We should therefore be able to 
express necessary dependencies as well as suggested 
associations. In the former case, we might specify in 
the IDE that any instance of a particular class can only 
run if an instance of another given class is already 
running, or that it is in a given location. In the latter 
case, we might annotate a class to suggest that 
another given class offered a useful or enjoyable 
combination, or that a given location is an interesting 
place to use an instance in. We can imagine extending 
our Domino system to handle these new definitions, 
with dependencies conveyed to the subsystem on the 
phone controlling component loading and instantiation, 
and associations being sent to the recommender 
subsystem that offers ranking and other subjective 
information to assist users’ choices.  
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Reflecting on this section, we suggest we have shown 
that a population approach to class need not or should 
not mean chaotic fragmentation of the set of instances. 
Instead, even though instances may show a degree of 
variability in structure and use, we can still use the 
notion of class to abstract over sets of instances, 
based not on absolute uniformity but family 
resemblances, i.e. statistical patterns of historical 
similarity and co-occurrence. Such patterns need not 
only consist of software structures, but should include 
logged features of context and use too. One reason is 
to improve our testing and redesign of existing classes. 
Another is to feed into design work that changes the 
classes available to users as well as suggesting new 
contexts and uses to them.  
 
Second, while the previous section pointed out that a 
class is a definition of instance behaviour, with well-
established strengths but also limitations such as detail 
of context and use, this section has tried to show 
examples of the reverse: instances’ collective histories 
of context and use can define a class in a 
complementary way. Obviously, this form of definition 
has its own strengths and weaknesses, but again we 
wish to pursue the point that neither of these two 
related forms is ultimately complete, true or primary. 
Instead, their combination offers new possibilities for 
the design of systems and user experiences based on 
a holistic view of structure, behaviour and use feeding 
into each other over time. The next section aims to 
make further use of such complementary forms of 
definition, focusing on translations between them. 

5. ACHIEVING DUALITY OF STRUCTURE 

This section explores a looser coupling of class with 
instance structure and behaviour than we have 
discussed so far, via a population approach. A class is 
usually a static feature within a program, but 
techniques such as computational reflection make 
dynamism of class’ internal structure relatively 
straightforward and commonplace. Here we aim to set 
out a particular form of dynamism, moving between 
complementary class representations. At the core of 
this work is what we might call duals, each of which 
reflects or allows us to construct the other. Through 
such representations, we hope to achieve duality of 
structure in the sense Giddens (1986) talks about with 
language, in that we may establish an ongoing process 
in which computational structure is derived from or 
shaped by context and use, as much as structure 
influences and shapes context and use. As discussed 
in §2, this would make manifest our view of ontology as 
process and satisfy a key design requirement for 
ubicomp. In this section we will set out this process.  
 
We have already seen forms of representation to base 
this process on. (We will discuss another in a later 
section.) The first is the traditional definition of a class: 
its structure as specified as a named set of variables 

and methods. To use a term from logic and philosophy 
of language, it is the intension of the class in that it 
succinctly defines properties that an object must have 
in order to be categorised as being a member of the 
class. The second is the extension of the class: the 
class instances, and their collective histories that offer 
detail of actual context, behaviour and use that the 
intension cannot express. A special case of extensional 
definition is ostensive definition, in which one or more 
members of a class (but not necessarily all) are pointed 
out as examples, as when a subset or cluster within a 
population of instances is marked out and used to 
make a new class. Using the driving concept of duality 
of structure, we propose a dynamic process that 
iteratively moves between these forms, so as to allow 
for gradual adaptation of a class through sharing, 
adaptation and selection of its instances.  
 
Consider an intensional definition of a class C, i.e. the 
name ‘C’ and the structure that sets out the variables 
and methods common among the collection of objects 
identified as being of class C—along with, as 
discussed above in the Domino examples, 
dependencies and associations used to enforce or 
suggest instances’ relationships with other objects. It 
may be used as a template for making instances of C, 
for example through compilation on the developer’s 
computer, deployment of an executable on users’ 
devices, and then loading into the runtime on each 
such device. The running instances on those devices 
collectively form the extensional definition of C. Each 
instance’s structure may be changed, via mechanisms 
such as Domino. Each instance of C may also change 
in terms of the values of variables within it, the history 
of its context and use, and new associations it extracts 
from that history. This set of instances can be 
considered as a population of individuals that, while 
they probably have strong resemblances to each other, 
may also show significant differences. We might then 
analyse the population of instances to look for 
significant patterns and changes shared by a 
substantial number of instances, thus forming a cluster 
within the population. We thereby mark out a set of 
examples to form an ostensive definition of a class that 
may potentially be significantly different to C. 
 
At this point we may ask: why or when would we 
expect such clusters? We would not find significant 
variation if the structure of each instance of C stays the 
same, which may occur because change is either 
restricted (e.g. for technical, legal, medical, educational 
or procedural reasons) or unnecessary (e.g. because 
the contexts and uses of the software are also uniform 
and the software fits with them well enough). Again we 
suggest that the variety of users, contexts and uses 
that are characteristic of ubicomp would make the latter 
situation less likely. At the opposite extreme would be 
changes, contexts and uses that are different for every 
user, so that no clusters within the population form. 
This seems unlikely, given the tendency observed in 
field studies for people to discuss, compare and share 
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others’ strategies and modifications, with such 
observation and change being grounded in shared 
contexts of use. The social and situated aspect of 
users’ interactions is, we suggest, likely to be a key 
driver in the process of formation and evolution of 
coherent clusters within a population of class 
instances. We note also that another driver of this 
process is the set of tools for comparison and change 
that we offer users, enriching people’s everyday 
methods of consciously sharing, reflecting on, and 
changing what they do. 
 
There is a profusion of possible techniques one might 
use to find and use clusters, as surveys such as (Xu 
2005) make clear. As mentioned in passing above we 
have begun to apply algorithms for visualisation based 
on statistics of co-occurrence of interactively selected 
subsets of instance features. Our aim is tools for 
developers, evaluators and users, appropriate to each 
role, that help them find family resemblances within a 
cluster as well what it is that distinguishes clusters from 
each other, and let them understand and respond to 
patterns of configuration and use. In particular, we aim 
to support developers in creating a signature that 
characterises a selected cluster, i.e. an intension made 
from an ostensive or extensional definition.  
 
Making an extension from an intension is 
straightforward deployment of the executable code 
made by a compiler. If we can also make a good 
intension from an ostensive or extensional definition, 
i.e. make component signatures and code structures 
by analysing a cluster of instances, then we will 
complete the circle that is duality of structure. A simple 
typological approach might simply find the largest 
subset of logged features that all instances have, but 
more sophisticated approaches might apply techniques 
such as ‘conceptual clustering’ (Beck 1994) or the 
aforementioned spring models to better handle the way 
that clusters may be formed by multiple family 
resemblances rather than one set of features that all 
members have, and use subtler thresholding to deal 
with variations in the amount of use of such shared 
features. While it may be that this circular process is 
started or bootstrapped by a developer writing code for 
the class in the traditional (intensional) way, after this 
the intension would be adapted so as to reflect the 
changes in the objects named as being its instances. 
 
Instance creation might usually be done by a user’s 
runtime loading executable code made by a 
developer’s compiler, but we note that an instance 
could also be made from the extension, e.g. by cloning 
an instance, as in prototype-based programming 
languages. Developers might see (and encourage) 
users ‘breeding’ what the latter consider to be good 
variants of a class, without developers’ direct 
involvement. Such an object ‘bred in the wild’ would be 
part of the extension of the class, however, like any 
other instance. It would build up its history of use and 
be open to adaptation, and thus contribute to 

subsequent intensions along with others in its 
population. 
 
To make this iterative process of clustering and change 
more concrete, we offer a scenario that exemplifies 
what our research group aims to support in the near 
future. We have been working on a Domino-based 
program, called FanPhoto, which has two core 
components for text and photo sharing. We deploy it on 
the iPhones of each of 100 system trial participants 
who are regular attendees of football matches. The set 
of deployed instances of FanPhoto is the extension of 
class FanPhoto, derived (via compilation) from an 
intension expressed in the Objective-C programming 
language.  
 
Each instance has code for logging its context, use and 
component structure, streaming data back to our 
servers over 3G networks as participants go to 
matches, pubs and so on. This lets us maintain basic 
awareness of their locations, and their sharing of 
photos and banter. Meanwhile, we develop and make 
available to users two new components: one extends 
FanPhoto with tools for sharing photos, chat and notes 
via the Facebook social networking site, and the other 
uses compression, caching and forwarding strategies 
to promote quick sharing of text, photos and video via 
mobile ad hoc networks (MANETs). A few participants 
are interested in new components, and they download 
and install them, and start to try them out and discuss 
them with their friends—using a graphical view in 
FanPhoto to show off the fact that they are in the new 
small cluster of ‘lead users’. We extend the 
programmer’s IDE to optionally show such variation. It 
displays the four components within the FanPhoto 
class, but with the two new components in grey to 
show their minority status. In other words, the class 
FanPhoto does not have two components, or four, but 
is a weighted mixture of two overlapping 
configurations. 
 
After several weeks, interest in these new components 
has spread, and other participants have downloaded 
and installed one or both of them. The developers and 
evaluators meet to look at the changes in use and 
configuration over time, and play back a visualisation of 
the history of FanPhoto instance configurations. Initially 
we see one large cluster of 100 configurations, and 
then one small subcluster breaks away—representing 
the actions of lead users who tried out the two new 
components first. Then, gradually, most the instances 
in the main cluster move out towards the small 
subcluster. The subcluster grows and then begins to 
fragment—eventually spreading out a slightly scattered 
distribution within which we can roughly discern two 
new clusters. Using the visualisation tool, we find the 
consistencies within and significant differences 
between these two clusters: one represents roughly 60 
keen users of Facebook, the other consists of 30 
people who consistently use MANET-based sharing. 
We also note that a few users have not used either 
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new component, and another few users have 
occasionally used both of them. Focusing on the 
Facebook cluster, we see that the users have attached 
a name to their variant, FanBook. The developers use 
the visualisation tool to give the name Zippy to the 
other strong variant.  
 
Opening up an IDE, one of the developers sees this 
cluster analysis and annotation reflected in a view of 
the population. He sees two new classes, FanBook 
and Zippy, each with its constituent set of components. 
An overview of related classes shows FanPhoto as the 
superclass of these two newly named classes. The 
Objective-C code for FanBook and Zippy is available 
for inspection and editing, like any other code, affording 
the design of new components tailored to each and 
leading on to new uses and new adaptations in the 
future.  
 
We stay open to human intervention in every stage of 
the process of design and use, because issues that are 
less amenable to automatic methods are likely to be 
significant. For example, clustering of the population 
might become excessive, with too many small clusters 
leading to developers forcing some clusters together. 
This might be because having many small clusters 
fragments the social interaction around the software 
(inhibiting users’ discussion and sharing of components 
and their histories), because it restricts software 
adaptation (as recommender algorithms cannot find 
common names to link different people’s histories), or 
because it simply makes the workload of evaluation, 
support and maintenance too high. Also, clusters might 
be forced together or given priority over others not 
because of current fragmentation but because of future 
plans, e.g. for new components combining their 
functionalities. Conversely, developers may decide to 
move out of some application area, e.g. for business 
reasons, and therefore decide to ignore or discard 
particular clusters.  
 
Reinforcing the notion of inclusive socio-technical 
process, we do not limit such manual intervention to 
developers and evaluators; users should be involved 
too. We may feed back analyses such as clusters to 
users, so as to add to their resources for awareness, 
recommendation and adaptation. For example, a user 
might find that the configuration on his/her phone is 
part of a cluster that other users describe as prone to 
errors or crashing, but see that there are other similar 
configurations that are robust. A component 
recommender might offer adaptation steps that would 
let him/her move towards a configuration that he/she 
feels to be better. Similarly, one might notice from the 
publicly shared clusters that many of one’s friends 
appear to be in a cluster other than one’s own, and the 
desire to be seen as having more in common with 
one’s friends might be enough to suggest adaptation.  
 
Users may have their own opinions as to what are 
significant similarities and differences between 

clusters, e.g. if they feel that the partition into clusters 
is simply incorrect or irrelevant, or that development 
work based on such a partition may have negative 
effects for them, e.g. getting less support for bug fixes 
and new development, or breakup of a user community 
that they wish to sustain. As an example, consider a 
new and slightly buggy newsreader application for a 
phone. A strong split may appear based on location 
data, showing one group of users who generally use 
the application while commuting, while another group 
consistently use it at home. Users might consider this 
split irrelevant to their main concern, which is that the 
newsreader plays video badly, and so tell the 
developer that new components tailored to commuting 
(or home use) are a waste of time. 
 
These examples are intended to suggest the variety 
and importance of human interventions in the process 
of adaptation within a class population. Human 
knowledge and intervention appear to be needed in 
order to make ‘high-level’ design decisions about not 
only the fit of a newly available component with future 
contexts and uses, which was suggested in §3 as 
being a decision only the individual user is qualified to 
make, but also decisions about issues such as likely 
effects on social interaction, and the priorities and 
costs of the work of system maintenance and 
development. Although the population approach 
proposed here is based on an analogy with evolving 
biological populations, we see a stark difference to the 
biological situation: this is far from random creation of 
variants, with consequent ‘blind’ Darwinian selection. 
Instead we are proposing that developers, evaluators 
and users are given tools that help them influence each 
other in collectively and consciously driving selection, 
i.e. sharing their experiences, expectations, analyses 
and histories, and reflecting and acting on them.  
 
Before ending this section, we offer a generalisation of 
one above-mentioned form of definition and propose a 
fourth form. We see using a visualisation tool to lay out 
a cluster within a population as a form of ostensive 
definition, but most kinds of evaluation and analysis of 
a system in use are essentially similar in that each 
somehow selects a subset of structures, contexts and 
uses. An example might be an evaluator’s collection of 
videos and notes from a user trial, which directly or 
indirectly selects particular users using their systems 
for particular periods of time. In (Morrison et al. 2006), 
we described system support for bridging from such a 
collection to system logs. We tracked the positions, 
fields of view and times of recording of evaluators’ 
video cameras, and so were able to automatically 
estimate which users are recorded on which video file 
at which times. Then we could demarcate relevant 
sections of the system logs created by those users’ 
devices. We showed overviews of those sections in a 
visualisation tool, and scrolled through detailed log 
data in synchrony with video playback. We suggest 
that it may be feasible to extend such system support 
so as to show developers code signatures and 
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structures that correspond to the evaluator’s collection, 
in ways similar to those proposed earlier for using a 
selected cluster of instances to create a new intension. 
More generally, we suggest that many forms of 
evaluation and analysis can be seen as forms of 
ostensive definition that might afford system support for 
developers’ work. Similarly, such evaluations, analyses 
and definitions could be resources for users’ activities, 
e.g. to support users in learning about a system and its 
use, and in understanding what evaluators see as 
significant and what developers may do in response. In 
such ways, users may decide to change their systems, 
their uses and their interactions with evaluators and 
developers. 
 
A fourth form of representation stands in contrast to 
extensional and ostensive definitions, which deal with 
current and past structures, contexts and uses. A 
proposal for a future design may focus on system 
structure or on user experience, or may mix both. 
Desired structure and use may be formally expressed, 
in a way like the intensional definition of code, but 
expression may instead be relatively informal. Any 
such proposal could be shared among people in order 
to change their systems and uses. Given to 
developers, it might be used to generate code. Given 
to users, it may be used to canvass their opinions, 
generate other new design ideas, or persuade them to 
use the current system differently. As such, proposals 
could be integrated into the process of design and use 
in new ways, e.g. being associated with particular code 
structures, contexts and uses so that they can be 
shared, recommended, adapted and logged—rather as 
we have proposed with regard to components. 
 
To conclude this section, let us summarise. We 
propose that, by taking a population approach, we can 
develop complementary forms of representation that 
can be coupled together and which can feed into each 
other over time. Traditional class abstractions, 
instances and their histories of use, and proposals for 
new designs involve different low-level representations, 
and afford different interactions among users, 
evaluators and developers, but they each describe 
identifiable patterns of structure, context and use. Each 
can be used within a circular process involving—
among other activities—compilation, deployment, 
recommendation, adaptation, logging, analysis and 
code construction. The combination of different 
activities and roles is an essential part of the process 
we propose: programmers, users and evaluators all 
have their parts to play in achieving duality of 
computational structure and, thereby, sustaining the 
contextual fit and utility of ubicomp software. 

6. CONCLUSION  

Ubiquitous computing faces difficult challenges with 
regard to the development of system designs that 
sustain their fit with users’ contexts and behaviours. 

Use is difficult to model in advance, but this paper has 
proposed ways to extend established design methods 
so as to work with ongoing variation and change in 
system structures, contexts and uses. We proposed 
coupling several ways of representing a class within an 
ongoing socio-technical process. One of these is an 
extensional form, a population, which consists of the 
structure, context and use of instances. These features 
of an instance may change over time, and instances 
may then differ, but the family resemblances among a 
population can be described probabilistically. 
Furthermore, by transforming a population into a 
traditional class definition, i.e. an extension into an 
intension, then we can ‘close the loop’ and achieve 
duality of structure—a requirement for contextually 
adaptive system design.  
 
In the course of this discussion, we mentioned some of 
our initial work on applications, tools and infrastructure 
that contribute towards making our approach manifest. 
We mentioned the Domino component infrastructure, 
tools for visualisation of component configurations, and 
tools for coupling videos of field trials to system logs. 
There is clearly a good deal more work to be done 
before we can say that we have fully demonstrated the 
approach, and can offer detail of its practice and 
effects, but we feel that these exploratory steps help to 
show that the proposed approach is feasible. 
 
Centred on a population approach to classes and 
instances, and the concept of duality of structure, we 
outlined ways to make complementary forms of 
representation into resources for users, evaluators and 
developers. These people’s activities and interactions 
are as much a part of our proposed design process as 
models, tools and infrastructures. We do not treat such 
activities as standing apart from this circular process, 
but rather as essential to it, e.g. evaluators marking out 
a newly significant cluster of instances within a 
population, that leads to programmers developing new 
code to augment that cluster, that in turn leads to users 
appropriating the new components to suit their own 
contexts, desires and values.  
 
We treat change and human agency as essential 
features of ontology in general and of our design 
process in particular. We suggest this kind of dynamic 
socio-technical process is, to use Wegner’s term, an 
‘interaction machine’ that is not only feasible to create 
but worth exploring in our research because its power 
can be directed towards sustaining systems’ contextual 
fit and, as a result, achieving one of the key design 
ideals of ubiquitous computing. 
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