
© M. Chalmers. Published by the British
Informatics Society Ltd.
Proceedings of ACM-BCS Visions of
Computer Science 2010

1

A Population Approach to Ubicomp
System Design

Matthew Chalmers
Computing Science, University of Glasgow

Glasgow G12 8QQ, United Kingdom
matthew@dcs.gla.ac.uk

In this paper we propose a new approach to the design of ubiquitous computing (ubicomp) systems. One
of ubicomp’s design ideals is systems that adapt so as to maintain contextual fit. However, the contexts
and uses of ubicomp systems are varied and changing, which makes achieving this ideal challenging—
especially when using traditional design approaches grounded in static definitions of types or classes, i.e.
in static computational structures. Here we outline an alternative approach to system design, a ‘vision’ for
ubiquitous computing, which relies on dynamically coupling together several complementary
representations of class. One of these is a population of instances, each of which may differ in its
structure, context and use. We offer examples of tools and analyses that set these representations within
an ongoing socio-technical process that, we propose, offers significant potential for satisfying ubicomp’s
requirement for adapting system structure so as to sustain contextual fit.

Ubiquitous computing, socio-technical design processes, software adaptation, ontology, type theory

1. INTRODUCTION

Ubiquitous computing (ubicomp) has emerged as a key
area of computer science. It deals with systems that fit
with user context and interaction, and takes a holistic
view spanning technology, use and users, in which “the
unit of design should be social people, in their
environment, plus your device” (Weiser 1994). Robin
Milner reflected on the ubicomp ‘vision’ in (Milner 2006)
and advocated “exploratory projects that aim to define
the kinds of experience that lie at the core of the vision.
This requires experiments that create specific socio-
technical environments and ask humans to enter them.
[...] Here we look for synergy between the societal
vision on the one hand, and the development of
scientific models and engineering principles on the
other.” This paper outlines an approach in accord with
this synergy, in that it supports and connects users,
evaluators and developers engaged in the process of
creating and sustaining ubicomp systems’ contextual
fit. Understanding and improving this iterative socio–
technical process is vitally important for ubicomp
because it is what creates and sustains systems’ value
and utility.

A central feature of the proposed approach is the

combination of
several ways of
representing a
software class.
One is the

established

typological way, in which we assume an exact match
between the class definition and the data structures
and methods in each instance. There is an implicit and
unproblematic assumption that the values of variables
in different instances may vary over time (i.e. on the
basis of each instance’s history of use). We also
propose a new way of representing a class, as a
population. Here, variation may go further: the software
structures in different instances may also vary over
time, and so we may find that the class definition and
an instance’s data structures and methods do not
match exactly. Given many instances, however, we
can make probabilistic statements about this match or,
more generally speaking, find useful patterns of
similarity and difference within a population. We outline
engineering principles based on analysing variations
within populations of instances, and using patterns in
populations to adapt class definitions.

Making systems more adaptable or adaptive is crucial
to ubicomp’s progress because contexts, needs and
uses are often more dynamic, subtle and hard to
predict than in other areas of computer science. Actual
use of ubicomp systems may differ from designers’
preconceptions when, for example, mobile users are
interacting in the uncontrolled environment of city
streets. Software based on such preconceptions may
become increasingly unhelpful or inappropriate unless
it adapts or is adapted with use. Developers aiming to
create new ubicomp systems or adapt existing ones in
a timely fashion need to understand users’ changing
contexts and uses, but it is prohibitively difficult to be

Chalmers

2

with users all the time in their everyday lives, observing
and recording where they go, what they do, and their
interaction with people nearby and—via networked
mobile devices, for example—other people in quite
different contexts (Crabtree 2006). Moreover, users
increasingly change their systems, empowered by
design approaches such as plug-in architectures, and
repositories such as Apple’s App Store, Google’s
Android Market and BigBoss’ Cydia. Everyday mobile
devices such as phones demonstrate significant user-
driven change and complexity. Large numbers of
people commonly make significant adaptations to their
phones, downloading applications, updates and plug-
ins from repositories. Software interdependencies may
be indirect, as when a user mentally retains shared
context while switching between applications, but
contextual interdependence at the application or
component level is increasingly apparent, e.g.
components offering services for others is the norm in
the Android operating system. We see not only variety
and dynamism with regard to people’s practices,
contexts and uses, but also variety and dynamism in
software structures that end users adapt for
themselves. Adaptation of software and patterns of use
is therefore increasingly common, but also chaotic and
opaque to evaluators and developers.

Our work aims to address this issue by combining the
aforementioned work on representations of software
classes with work on socio-technical practices involving
users, evaluators and developers. In this we are also
motivated by work such as (Wegner 1997). Wegner
demonstrated that a Turing machine extended with
human interaction—a combination that Wegner calls
an ‘interaction machine’—is more powerful in
computational terms than a Turing machine alone. In
this context, we point out a useful similarity between
interaction machines and socio-technical processes. A
system’s formal representations may be finite, but they
don’t have to be static or decoupled from human
interaction. We aim to use the computational power of
the interaction machine, coupling software structure
with human interaction in a way designed to support
ongoing adaptation. The ‘system’ we aim to design is
therefore a dynamic process with computational and
human elements feeding into each other over time.

This paper is therefore about holistic design, in that we
discuss fundamental models, tools using such models,
and interactions and practices involving those tools. In
doing this, we aim to maintain a strong connection to
core scientific and engineering issues in computer
science. Rather than moving wholesale into disciplines
such as sociology, we aim to use them to drive new
approaches to central concepts and problems in
computer science. The next section, for example,
borrows from biology, sociology and other disciplines
as we begin to set out a novel approach to class and
software structure, and a design requirement our
system: duality of structure, in which computational
structure both influences and is influenced by use.

Section 3 looks for lessons in an area of prior work that
moved even further away from the mainstream
typological approach, prototype-based programming
languages. Section 4 gives more detail of representing
a class as a population of potentially varied instances.
Section 5 looks at actions that drive transformations
between populations and other forms of class
representation, thus creating an iterative socio-
technical process that exhibits duality of structure.
Section 6 offers a summary, and concludes the paper.

2. TOWARDS A POPULATION APPROACH

In this section we draw concepts from several
disciplines in order to frame a population approach to
software structure. We initially use biology, and its
paradigm shift towards evolution. This shift was away
from a typological approach in which all members of a
species are seen as having the same DNA, physical
characteristics, etc., and to a population-based
approach in which a species is understood as being
made up of a population of unique individuals that have
strong resemblances to each other but also small
differences—differences that allow for gradual
evolution of species through natural selection.
Biologists deal with abstractions or generalisations
over populations, but they understand them to be
approximations because of the variation among
species members. Steels (2000) presents an
interesting analogy between biological species and
computational structures. He suggests that a
population approach to software structures (such as
types and classes) allows for gradual evolution through
adaptation and selection, and he has carried out
experiments in which robots using very basic rules of
mimicry and selection can generate complex
vocabularies and grammars (Steels 2003).

More philosophically, the population approach fits well
with Wittgenstein’s idea of family resemblances
(Wittgenstein 1958), and his critique of the typological
notion that in everyday language one can specify the
necessary and sufficient properties of objects to specify
all possible members of a class or category. Here we
are shifting from an analogy between computation and
biology, to an analogy between computation and
language, but still applying the population idea. In
discussing the many features that can be part of
language (writing, speaking, gestures, pictures,
shapes, etc.) Wittgenstein (1958, §65) writes: “instead
of producing something common to all we call
language, I am saying that these phenomena have no
one thing in common which makes us use the same
word for all,—but that they are related to one another in
many different ways.” Adding to this critique,
experimental psychology has shown that family
resemblance is better than the typological approach in
describing what everyday linguistic categories are
based on. Major papers such as (Rosch and Mervis
1975) showed this, although books such as (Lakoff

A Population Approach to Ubicomp System Design

3

1987) are perhaps better known presentations of these
findings.

We suggest that the typological approach that
Wittgenstein criticised, and which biology has moved
on from, is mainstream within computing—even if it is
not universal. We apply the typological approach in
programming when a category of computational
objects, such as a class or type, is made by defining
the necessary and sufficient properties of all members,
e.g. the traditional type definition consisting of
encapsulated variables and functions, or a class
definition consisting of internal variables, methods and
a superclass—or perhaps an external interface or
signature, made up of a similar set of elements, to
which all members of that class conform.

Using the typological approach would seem less
appropriate in the context of current trends such as
component-based programming, and the related plug-
in approach that is increasingly common in web
browsers, mail tools and IDEs. For example, if one
were to define what Firefox or Eclipse is, in terms of
software structure, one would be hard put to define a
single configuration that accurately describes it. Even if
one had an accurate snapshot at one time, the
community of users and developers is continually
changing the configurations of plug-ins and
components used ‘in the wild’. Instead, a varied and
evolving population of software configurations would
seem a better approach to representing the number,
variety and dynamics of configurations found in the real
world.

The typological approach is of particular prominence in
the use of ‘ontology’ in software engineering and the
Semantic Web. One of the best known definitions of
ontology discussed on the Semantic Web
organisation’s own web site (semanticweb.org) is Tom
Gruber’s “An ontology is a formal specification of a
shared conceptualization” but, as the site points out,
ontologies “do not have a universally accepted
definition” and critics (such as Clay Shirky) have
cogently argued that this typological approach to
ontology is overrated (Shirky 2006). Here we suggest
that the Semantic Web’s strengths and weaknesses
both stem from its typological approach. If we assume
that what a system models and supports is uniform and
static, instead of varied and dynamic, this affords
simpler design processes, algorithms that are less
computationally expensive, and programs that are
predictably useful in many contexts. There is, of
course, work on ‘ontology evolution’, such as (Noy
2004), and we should understand and learn from such
work, but when an ontology is considered to be
fundamentally a taxonomy or type hierarchy, i.e. a
structure in a given state, then evolution is a problem of
changing the model rather than an essential part of
what is modelled and supported.

Some researchers have considered more flexible and
dynamic approaches than the mainstream typological
approach. Notable early work includes predicate types,
as used in the Viron language (Pratt 1983). Predicate
types allow the type (or types) of an individual object to
be dynamically, multiply and contextually defined:

[The] predicate view of types abandons the attempt
to keep types disjoint, and permits each individual to
be of many types. For example 3 may
simultaneously be of type real, integer, positive
integer, integer mod 4, mod 5, mod 6, etc. You
yourself may simultaneously be a human, a teacher,
an American, a Democrat, a Presbyterian, a non-
smoker, and so on. There is no such thing in the
physical world as THE type of an object, although
any given context may suggest a particular predicate
as being the most appropriate predicate to be called
the type of that object in that context.

Predicate types involve run-time checking of the
methods and variables in an object to see if they match
a given named predicate. Predicate types allow
arbitrary tests of type (or class) membership to be
made, potentially including the probabilistic tests
proposed in this paper—although, as far as the author
is aware, the population approach has not been
applied to predicate types, or to software types more
generally. On the other hand, this same openness
means that ‘anything goes’, in that there are no
common principles to guide designers, and no
structural coherence that would give purchase to
automatic or semi-automatic analysis of programs and
logs of their execution, context and use.

We propose that a population approach offers such
principles and coherence. We aim to strike a
productive balance between openness to adaptation
and variation, and family resemblance as a means to
find or impose structure. Configurations based on the
same original class definition are likely to have strong
resemblances to each other, but also small differences
due to gradual adaptation of structure and the build-up
of usage history. Class membership might then be
tested using probabilistic measures, and class
definition might similarly be made more responsive,
flexible and dynamic. Computational structures and
use thus feed into and trigger change in each other
over time. We model and support a process in which
structure is a resource for use, and one such use is
adaptation of structure.

We therefore treat ontology not as structure in a given
state, but as socially embedded use of structure, i.e. as
a socio-technical process. Here we draw from
philosophers such as Heidegger (1962), and from
sociologists such as Giddens (1986). Giddens calls this
kind of process duality of structure, in which structure is
“the medium and outcome of the conduct it recursively
organizes”. Subjectivity, contextuality, sociality and
evolution of structure are fundamental aspects of
human activity, rather than external issues

Chalmers

4

problematically imposed on our foundations. We
suggest that duality of computational structure is a key
design requirement for ubicomp, even though such an
approach is likely to have effects such as complex
design processes, algorithms that are computationally
expensive, and programs whose utility in specific
contexts is difficult to predict. As mentioned above, in
ubicomp it is already established that we cannot predict
utility or use well but (as later sections discuss) we can
change part of what we explicitly model and support,
so as to sustain contextual fit. Later in the paper we
offer initial suggestions as to manageable design
processes and appropriate algorithmic choices.

To summarise, in this section we have argued that the
traditional typological approach brings assumptions of
static uniformity that have costs and benefits—and
alternatives worthy of exploration. Especially for
ubicomp, the population approach opens possibilities
for a better fit between the modelling at the core of
system design and the variation and dynamism of
software configurations and uses. In particular, we aim
to treat membership of a class as potentially stochastic
property, rather than as a discrete absolute. We can
choose when (or in which contexts) to relax the
constraint that members of a class show 100%
uniformity—and when to enforce it. We suggest that a
population approach to ‘class’ may be best seen as an
extension of traditional approaches rather than as a
rejection of them. Nevertheless, it is useful to consider
what would happen if we simply rejected formal
abstractions such as class, type and grammar, or
treated them as secondary, as by-products or (in
philosophical terms) as epiphenomenal. Arguments for
this standpoint have been explored in computer
science before, and by reviewing them we may make it
clearer when and why we should use such
abstractions. This is the subject of the next section.

3. WHAT IF WE DID NOT HAVE CLASSES?

Perhaps the most powerful counter-example to the
typological approach in mainstream computer science
is prototype-based programming languages. Given a
thorough overview in (Noble et al. 1999), these
languages do not use ‘class’ in ways like Java or other
familiar object-oriented (and class-based) languages.
They treat it as secondary, if anything, and so
examining them may be instructive.

Prototype-based programming is grounded not only in
experience of programming language design but in
philosophical reflections on how abstractions are
represented and used (in particular the shift from
Aristotle’s ideals to the family resemblances of
Wittgenstein) and also in evidence from psychology
(e.g. Rosch & Mervis, and Lakoff, as mentioned
above). Self was the first and foremost prototype-
based language, but JavaScript is a well-known current
example. The first chapter of (Noble 1999)—Classes

vs. Prototypes, by Antero Taivalsaari, previously
published as (Taivalsaari 1997)—gives a good
conceptual overview of the prototype-based approach.
Taivalsaari introduces prototype-based programming
thus:

In the recent years an alternative to the traditional
class-based object-oriented language model has
emerged. In this prototype-based paradigm there are
no classes. Rather, new kinds of objects are formed
more directly by composing concrete, full-fledged
objects, which are often referred to as prototypes.
When compared to class-based languages,
prototype-based languages are conceptually simpler,
and have many other characteristics that make them
suitable especially to the development of evolving,
exploratory and distributed software systems.

Taivalsaari describes his language, Kevo, as being
based on family resemblances. At one point (on p15)
he makes a useful point about how types are tools for
ensuring or describing compatibility in use:

As the criterion of similarity, object interface
compatibility is used, meaning that objects are
considered to be similar if they have the same
external interface/signature. In an ideal situation,
object comparison should be based on behavioral
compatibility, i.e., ensuring that objects react to
external stimuli identically, but in practice coming up
with an algorithm that could determine 100% surely
and efficiently whether two objects are behaviorally
compatible is impossible.

The traditional approach to behavioural compatibility is
algorithmically working out all the ways instances might
potentially be used in the future, via compatibility of
external interfaces/signatures. We cannot solve the
halting problem, which presumably is what Taivalsaari
refers to here, but we suggest that we may be able to
improve our algorithms through the use of additional
sources of evidence—historical evidence—about
compatibility.

More generally, the issue of compatibility is part of the
issue of defining or understanding the behaviour or use
of class instances. We can look at how objects are
actually used in the real world, tracking configurations,
and logging inputs and outputs in order to make
behavioural comparisons based on ongoing and past
activity. More generally, we suggest that we can use
the history of instances’ use as part of a definition of
what a class is. Rather than a narrow traditional focus
solely on the structures that afford potential
interactions, we broaden our view of ‘class’ to include
real interactions.

As an exploratory example of this, U. Glasgow’s
Domino system used patterns of software components’
co-occurrence in past use, in order to extend its
definition of compatibility and to support adaptation of
component ensembles (Bell et al., 2006). Given a
particular running program, made up of an ensemble of
components, programmers’ definitions of interfaces

A Population Approach to Ubicomp System Design

5

and dependencies specify which new components
might be technically feasible to add into that ensemble.
However, such definitions say little about which of
those objectively compatible components might be
most interesting or useful to add in a given context. For
example, a component may be regularly broadcasting
a string, and listening for strings in return. A vast
number of uninteresting and useless components may
match this behaviour, i.e. objective compatibility
underspecifies utility. Domino’s component
recommender used usage histories to, firstly, rank
each objectively compatible new component on the
basis of how often users had it running along with other
components in the current ensemble. We did not see
this as a rigid determination of contextual fit, but as
creating a resource for the user to either use or ignore
when deciding what changes to make, if any—a
decision about fit with future contexts and uses that, we
suggest, only the individual user is qualified to make.
Domino’s second use of history was in resolving
ambiguity in how to integrate a new component into an
ensemble: when there were several potential ways to
connect a new component into the currently running
components, then the default was to connect it in the
way that had been most used in the past. Again we
emphasise the use of both a priori definitions of
compatibility as well as ongoing history of use. The
former is expressed by the programmer in a traditional
objective way, ensuring a minimal degree of
correctness, safety and predictability. The latter is of
course expressed by users, and does not determine or
guarantee subjective contextual fit; instead it is
historical evidence that may be used to help achieve it.

In summary, by looking at prototype-based languages
we can see a different relationship between
computational structures and the activity of
programmers and users than in more mainstream
computer science. If traditional work, centred on formal
abstractions over consistently uniform sets of
elements, is at one extreme in terms of tightness of
structure, prototype-based languages go towards the
opposite extreme. The flexibility and dynamism of
prototypes seems very relevant to us in achieving and
sustaining contextual fit, but they do this at a perhaps
excessive cost: having few (or no) abstractions over
collections of instances, using consistencies among
instances to gain system support for analysing,
understanding and managing system designs and
deployments.

In addition, looking at prototype-based languages
highlighted what we suggest is a significant and useful
concept for us: a class is a definition of instance
behaviour and use, rather than only of instance
structure. Such behaviour is normally identified and
summarised by signatures, e.g. by class names,
method names, parameter lists, etc., but details
including which classes will get used, which methods
will get called and which values parameters will take
are not expressed in such signatures. Such details

cannot be predicted or modelled in advance exactly,
but they can be approximated by looking at histories.
Traditional a priori modelling based on signatures is of
course useful and important, but in later sections we’ll
look further at complementary forms of definition and
modelling, e.g. more forms of modelling a posteriori on
the basis of logged histories of use.

4. TOOLS FOR WORKING WITH POPULATIONS

A class is a generalisation over its instances; a
shorthand for or abbreviation of its many instances. It is
a tool used in managing, understanding and changing
those objects. In the typological approach, the class
definition and the data structures and methods in each
instance match exactly, even though the values of
variables in different instances may vary over time (i.e.
on the basis of each instance’s history of use). We can
use the class definition as a ‘cookie cutter’ template for
instance creation, and checks and changes can be
done once instead of being applied over and over
again on the instances of that class. We might check a
class definition to see if it matches a specification, and
then say with confidence that all instances match that
specification. We might get a profile of run-time
performance for a given class, based on logs of many
runs of many instances on different inputs. We might
use the class name when we send a message out to all
instances, so as to let them know of an update or
check the value in each of a given variable.

Section 2 referred to Wittgenstein’s argument that, in
everyday language, we don’t always need definitions in
the typological style, based on the uniform, necessary
and sufficient properties of sets of objects. We may not
be able to define all of what we feel to be within a given
category, and any definition is provisional because we
may always come up with a new example of an object
that should be in that category—even though it differs
from all existing members. Instead, we treat such
definitions as tools with strengths and limitations like
any other tools, and to be used with an implicit
understanding that there might be some variation or
limitation in their applicability. This variation brings
benefits, such as flexibility with regard to contextual fit,
and openness to adaptation, and costs in terms of
having to handle exceptions and variations.

We propose to apply the population approach to
software structures, and yet maintain some of the
same benefits that traditional approaches have in
terms of management, understanding and change.
Software structures in different instances may vary,
and so there might be some variation in the
applicability or match of the shorthand of class
definitions. There seem to be two basic issues to
address here: detail and dynamism. A population
approach means that, at a given time, the details of
instances of a class may be slightly different, in terms
of internal software structures as well as internal data

Chalmers

6

values. Tests and actions that are valid or applicable to
some instances may not work for all of them. Instead of
total uniformity of instances, and discrete tests that are
either true or false, we are likely to have variability of
instances, and therefore results that are statistical
distributions of true and false. For example, we might
test whether a program crashes when given a
particular input. Traditionally, we could test once, and
the answer would be ‘true’ or ‘false’. In systems
supporting adaptation and integration of components,
the original program may crash but some modified
versions might not. The test may then return the
answer like ’75%’, i.e. the percentage of instances that
crash. More detailed analysis might return specifics
about structure and use, such as ‘90% of unmodified
instances crash, while 10% of instances with
component A added crash’ and ’10% of instances used
in urban areas crash, while 95% of those used in rural
areas crash’. Also, when software structures change
dynamically, tests and actions done at one time may
not be valid or applicable later on. For example, the
modified version of the program may spread among
users, and so a week after our first test the percentage
of crashing instances may be 25% instead of 75%.
Modifications may spread faster in some communities
than others, so after a week the test may return ‘9% in
urban areas and 73% in rural areas’.

The population approach means that we (developers
and evaluators) give up a degree of control over
instances’ structure, have less precision about exactly
what is happening in deployed systems, and increase
the complexity of our system management, testing and
change. We ought to develop new tools and
approaches in order to work in such a situation. In
addition, since some control has passed to users, we
ought to help them understand, manage, assess and
change their systems, so that they can adapt their
systems to suit their contexts of use—contexts that
they are likely to understand better than us. We
suggest that the new tools and approaches of
developers and evaluators should support work with
users, so as to collectively understand what is
happening in deployed systems, and jointly handle the
complexity of management, testing and change. We
have to work out what users can and will do, given our
direct engagement with them as well as our tool–
building for them, and we have to be creative with
regard to our own practices too.

As another preliminary example, at Glasgow we have
recently been experimenting with ways to handle
variation in instance structure and use within Domino-
based applications for the Apple iPhone (Hall et al.
2009). Users may install and remove components, and
so we cannot assume that all users have the same set
of components in their instances of an application, or
the same versions of those components. We have
created an access control system for new component
releases, to let us control which devices have access
to particular versions of components. So, when a new

component deployment needs to be tested, it can be
made available to only chosen ‘test’ devices—and thus
to ‘test users’ who are willing to assist our debugging
and development. Then, once it is considered safe, it
can be made available to all users to add to their
application if it is both compatible with their current
configuration and something they wish to add. We can
also control which version each device should upgrade
to, which gives us the ability to try out different features
on different user subgroups. We are developing
analysis tools that use fast ‘spring models’ (Chalmers
1996) to make 2D layouts of either components or
configurations. In layouts of components, components
that tend to co-occur in running configurations tend to
cluster together, while components that are not used
together push each other apart. Layouts of
configurations are complementary, in that
configurations that share components tend to cluster
together, while configurations with fewer overlaps push
each other apart. The resulting layouts show patterns
and structures among sub-populations of components
and configurations respectively, offering overview of
trends in deployed systems as well as opportunities for
interactively ‘drilling down’ to examine more detailed
patterns and statistics. We are making tools involving
such layouts for ourselves, as developers and
evaluators, as well as for end users who wish to see
more detail of how their current configuration compares
to others and how it might be changed.

We suggest that a central resource for such new tools
and practices is logs (i.e. histories) of system structure
and use. It is relatively easy to log component
configurations being instantiated and modified, but it
also seems vital to link from these histories back into
the abbreviations and abstractions of classes. Key to
this is the concept highlighted in the previous section,
namely that a class may serve as a definition or
description of the structure of its many instances, but it
is also a definition of the behaviour or use of its many
instances. Here we mean ‘use’ in the sense of actions
represented within the system, e.g. an instance being
loaded into a runtime environment, communicating with
infrastructure, sensors and other components, firing
methods, and changing its variables and structures. In
other words, instances’ histories collectively form an
alternative description of the behaviour of the class,
which we can put to good use.

For example, a traditional definition of a class Foo may
succinctly specify that a Foo object has one method
that takes two real numbers as parameters. It may be
more specific and say that this pair of numbers is a
(latitude, longitude) pair, describing the location of use
of the instance. However, it is unlikely to go so far as
saying in which locations the class is best used, most
commonly used or most reliably used (in the sense of
not crashing or raising an exception). That detail may
or may not be known in advance, but it is in either case
abbreviated—in the sense that it is cut out or ignored.

A Population Approach to Ubicomp System Design

7

More than that, our usual ‘fundamental’ techniques for
analysing classes don’t deal with such detail. A
traditional definition is also unlikely to say which other
classes or components it is best used with, which
hardware it might suit best, and which mode of
transport it might be best for... and other contextual
detail that may be of significance to use.

Such detail is made accessible to us, though, when we
have rich logs of instances’ use. Rather as implied in
the discussion of Kevo above, by extending our notions
of class to include history we can enrich understanding,
management, testing and change. Histories add to the
features of objects we can use in our tools and
methods, to discriminate and differentiate between
objects, to categorise and group them, and to ground
ongoing design work. For example, we may be able to
correlate changes to use and/or structure with new
patterns of crashes and exceptions. Conversely, we
should be able to determine when a previously
coherent pattern of instance configurations divides into
two different and smoothly functioning clusters that
should be managed separately in subsequent design
work—perhaps even being treated as new separate
classes. An example might be a program for mobile
phones, with a core set of components related to
finding and sharing locations of interest in a city. One
group of users might add in new components that
enhance its use for documenting sites of cultural
interest, while another group of users consistently add
in components that let them play a high-tech form of
‘hide and seek’. Developers might start to design
further components for archival and curatorial
classification to further extend the new ‘cultural’ class,
and game scoreboards and action replays for the
‘game’ class.

It seems important to emphasise that the features we
use to distinguish clusters or subpopulations need not
be limited to software structures alone. In terms of the
user experience, there will most likely be a wider
context of people, places and activity that is key to a
person’s interpretation of the meaning or significance
of a piece of software in use. While we may not be able
to model the subtleties and subjectivities of their
interpretations, it would seem most likely that we could
find useful patterns in logged features beyond software
components, such as locations, times of day, people
nearby, accelerometer-based patterns of movement,
ambient sound, hardware devices used in combination
with the program (e.g. headphones, large displays) and
so forth. Maintaining an iterative and inclusive
approach, the initial logging would be built according to
the developer’s view of what was ‘core’ in an
application and its use. Then, by offering users optional
new components to show what was logged, comment
on it and control its distribution, we may help users
influence consequent analyses and design responses.

A concrete example of this clustering based on
features other than code was in our mobile multiplayer

game called Treasure (Barkhuus et al. 2005). Most
players, through use of the system and their interaction
with other players, developed patterns of system use
that conformed to one of two general strategies, which
we called hunting and gathering. Hunters ranged over
wide areas, collecting many of the ‘coins’ that were at
the core of game play in each long sweep, whereas the
more conservative gatherers made many short forays
for a few coins at a time. These two strategies were
reflected in different patterns of location, proximity to
other players, and use of the system interface, but the
system structure for each user was the same.

If we had decided to extend Treasure in order to fit with
players’ use, we would have had two strategies to
choose between. If we were making a Domino version
of Treasure, we might duplicate its current functionality
in a core set of components, but also create one or
more optional components to help each user see which
strategy we think they conform to, and reflect on,
compare and advance these two strategies. These two
overlapping clusters of components might then be
treated as two new classes. We should be aware that
the process of change may continue: users are likely to
continue to change their software configurations and
their strategies in order to play well and to present
themselves to others in the ways they wish. We also
should be aware that being categorised may in itself be
a trigger of change, e.g. one might become more
aware of how one plays, and see that one is in a
cluster that is correlated with losing the game. We see
such reflection and change as normal, and to be
supported, i.e. as users, evaluators and developers
jointly feeding into an ongoing process of development
of sub-populations, in which patterns of system
structure, context and use shift and evolve as a result
of their activities.

Continuing with the idea that a class is a generalisation
over many object instances, that helps when
managing, understanding and changing populations of
instances, we suggest that we may go beyond only
observing patterns that combine structure, context and
use. We may also define such patterns as part of the
design of a class. We should therefore be able to
express necessary dependencies as well as suggested
associations. In the former case, we might specify in
the IDE that any instance of a particular class can only
run if an instance of another given class is already
running, or that it is in a given location. In the latter
case, we might annotate a class to suggest that
another given class offered a useful or enjoyable
combination, or that a given location is an interesting
place to use an instance in. We can imagine extending
our Domino system to handle these new definitions,
with dependencies conveyed to the subsystem on the
phone controlling component loading and instantiation,
and associations being sent to the recommender
subsystem that offers ranking and other subjective
information to assist users’ choices.

Chalmers

8

Reflecting on this section, we suggest we have shown
that a population approach to class need not or should
not mean chaotic fragmentation of the set of instances.
Instead, even though instances may show a degree of
variability in structure and use, we can still use the
notion of class to abstract over sets of instances,
based not on absolute uniformity but family
resemblances, i.e. statistical patterns of historical
similarity and co-occurrence. Such patterns need not
only consist of software structures, but should include
logged features of context and use too. One reason is
to improve our testing and redesign of existing classes.
Another is to feed into design work that changes the
classes available to users as well as suggesting new
contexts and uses to them.

Second, while the previous section pointed out that a
class is a definition of instance behaviour, with well-
established strengths but also limitations such as detail
of context and use, this section has tried to show
examples of the reverse: instances’ collective histories
of context and use can define a class in a
complementary way. Obviously, this form of definition
has its own strengths and weaknesses, but again we
wish to pursue the point that neither of these two
related forms is ultimately complete, true or primary.
Instead, their combination offers new possibilities for
the design of systems and user experiences based on
a holistic view of structure, behaviour and use feeding
into each other over time. The next section aims to
make further use of such complementary forms of
definition, focusing on translations between them.

5. ACHIEVING DUALITY OF STRUCTURE

This section explores a looser coupling of class with
instance structure and behaviour than we have
discussed so far, via a population approach. A class is
usually a static feature within a program, but
techniques such as computational reflection make
dynamism of class’ internal structure relatively
straightforward and commonplace. Here we aim to set
out a particular form of dynamism, moving between
complementary class representations. At the core of
this work is what we might call duals, each of which
reflects or allows us to construct the other. Through
such representations, we hope to achieve duality of
structure in the sense Giddens (1986) talks about with
language, in that we may establish an ongoing process
in which computational structure is derived from or
shaped by context and use, as much as structure
influences and shapes context and use. As discussed
in §2, this would make manifest our view of ontology as
process and satisfy a key design requirement for
ubicomp. In this section we will set out this process.

We have already seen forms of representation to base
this process on. (We will discuss another in a later
section.) The first is the traditional definition of a class:
its structure as specified as a named set of variables

and methods. To use a term from logic and philosophy
of language, it is the intension of the class in that it
succinctly defines properties that an object must have
in order to be categorised as being a member of the
class. The second is the extension of the class: the
class instances, and their collective histories that offer
detail of actual context, behaviour and use that the
intension cannot express. A special case of extensional
definition is ostensive definition, in which one or more
members of a class (but not necessarily all) are pointed
out as examples, as when a subset or cluster within a
population of instances is marked out and used to
make a new class. Using the driving concept of duality
of structure, we propose a dynamic process that
iteratively moves between these forms, so as to allow
for gradual adaptation of a class through sharing,
adaptation and selection of its instances.

Consider an intensional definition of a class C, i.e. the
name ‘C’ and the structure that sets out the variables
and methods common among the collection of objects
identified as being of class C—along with, as
discussed above in the Domino examples,
dependencies and associations used to enforce or
suggest instances’ relationships with other objects. It
may be used as a template for making instances of C,
for example through compilation on the developer’s
computer, deployment of an executable on users’
devices, and then loading into the runtime on each
such device. The running instances on those devices
collectively form the extensional definition of C. Each
instance’s structure may be changed, via mechanisms
such as Domino. Each instance of C may also change
in terms of the values of variables within it, the history
of its context and use, and new associations it extracts
from that history. This set of instances can be
considered as a population of individuals that, while
they probably have strong resemblances to each other,
may also show significant differences. We might then
analyse the population of instances to look for
significant patterns and changes shared by a
substantial number of instances, thus forming a cluster
within the population. We thereby mark out a set of
examples to form an ostensive definition of a class that
may potentially be significantly different to C.

At this point we may ask: why or when would we
expect such clusters? We would not find significant
variation if the structure of each instance of C stays the
same, which may occur because change is either
restricted (e.g. for technical, legal, medical, educational
or procedural reasons) or unnecessary (e.g. because
the contexts and uses of the software are also uniform
and the software fits with them well enough). Again we
suggest that the variety of users, contexts and uses
that are characteristic of ubicomp would make the latter
situation less likely. At the opposite extreme would be
changes, contexts and uses that are different for every
user, so that no clusters within the population form.
This seems unlikely, given the tendency observed in
field studies for people to discuss, compare and share

A Population Approach to Ubicomp System Design

9

others’ strategies and modifications, with such
observation and change being grounded in shared
contexts of use. The social and situated aspect of
users’ interactions is, we suggest, likely to be a key
driver in the process of formation and evolution of
coherent clusters within a population of class
instances. We note also that another driver of this
process is the set of tools for comparison and change
that we offer users, enriching people’s everyday
methods of consciously sharing, reflecting on, and
changing what they do.

There is a profusion of possible techniques one might
use to find and use clusters, as surveys such as (Xu
2005) make clear. As mentioned in passing above we
have begun to apply algorithms for visualisation based
on statistics of co-occurrence of interactively selected
subsets of instance features. Our aim is tools for
developers, evaluators and users, appropriate to each
role, that help them find family resemblances within a
cluster as well what it is that distinguishes clusters from
each other, and let them understand and respond to
patterns of configuration and use. In particular, we aim
to support developers in creating a signature that
characterises a selected cluster, i.e. an intension made
from an ostensive or extensional definition.

Making an extension from an intension is
straightforward deployment of the executable code
made by a compiler. If we can also make a good
intension from an ostensive or extensional definition,
i.e. make component signatures and code structures
by analysing a cluster of instances, then we will
complete the circle that is duality of structure. A simple
typological approach might simply find the largest
subset of logged features that all instances have, but
more sophisticated approaches might apply techniques
such as ‘conceptual clustering’ (Beck 1994) or the
aforementioned spring models to better handle the way
that clusters may be formed by multiple family
resemblances rather than one set of features that all
members have, and use subtler thresholding to deal
with variations in the amount of use of such shared
features. While it may be that this circular process is
started or bootstrapped by a developer writing code for
the class in the traditional (intensional) way, after this
the intension would be adapted so as to reflect the
changes in the objects named as being its instances.

Instance creation might usually be done by a user’s
runtime loading executable code made by a
developer’s compiler, but we note that an instance
could also be made from the extension, e.g. by cloning
an instance, as in prototype-based programming
languages. Developers might see (and encourage)
users ‘breeding’ what the latter consider to be good
variants of a class, without developers’ direct
involvement. Such an object ‘bred in the wild’ would be
part of the extension of the class, however, like any
other instance. It would build up its history of use and
be open to adaptation, and thus contribute to

subsequent intensions along with others in its
population.

To make this iterative process of clustering and change
more concrete, we offer a scenario that exemplifies
what our research group aims to support in the near
future. We have been working on a Domino-based
program, called FanPhoto, which has two core
components for text and photo sharing. We deploy it on
the iPhones of each of 100 system trial participants
who are regular attendees of football matches. The set
of deployed instances of FanPhoto is the extension of
class FanPhoto, derived (via compilation) from an
intension expressed in the Objective-C programming
language.

Each instance has code for logging its context, use and
component structure, streaming data back to our
servers over 3G networks as participants go to
matches, pubs and so on. This lets us maintain basic
awareness of their locations, and their sharing of
photos and banter. Meanwhile, we develop and make
available to users two new components: one extends
FanPhoto with tools for sharing photos, chat and notes
via the Facebook social networking site, and the other
uses compression, caching and forwarding strategies
to promote quick sharing of text, photos and video via
mobile ad hoc networks (MANETs). A few participants
are interested in new components, and they download
and install them, and start to try them out and discuss
them with their friends—using a graphical view in
FanPhoto to show off the fact that they are in the new
small cluster of ‘lead users’. We extend the
programmer’s IDE to optionally show such variation. It
displays the four components within the FanPhoto
class, but with the two new components in grey to
show their minority status. In other words, the class
FanPhoto does not have two components, or four, but
is a weighted mixture of two overlapping
configurations.

After several weeks, interest in these new components
has spread, and other participants have downloaded
and installed one or both of them. The developers and
evaluators meet to look at the changes in use and
configuration over time, and play back a visualisation of
the history of FanPhoto instance configurations. Initially
we see one large cluster of 100 configurations, and
then one small subcluster breaks away—representing
the actions of lead users who tried out the two new
components first. Then, gradually, most the instances
in the main cluster move out towards the small
subcluster. The subcluster grows and then begins to
fragment—eventually spreading out a slightly scattered
distribution within which we can roughly discern two
new clusters. Using the visualisation tool, we find the
consistencies within and significant differences
between these two clusters: one represents roughly 60
keen users of Facebook, the other consists of 30
people who consistently use MANET-based sharing.
We also note that a few users have not used either

Chalmers

10

new component, and another few users have
occasionally used both of them. Focusing on the
Facebook cluster, we see that the users have attached
a name to their variant, FanBook. The developers use
the visualisation tool to give the name Zippy to the
other strong variant.

Opening up an IDE, one of the developers sees this
cluster analysis and annotation reflected in a view of
the population. He sees two new classes, FanBook
and Zippy, each with its constituent set of components.
An overview of related classes shows FanPhoto as the
superclass of these two newly named classes. The
Objective-C code for FanBook and Zippy is available
for inspection and editing, like any other code, affording
the design of new components tailored to each and
leading on to new uses and new adaptations in the
future.

We stay open to human intervention in every stage of
the process of design and use, because issues that are
less amenable to automatic methods are likely to be
significant. For example, clustering of the population
might become excessive, with too many small clusters
leading to developers forcing some clusters together.
This might be because having many small clusters
fragments the social interaction around the software
(inhibiting users’ discussion and sharing of components
and their histories), because it restricts software
adaptation (as recommender algorithms cannot find
common names to link different people’s histories), or
because it simply makes the workload of evaluation,
support and maintenance too high. Also, clusters might
be forced together or given priority over others not
because of current fragmentation but because of future
plans, e.g. for new components combining their
functionalities. Conversely, developers may decide to
move out of some application area, e.g. for business
reasons, and therefore decide to ignore or discard
particular clusters.

Reinforcing the notion of inclusive socio-technical
process, we do not limit such manual intervention to
developers and evaluators; users should be involved
too. We may feed back analyses such as clusters to
users, so as to add to their resources for awareness,
recommendation and adaptation. For example, a user
might find that the configuration on his/her phone is
part of a cluster that other users describe as prone to
errors or crashing, but see that there are other similar
configurations that are robust. A component
recommender might offer adaptation steps that would
let him/her move towards a configuration that he/she
feels to be better. Similarly, one might notice from the
publicly shared clusters that many of one’s friends
appear to be in a cluster other than one’s own, and the
desire to be seen as having more in common with
one’s friends might be enough to suggest adaptation.

Users may have their own opinions as to what are
significant similarities and differences between

clusters, e.g. if they feel that the partition into clusters
is simply incorrect or irrelevant, or that development
work based on such a partition may have negative
effects for them, e.g. getting less support for bug fixes
and new development, or breakup of a user community
that they wish to sustain. As an example, consider a
new and slightly buggy newsreader application for a
phone. A strong split may appear based on location
data, showing one group of users who generally use
the application while commuting, while another group
consistently use it at home. Users might consider this
split irrelevant to their main concern, which is that the
newsreader plays video badly, and so tell the
developer that new components tailored to commuting
(or home use) are a waste of time.

These examples are intended to suggest the variety
and importance of human interventions in the process
of adaptation within a class population. Human
knowledge and intervention appear to be needed in
order to make ‘high-level’ design decisions about not
only the fit of a newly available component with future
contexts and uses, which was suggested in §3 as
being a decision only the individual user is qualified to
make, but also decisions about issues such as likely
effects on social interaction, and the priorities and
costs of the work of system maintenance and
development. Although the population approach
proposed here is based on an analogy with evolving
biological populations, we see a stark difference to the
biological situation: this is far from random creation of
variants, with consequent ‘blind’ Darwinian selection.
Instead we are proposing that developers, evaluators
and users are given tools that help them influence each
other in collectively and consciously driving selection,
i.e. sharing their experiences, expectations, analyses
and histories, and reflecting and acting on them.

Before ending this section, we offer a generalisation of
one above-mentioned form of definition and propose a
fourth form. We see using a visualisation tool to lay out
a cluster within a population as a form of ostensive
definition, but most kinds of evaluation and analysis of
a system in use are essentially similar in that each
somehow selects a subset of structures, contexts and
uses. An example might be an evaluator’s collection of
videos and notes from a user trial, which directly or
indirectly selects particular users using their systems
for particular periods of time. In (Morrison et al. 2006),
we described system support for bridging from such a
collection to system logs. We tracked the positions,
fields of view and times of recording of evaluators’
video cameras, and so were able to automatically
estimate which users are recorded on which video file
at which times. Then we could demarcate relevant
sections of the system logs created by those users’
devices. We showed overviews of those sections in a
visualisation tool, and scrolled through detailed log
data in synchrony with video playback. We suggest
that it may be feasible to extend such system support
so as to show developers code signatures and

A Population Approach to Ubicomp System Design

11

structures that correspond to the evaluator’s collection,
in ways similar to those proposed earlier for using a
selected cluster of instances to create a new intension.
More generally, we suggest that many forms of
evaluation and analysis can be seen as forms of
ostensive definition that might afford system support for
developers’ work. Similarly, such evaluations, analyses
and definitions could be resources for users’ activities,
e.g. to support users in learning about a system and its
use, and in understanding what evaluators see as
significant and what developers may do in response. In
such ways, users may decide to change their systems,
their uses and their interactions with evaluators and
developers.

A fourth form of representation stands in contrast to
extensional and ostensive definitions, which deal with
current and past structures, contexts and uses. A
proposal for a future design may focus on system
structure or on user experience, or may mix both.
Desired structure and use may be formally expressed,
in a way like the intensional definition of code, but
expression may instead be relatively informal. Any
such proposal could be shared among people in order
to change their systems and uses. Given to
developers, it might be used to generate code. Given
to users, it may be used to canvass their opinions,
generate other new design ideas, or persuade them to
use the current system differently. As such, proposals
could be integrated into the process of design and use
in new ways, e.g. being associated with particular code
structures, contexts and uses so that they can be
shared, recommended, adapted and logged—rather as
we have proposed with regard to components.

To conclude this section, let us summarise. We
propose that, by taking a population approach, we can
develop complementary forms of representation that
can be coupled together and which can feed into each
other over time. Traditional class abstractions,
instances and their histories of use, and proposals for
new designs involve different low-level representations,
and afford different interactions among users,
evaluators and developers, but they each describe
identifiable patterns of structure, context and use. Each
can be used within a circular process involving—
among other activities—compilation, deployment,
recommendation, adaptation, logging, analysis and
code construction. The combination of different
activities and roles is an essential part of the process
we propose: programmers, users and evaluators all
have their parts to play in achieving duality of
computational structure and, thereby, sustaining the
contextual fit and utility of ubicomp software.

6. CONCLUSION

Ubiquitous computing faces difficult challenges with
regard to the development of system designs that
sustain their fit with users’ contexts and behaviours.

Use is difficult to model in advance, but this paper has
proposed ways to extend established design methods
so as to work with ongoing variation and change in
system structures, contexts and uses. We proposed
coupling several ways of representing a class within an
ongoing socio-technical process. One of these is an
extensional form, a population, which consists of the
structure, context and use of instances. These features
of an instance may change over time, and instances
may then differ, but the family resemblances among a
population can be described probabilistically.
Furthermore, by transforming a population into a
traditional class definition, i.e. an extension into an
intension, then we can ‘close the loop’ and achieve
duality of structure—a requirement for contextually
adaptive system design.

In the course of this discussion, we mentioned some of
our initial work on applications, tools and infrastructure
that contribute towards making our approach manifest.
We mentioned the Domino component infrastructure,
tools for visualisation of component configurations, and
tools for coupling videos of field trials to system logs.
There is clearly a good deal more work to be done
before we can say that we have fully demonstrated the
approach, and can offer detail of its practice and
effects, but we feel that these exploratory steps help to
show that the proposed approach is feasible.

Centred on a population approach to classes and
instances, and the concept of duality of structure, we
outlined ways to make complementary forms of
representation into resources for users, evaluators and
developers. These people’s activities and interactions
are as much a part of our proposed design process as
models, tools and infrastructures. We do not treat such
activities as standing apart from this circular process,
but rather as essential to it, e.g. evaluators marking out
a newly significant cluster of instances within a
population, that leads to programmers developing new
code to augment that cluster, that in turn leads to users
appropriating the new components to suit their own
contexts, desires and values.

We treat change and human agency as essential
features of ontology in general and of our design
process in particular. We suggest this kind of dynamic
socio-technical process is, to use Wegner’s term, an
‘interaction machine’ that is not only feasible to create
but worth exploring in our research because its power
can be directed towards sustaining systems’ contextual
fit and, as a result, achieving one of the key design
ideals of ubiquitous computing.

7. ACKNOWLEDGEMENTS

I thank the others in the Social/Ubiquitous/Mobile
Group for their comments and collaboration: Owain
Brown, Phil Gray, Malcolm Hall, Donny McMillan,
Alistair Morrison, Stuart Reeves and Scott Sherwood.

Chalmers

12

This research was funded by UK EPSRC projects
Contextual Software (EP/F035586/1) and Designing
the Augmented Stadium (EP/E04848X/1). Thanks also
to Kyuss, Stan Getz and Shellac.

8. REFERENCES

Barkhuus, L, Chalmers, M., Hall, M., Tennent, P., Bell,
M., Sherwood, S., Brown B. (2005) Picking Pockets on
the Lawn: The Development of Tactics and Strategies
in a Mobile Game. Proc. Ubiquitous Computing
(Ubicomp), Tokyo, LNCS 3660, 358-374.
Beck, H.W., Anwar, T., Navathe, S.B., (1994) A
Conceptual Clustering Algorithm for Database Schema
Design, IEEE Trans. Knowledge and Data Engineering,
6(3), 396-411.
Bell, B., Hall, M., Chalmers, M., Gray, P. Brown, B.
(2006) Domino: Exploring Mobile Collaborative
Software Adaptation, Proc. Pervasive, 153-168.
Crabtree, A., Benford, S., Greenhalgh, C., Tennent, P.,
Chalmers, M., Brown, B. (2006) Supporting
Ethnographic Studies of Ubiquitous Computing in the
Wild, Proc. ACM DIS, 60-69.
Chalmers, M. (1996) A Linear Iteration Time Layout
Algorithm for Visualising High-Dimensional Data. Proc.
IEEE Visualization, 127-132.
Giddens, A. (1986) The Constitution of Society: Outline
of the Theory of Structuration, U. California Press.
Hall, M., Bell, M., Morrison, A., Reeves, S., Sherwood,
S., Chalmers, M. (2009) Adapting Ubicomp Software
and its Evaluation, Proc. ACM EICS, 143-148.
Heidegger, M, (1962) Being and Time, trans. by J.
Macquarrie & E. Robinson, SCM Press, London.
Lakoff, G. (1987) Women, Fire and Dangerous Things,
Chicago University Press.
Milner, R. (2006) Ubiquitous Computing: Shall We
Understand It? The Computer Journal 49 pp. 383-389.
Morrison, A., Tennent, P, Chalmers, M., Williamson, J.
(2007) Using Location, Bearing and Motion Data to
Filter Video and System Logs, Proc. Pervasive, 109-
126.

Noble, J., Taivalsaari, A., Moore, I. Prototype-based
Programming: Concepts, Languages and Applications,
Springer, 1999.
Noy, N.F, Klein, M. (2004) Ontology Evolution: Not the
Same as Schema Evolution, Knowledge and
Information Systems 6, 428-440.
Pratt, V. (1983) Five paradigm shifts in programming
language design and their realization in Viron, a
dataflow programming environment, ACM POPL, 1-9.
Robinson, M. (1993) Design for unanticipated use...
Euro. Conf. CSCW, 187-202.
Rosch, E., Mervis, C.B. (1975) Family resemblances:
Studies in the internal structure of categories, Cognitive
Psychology 7(4), 573-605.
Salehie, M., Tahvildari, L. (2009) Self-Adaptive
Software: Landscape and Research Challenges, ACM
Trans. Autonomous and Adaptive Systems 4(2), 14.
Shirky, C. (2006) Ontology is Overrated,
http://www.shirky.com/writings/ontology_overrated.html
(retrieved 3rd March 2010).
Smith, B.C. (1996) On The Origin of Objects, MIT
Press.
Steels, L. (2000) The puzzle of language evolution,
Kognitionswissenschaft, 8(4), 143-150.
Steels, L. (2003), Evolving grounded communication
for robots, Trends in Cognitive Sciences, 7(7), 308-
312.
Taivalsaari, A. (1997) Classes vs. prototypes: Some
philosophical and historical observations, Journal of
Object-Oriented Programming 10(7), 44-50.
Wegner, P. (1997) Why interaction is more powerful
than algorithms, Communications of the ACM 40(5),
80-91.
Weiser, M. (1994) Creating the Invisible Interface,
Invited talk, Proc. ACM UIST, p1.
Wittgenstein, L. (1958) Philosophical Investigations,
3rd ed., trans. G.E.M. Anscombe, Oxford University
Press.
Xu, R., Wunsch, D (2005) Survey of Clustering
Algorithms, IEEE Trans. Neural Networks, 16(3), 645-
678.

