
Contact author:   
 
Greg Ross 
Department of Computing Science 
University of Glasgow 
Lilybank Gardens 
Glasgow 
G12 8QQ 
UK 
 
Tel: +44 141 3303339 
Fax: +44 141 3304913 
 
gr@dcs.gla.ac.uk



 
 
 

Coordinating Components for Visualisation and Algorithmic Profiling 
 
 

Greg Ross, Alistair Morrison, Matthew Chalmers 
University of Glasgow 

{gr, morrisaj, matthew}@dcs.gla.ac.uk 
 
 

Abstract 
A number of researchers have put forward 

approaches to the development and use of visualisation 
systems consisting of a number of components, through 
which data and interaction commands flow. Systems 
based on hybrid and multistage algorithms can be used 
to reduce algorithmic complexity, and to open up 
intermediate stages of the algorithm for inspection and 
steering. In this paper we present work on aiding the 
developer and the user of such algorithms, applying 
interactive visualisation techniques to the process of 
designing, evaluating and using visualisation systems. 
We present a set of tools designed to show and control 
the performance of other visualisation components, and 
we offer case studies of their application to a number of 
data sets. Through this work we are exploring ways in 
which techniques traditionally used to prepare for 
visualisation runs, and to retrospectively analyse them, 
can find new uses within the context of a multi–
component visualisation system. We aim to demonstrate 
that when such systems use flexible structures for data 
flow and cross–component interaction, developers and 
users can gain valuable understanding and control of the 
processes and parameters of visualisation, and hence 
insight into the information being visualised. 
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1. Introduction 

The challenge of gaining insight into the information 
contained within a set of multidimensional data entails 
finding a representation of the data that conveys inherent 
patterns and latent structure.  A dimension reduction 
approach to this problem seeks to represent 
multidimensional data in a low dimensional space, such 
that inter-object distances are preserved as well as 
possible.  There have been many layout algorithms 
proposed for effectively reducing data dimensionality [1, 
2, 3, 4], each with different benefits and drawbacks.  For 
example, some techniques may be too time-consuming to 

be able to process any sizable data set, whereas others 
may not be flexible enough to reveal complex and 
diverse relationships within the data.  A combinatorial or 
‘hybrid’ approach to building dimension reduction 
solutions has been shown to provide good results in 
terms of efficiency and the uncovering of patterns 
contained within complex data [5].  

A software system called HIVE [6] has been 
developed that provides a framework to encapsulate this 
approach.  The benefits of hybrid layout algorithms are 
twofold; as well as providing fast, effective solutions, the 
approach also naturally provides multiple views of a data 
set as it is transformed in the various algorithmic stages. 

HIVE provides an extensible palette of algorithmic 
components that can either be used individually or 
integrated into hybrid algorithmic models.  The system is 
designed as an environment in which to design such 
hybrid models.  As such, this paper introduces a new 
suite of tools that permit the evaluation of these models 
within the HIVE system, as well as offering further 
functionality for the exploration of high dimensional data 
sets 

Due to the flexibility of the visual programming 
approach, these tools can be connected to various stages 
of a hybrid algorithm whilst it is running, using visual 
metaphors consistent with the rest of the HIVE 
framework, and as such they themselves become 
visualisations. By coordinating the views provided by 
these tools with the views of the data, we can not only 
interactively explore our data but also the relationship 
between the layout and the performance of the 
transformation process as it runs. 

In the following section, more background 
information is provided on the HIVE framework and 
hybrid algorithms in general.  Following that, the new 
profiling modules are described and then three case 
studies are presented that illustrate their benefit.  Finally, 
a section of future work precedes the presentation of our 
conclusions. 

2. Background and previous work 

This section provides a more detailed overview of 
the HIVE system, after a general introduction to hybrid 
layout algorithms and the multiple views that such an 
approach provides. 



2.1 Hybrid algorithms and coordinated views 

Several approaches exist for tackling dimensional 
reduction, each with different benefits and drawbacks. 
While linear projection approaches such as PCA can be 
fast to compute, they can only reflect patterns in the data 
that can be explained by a linear function of the 
dimensions, and thus do not reveal non-linear 
relationships. Conversely, methods such as force-
directed placement (FDP) [3, 7] create layouts through 
the modelling of physical forces based upon inter-object 
relationships.  Such algorithms can be used to reveal 
such non-linear relationships, but until recently exhibited 
high time complexity. 

It has been shown that the adoption of a hybrid (or 
multi-stage) approach to the creation of layout 
algorithms can help to reduce time complexity and aid 
data exploration [5, 8, 9, 10]. Based upon trade-offs 
between individual algorithms such as those described 
above, individual models may be combined or tailored in 
such a way as to maximise the benefits of each, whilst 
limiting any shortcomings.  For example, the hybrid 
algorithm presented in [10] applies force-directed 
placement to a random sample of the data, and then uses 
the resultant layout as a base on which to interpolate the 
rest of the set.  In doing so, the computationally intensive 
process is applied to only a small subset, but we 
maximise the benefits gained from the accurate 
positioning of this subset in positioning the remaining 
objects. 

Another benefit of this hybrid approach is the 
provision of intermediate views of the data.  Hybrid 
algorithms may be implemented as a flow of data 
through a series of computational components.  As such, 
the output of each intermediate stage may be visualised 
to provide further insight into the data under 
investigation. In [9] a two-phase algorithm is proposed 
where a self organising map (SOM) [4] – an artificial 
neural network, usually visualised as a discrete grid of 
glyphs that visually encode the neural weights – is used 
to create a topological layout of data, and also used as 
the input for force-directed placement. In this case, the 
SOM can provide a discretised overview of the data 
while the FDP output provides a view where local detail 
is better defined.  

The hybrid algorithmic approach can potentially 
result in multiple views of the data as it is transformed, 
and therefore would benefit from some form of view 
coordination. In North and Shneiderman’s snap-together 
system [11], it is shown that users can direct 
coordinations between different views of data, thereby 
gaining more information.  In [12] a model for view 
coordination is described, in which subsets of interactive 
components can be connected to support brushing and 
linking, and data flow specifications can be used to 
control the running of components, e.g. an FDP 
component triggering ‘downstream’ components only 
when it has stabilised.  If users and designers of hybrid 
layout algorithms can supplement their views with such 
coordination functionality, the effects of individual 

algorithmic stages can be gauged and the data explored 
within different transformation contexts. An example of 
this is given in [6] where significant local detail within a 
data set was visible only in a view created by an 
intermediate step of the layout process. In this case, the 
intermediate view was also coordinated with a histogram 
and fisheye table view to gain more insight.  

2.2 The HIVE framework 

Visual programming can be described as the 
adoption of a 2D graphical notation for the creation of 
programs, as opposed to the conventional 1D textual 
approach [14]. The implementation of visual 
programming systems is often based on the data-flow 
model where functional components are directly 
manipulated by the user to create a block diagram 
representing the processes through which data flow. This 
provides an intuitive and flexible basis for the creation of 
customised computing applications without the need for 
any ‘real’ programming expertise. 

HIVE (Hybrid Information Visualisation 
Environment) [6] is a data-flow visual programming 
system developed to examine and create clustering and 
layout algorithms, as well as to explore the data that they 
transform. HIVE was inspired by systems such as Upson 
et al’s AVS [13], which utilises the data-flow model and 
visual programming to interactively create scientific 
visualisation applications, and North and Shneiderman’s 
snap-together software [11], where the user can define 
view coordination for interaction flow 

The HIVE system uses direct manipulation to allow 
users to interactively create and explore hybrid layout 
algorithms. Visual programming and a novel algorithmic 
architecture allow users to semi–automatically 
coordinate multiple views and interactively steer data 
flows. The architecture has been designed so that users 
can compose exploratory data analysis tools using 
modular components for importing data, algorithmic 
processing and graphical rendering. 

Figure 1 shows an example of HIVE’s workspace 
where a simple data-flow network was built manually by 
dragging the appropriate component modules from a 
GUI tool bar1. Each module has several ports, and by 
dragging connections between these, the components 
may be ‘wired’ together.  Labelled ports are made visible 
in HIVE’s ‘link’ mode. 

The data set used in the figure is in the form of a file 
containing 300 two-dimensional coordinates representing 
a ‘C’ shape (a square missing one side).  The data 
module is connected to an FDP module and a fisheye 
table, which uses distortion to provide focus and context 
information in a similar way to Table Lens [15].  Note 
that the data is fed into the FDP and table modules 
simultaneously.  In the figure, the FDP process has 
completed, although it may be noted that during the 

                                                
1 Throughout the paper, certain details have been omitted from 

screenshots to aid clarity. 
 



iterative process, the scatterplot of the 2D layout 
coordinates was updated every ten iterations.  The 
scatterplot therefore displays an animation of the layout 
process, allowing the user to watch the layout form.  The 
link that is highlighted in red (link between table and 
scatter plot) is a coordination link.  This means that by 
selecting rows on the table or points in the scatter plot, 
the corresponding items are highlighted in the other 
view. This location probing is an example of the flow of 
interaction possible within the system. 

HIVE has a novel hybrid algorithmic framework, 
offering a general approach to the composition of 
efficient and flexible hybrid algorithms. The choice of 
each algorithmic component is influenced by many 
characteristics including the cardinality, dimensionality 
and distribution of the data, computational cost and the 
interaction components that might be used within a 
larger workspace.  These choices can be made 
incrementally, so that users may employ intermediate 
representations as they work with and explore the data.  

 

 
Figure 1.  A simple example of a data flow 
network in HIVE.  Synthetic input data is 
processed by a force-directed placement (FDP) 
routine while being viewed in a fisheye table.  
The output of the FDP is fed into a 2D 
scatterplot.  The two visualisation components 
are coordinated, so that selecting objects in one 
view will highlight the corresponding objects in 
the other. 

 
HIVE can also assist the user by using a pre-

authored classification of data—based on cardinality and 
dimensionality of data sets—and a corresponding 
classification of available algorithmic components based 
on the classes of input data set for which each 
component is suited, and the class of data set it outputs. 
This means that if a data file is loaded, and a 
visualisation component selected, the system will use its 
‘cookbook’ of algorithms to set up a number of 
components to take the data file’s contents and create 
data suitable for visualisation, e.g. reading in a large 
high–dimensional data set and choosing an appropriate 

dimensional reduction algorithm to create 2D data 
suitable for a scatterplot. 

While the system provides flexibility in the creation 
of layout algorithms and data exploration, there is also a 
requirement to be able to assess the quality of the layouts 
produced. In some instances, a new layout algorithm 
might produce a view of a data set in which there is no 
discernable structure.  However, this may or may not be 
representative of the data and therefore we require some 
means of determining how well inter-object distances in 
the layout are preserved. In Buja et al’s XGvis software 
[16], the user is able to experiment with different hard-
coded MDS algorithms. The software allows the user to 
change the algorithmic parameters such as the 
dimensionality of the output space, and to quantitatively 
measure the effects of such changes on the quality of the 
representation. Similar techniques for algorithmic 
steering and profiling have been incorporated and given 
a more interactive role within HIVE, as discussed in the 
following sections. 
 

3. Profiling modules 

HIVE has been demonstrated to be an effective 
environment within which to explore high dimensional 
data sets.  A palette of algorithmic components and 
visualisation tools provides the user with several 
disparate views of a data set and allows a number of 
different aspects to be explored.  Further insight is 
supported via brushing between these views.  The 
framework is also suitable as an environment for the 
design of novel hybrid algorithms.  Novel combinations 
of implemented modules may be experimented with, and 
the extensible nature of the algorithmic palette permits 
the simple addition of new components. 

In addition to this, we propose that HIVE is a useful 
tool for the profiling and evaluation of hybrid 
algorithms.  A number of HIVE modules have been 
implemented to measure and display performance 
characteristics of other HIVE modules.  The inclusion of 
such profiling modules permits algorithm evaluation to 
be tightly and interactively coupled with the algorithms 
being run.  The same visual metaphors may be used in 
linking together profiling components, and the decision 
as to which properties to measure can be made and 
altered at run-time.  Profiling tools may also be linked to 
existing visual modules, with their coordinated use 
providing insight into data sets that would go unnoticed 
in a sole visualisation.  Examples of such coordination 
are provided in section 3. 

In this section, we introduce the profiling modules 
implemented in HIVE. 

3.1. Multiple runs module 

In evaluating hybrid algorithms, ‘batch-runs’ of 
algorithmic executions need to be performed.  
Fundamental to such a system of algorithmic profiling is 
a controller to coordinate the execution of each test run.  



The Multiple Runs (MR) module fulfils this role.  As all 
modules in HIVE, the MR module interacts with other 
components via a series of signals sent through 
connected ports.  MR has three output ports: a ‘data out’ 
port through which to pass the input data to algorithmic 
components, a start trigger to activate the first module, 
and an optional parameter port to provide a mechanism 
for customising the conditions under which each test 
should be run.   For example, it is possible to customise 
the use of an FDP component on each run by supplying 
values for the number of iterations to perform, the level 
of damping to apply to the model, and the values for 
other constants used within the algorithm. It is necessary 
to specify algorithmic conditions in such a manner, 
rather than via interactive controls on each component, 
so that a number of different conditions can be 
experimented with during a batch job. 

Such parameters are input, along with information 
on number of runs and which datasets to use, in a text 
entry field within the module.  Series of commands are 
entered in the form: 

 
(DataFile,[NumRuns,<ModuleID,(parameters)>,<>…]) 

 
This input is parsed by the MR module, stripping 

out parameter information and passing it to the modules 
in the form of a series of (moduleID,(parameters)) tuples.  
Each module receives the entire parameter list, and must 
search it for the appropriate entry.  On the termination of 
an algorithm, the final module sends a signal to the MR’s 
input port, and the MR begins the next run. 

3.2. Clock 

Run-time is an important criterion in the evaluation 
of a layout algorithm.  Regardless of the effectiveness of 
a particular technique, excessively high run times may 
render its use infeasible, or place a limit on the size of 
data set which can be laid out within a time suitable for 
interactive use.  It is obviously also useful to be able to 
compare algorithms’ run times against those of 
competitor techniques. 

To this end, a clock module has been defined with 
which a developer may easily measure the run times of 
one or more algorithmic components.  Figure 2 
illustrates how the clock may be used to measure the 
time taken for individual stages of a hybrid model.  One 
clock module is connected to the first stage, and another 
to the second.  In the HIVE environment, it is simple to 
use the clock to time a complete algorithm, by 
connecting the first algorithmic component to the start 
trigger and the final module to the stop trigger. 

On completion, the run time is displayed on the 
clock module and also written to a file, the name of 
which may be specified within a text entry box.   
Multiple algorithmic runs may therefore be executed, 
with each clock appending to a separate results file each 
time.  

 

 
Figure 2. Clock modules connected to each 
stage of a hybrid algorithm.  HIVE’s extensibility 
allows multiple instances of profiling modules 
to be connected at run-time.  In this screenshot, 
HIVE is in ‘link’ mode, meaning that labelled 
ports are displayed while other controls are 
temporarily hidden. 

3.3. Stress 

In evaluating a layout algorithm, as well as 
examining run times, it is of obvious importance to 
consider the quality of layouts produced.  Several 
metrics exist for the assessment of layout quality [17, 18, 
19], often based on the layout’s stress: the discrepancy 
between layout distances and high dimensional 
relationships.  The stress-1 metric [17], for example, is 
defined as in the equation below, where h represents 
high-dimensional distance and l low-dimensional 
(layout) distance: 
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A stress module has been defined to perform such 

evaluations.  Taking from input ports a high dimensional 
data set and a set of low-dimensional positions, the 
above stress calculation may be performed.  We choose 
to receive data in this form, rather than sets of inter-
object distances for issues of space efficiency.  The high 
and low-dimensional distances are calculated on the fly 
within the stress module.  In common with the clock 
module, a trigger port can be used to commence stress 
calculation.  A button is also supplied to give the 
instruction to calculate the stress immediately.  Although 
redundant in batch-job execution, such functionality is 
important to interactive exploratory analysis of data. 

Calculation of stress is a computationally intensive 
undertaking, often a more time-consuming process than 
the algorithm itself.  Although useful in assessing layout 
quality, it may not be integral to the algorithmic process.   
The time spent on stress calculations should not, 
therefore, contribute to run time measurements.  As such, 
a ‘pause’ output port is supplied on the stress module.  

Stress =   



Any clock to which this port is connected will be 
instructed to stop timing for the duration of stress 
calculations, and the time spent on them will not 
contribute to the measured run times. 

Like the clock module, the stress component has a 
text field to allow users to specify an output file to which 
results should be written.  Controls are also provided to 
allow selection between several implemented stress 
algorithms. 

 

3.4. Shepard diagram 

The Shepard diagram [2] is another tool that may be 
used to determine the quality of an MDS solution. At its 
most basic, it is a plot of the low dimensional (or layout) 
distance between each pair of objects in the data set 
against the corresponding high dimensional (or input) 
distance for that pair.  Should an MDS solution provide a 
good representation of relationships within the high 
dimensional space, the points in the Shepard diagram 
will have a strong positive correlation with low deviation 
from the 45 degree diagonal.  Figure 3 illustrates a 
Shepard diagram, where high dimensional distances are 
plotted on the y-axis and layout distances along the x-
axis.  Points that lie above the diagonal represent data 
elements that are too close together in the generated 
layout, while points that lie below the diagonal represent 
those that have been positioned too far apart. It is clear 
that points distant from the diagonal in such a plot would 
represent pairs of objects that make a large contribution 
to layout stress. 

 

 
Figure 3.  The Shepard diagram module.  Each 
point represents distances between a pair of 
objects: high dimensional distances (y-axis) are 
plotted against low dimensional layout 
distances. 

As with obtaining the stress of a layout, acquiring a 
full Shepard diagram necessitates the calculation of the 
distances between all pairs of elements of the data set, 
and this can be very time consuming. To overcome this, 
like the stress module, the Shepard diagram module 

allows the user to specify the size of a random sample of 
objects with which to produce the plot, of default sample 
size �N. Brush and link functionality is also provided so 
that location probing in the Shepard diagram can 
highlight the corresponding data items represented in 
other views.   

The Shepard diagram has a long tradition of use in 
MDS as a tool for the appraisal of layout quality.  
Historically, MDS was performed by psychologists and 
psychophysicists [19], taking as input experimental 
subjects’ judgements of similarity between a set of 
stimuli.  As such, data sets tended to be small: at most a 
few hundred objects.  The Shepard diagram could 
therefore comfortably cope with the ½N(N-1) distances 
between N objects.  In more recent times, such 
techniques have been used for exploratory data analysis 
of much larger data sets.  It is not uncommon for a user 
to explore a set of 100,000 objects or more.  As such, the 
Shepard diagram became a less useful tool, due to the 
density of points required for such sets. 

In an environment such as HIVE, however, the 
provision of interactive tools allows us to find new uses 
for such traditional tools.  Zoom and pan controls, in 
conjunction with sampling, can help alleviate the 
usability problems encountered by overly dense plots.  
Additionally, the interactive coordination of several plots 
or views of data can promote understanding into data 
that would not be possible with the solo techniques. 

3.5. Chart 

A general line chart tool has also been added to the 
HIVE environment, and is illustrated in Figure 4.  
Dependent and independent variables may be specified 
via separate ports, with a line chart drawn dynamically as 
values are received.  Multiple data series may be 
accommodated, with each measurement being assigned 
to a series via parameters or interactively. 

Although simple, such a tool has many practical 
applications. For example, algorithmic characteristics 
such as run time or stress can be graphed, allowing 
comparisons to be made between various models or 
algorithm stages.  The chart can also be used 
dynamically during algorithm execution, for example to 
view the stress of a layout over time.  Such usage has 
been illustrated in Figure 4.  The chart’s y-axis 
represents layout stress, while the x-axis counts the 
number of iterations performed.  Such a graph could be 
used in detecting situations where an iterative model has 
become stuck in a local minimum. Functionality is also 
provided to support the simple export of the chart as an 
image file. 

 
 



 
Figure 4.  The Chart component being used in 
conjunction with an FDP routine to display 
stress per iteration.  Note that stress initially 
grows as energy is put into the system, before 
dropping as the layout progressively improves.  
The scatterplot visualisation shows the layout 
after 158 iterations.  Using the two views in 
parallel, a user can determine whether the 
layout is complete, or further processing is 
required. 

 
3.6. Coordination of profiling modules in HIVE 
 

The previous sections have described isolated 
instances of HIVE’s new profiling modules.  The real 
power of such techniques, however, comes in their 
combination and interaction with existing components 
within the HIVE environment.  Histograms, fisheye 
tables and scatterplots all have interactive functionality, 
allowing coordination with the profiling components.    

For example, the Shepard diagram is traditionally a 
static presentation technique for qualitatively evaluating 
the quality of a low-dimensional representation of high-
dimensional data. By incorporating it into the HIVE 
framework, the plot can have as many instantiations as 
necessary, with each instance connected to a different 
part of the visualisation’s data flow.  By connecting a 
Shepard diagram to a scatterplot, we create an interactive 
link between the two plots.  Making a selection in the 
Shepard diagram will therefore highlight those objects in 
the scatterplot layout whose pairwise distances 
correspond to the selected points.  For example, in 
Figure 5, we use Shepard diagrams to compare layouts 
obtained from PCA and FDP. It is apparent that the 
Shepard diagram of the PCA layout has a distinct 
diagonal edge, below which no points are plotted. This 
may be explained by the fact that PCA functions via a 
projection of the high dimensional space onto a 2D 
plane. In contrast, FDP has no linear constraints and 
attempts to position objects to best preserve high-
dimensional relationships.  This results in a Shepard 
diagram where there are points both above and below the 
diagonal, as well as the points that represent items 
ideally placed in the plane.  
 

 
Figure 5.  The top two images show 2D layouts 
of the Antarctica data (described in section 
4.2.2) using linear PCA (left) and nonlinear FDP 
(right).  Below each layout is the associated 
Shepard diagram.  The PCA layout has no pair 
of objects at a greater distance from each other 
than in high-dimensional space.  This is 
confirmed by the fact that no objects appear 
below the diagonal in the PCA’s Shepard 
diagram. 

 
Another implemented component that may be used 

in interactive combination with the profiling modules is a 
module for Voronoi tessellation.  This module may be 
used to partition a completed layout [20].  Each point is 
contained by a convex polygon so that the portion of 
space contained within the polygon is closer to that point 
than any other.  Clustering may then be performed by 
finding contiguous groups of polygons where the density 
of points is similar. The module may be used in 
combination with profiling modules to detect clusters 
that may benefit from closer examination. 

In the following section, we provide more concrete 
examples of the coordination of components with a 
series of case studies. 

4. Case studies 

This section details several case studies, illustrating 
the coordinated use of existing components with the 
novel profiling modules within the HIVE environment. 

4.1. Batch job of executions for algorithm 
evaluation 

The first case we will examine is the thorough 
evaluation of a novel algorithm.   Through the use of the 
profiling modules described in the previous section, such 
evaluation may be performed simply and in an intuitive 
manner.  The following describes the evaluation process 
undertaken in the writing of [10]: a presentation of a 
novel hybrid layout algorithm. 



In performing such algorithmic profiling, a large 
number of executions are necessary.  Several models 
may be evaluated on several different data sets of several 
different sizes.  In addition, results should be averaged 
over numerous runs: an especially important 
consideration in the case of iterative models such as that 
proposed in [10], which can occasionally become stuck 
in local minima.  With several hundred executions 
necessary for a thorough evaluation, then, it is clear that 
an automated profiling process is a useful aid to the 
designer.  Figure 6 illustrates the configuration of 
components required for such an evaluation.  To avoid 
describing the specific model in depth, details such as the 
names of individual components have been omitted from 
the figure. 

Having built a hybrid algorithm (composed of the 
modules shaded in yellow in Figure 6), we wish to 
examine its performance in comparison with an 
alternative technique.   Profiling modules (grey) may be 
added to the module configuration at the user’s 
discretion.  Here, we have elected to measure the run 
time of two stages.  We also measure stress at the 
conclusion of stage 4.  By specifying file names on each 
of these components, separate output files are generated 
by each, allowing the detail of performance 
characteristics to be explored further in other 
applications. 

 

 
Figure 6. The yellow modules represent 
different stages of a hybrid algorithm.  The 
Multiple Runs module coordinates a sequence 
of executions, loading data and parameters into 
each component.  Charts graph run time over 
data set size at various stages of the algorithm.  
The bottom left chart shows run times under 3 
separate sets of parameters for stage 3.  Having 
connected the various components and 
provided instructions to the MR module, the 
algorithm executions and chart plotting may 
proceed unsupervised. 

The MR module (top left) is provided with a list of 
data files and parameter commands.  It systematically 
loads in each file, and passes the instructions for the 
current execution to each algorithm component.  The 
MR module passes a start trigger into stage 1, and 
receives another from the final stage to indicate that the 

algorithm has terminated: the cue to reset all modules 
and begin another run.  

Finally, charts at the bottom of the figure display 
experimental results.  A test data collection has been 
sampled to create data sets of varying size.  The charts 
graph run times against data set sizes under different 
algorithmic conditions, with each line on the chart 
representing a different condition.  Each chart is 
connected to a different clock module, and therefore 
displays times taken by different algorithmic 
components. 

For example, the chart at the left hand side displays 
the run times required by the third stage of the model.  
Three separate approaches were experimented with for 
this stage (as specified by the experimenter in the MR 
module and passed to stage 3 via parameters), as 
indicated by the 3 lines on the chart.  We can deduce that 
on small data sets, condition 1 executed the fastest, 
whereas condition 2 becomes optimal as data size 
increases. 

Charts of this type formed the basis of the results 
section of [10].  What could have been a laborious 
evaluation procedure was undertaken via a simple, 
unsupervised process.  The algorithms could be left to 
run overnight, with the generated charts being exported 
in graphics format as they were created. 

4.2. Exploratory analysis 

This section demonstrates via two examples how the 
profiling modules may be used interactively to further 
understanding of a data set. 

 
4.2.1. Synthetic data.   In this example, we illustrate the 
interactive combination of the Shepard diagram with 
other HIVE visualisations.  As previously mentioned, 
brush-and-link coordination has been incorporated in the 
Shepard diagram to allow interaction with other 
components.  For example, linking the Shepard diagram 
and scatterplot views allows insights into the 
relationships between quality of positioning and objects’ 
placement within the layout.   

To illustrate the usefulness of this interactive 
capability, we provide an example using a synthetic data 
set representing a 3D cube. Such a data set is a useful 
test case, as it is impossible to represent perfectly in a 2D 
space, and no 2D projection of the data is much better or 
worse than any other.  To begin, we use PCA to obtain a 
scatterplot layout (Figure 7a).  Linear projection-based 
layout techniques such as PCA, although fast, provide a 
layout based upon global data properties.  It is therefore 
the case that certain local area may be especially poorly 
represented.  This example illustrates how interactive use 
of the Shepard diagram component can help a user to 
resolve inaccuracies in these areas, and thereby enhance 
understanding of the structure of the data. 

 



 
Figure 7. PCA layout and Shepard diagram 
working together interactively to help build user 
understanding of a data set.  (a) The PCA 
layout. (b) A Shepard diagram of the layout. A 
selection is made of points corresponding to 
distances in the layout that may benefit from 
further analysis (highlighted region). (c) The 
selection in the Shepard diagram is also 
highlighted in the PCA layout. (d) A re-
projection of the selected points and their 
immediate region confirms their 
misrepresentation in the original layout. 

 
The cube structure is clearly visible from Figure 7a, 
coloured dark to light from top to bottom.  In Figure 7b, 
we show a Shepard diagram of the layout generated by 
PCA.  Each point in the Shepard diagram represents a 
distance between a pair of objects.  In Figure 7b, we 
have highlighted a section of points in the upper left of 
the layout: those points corresponding to the 
relationships worst represented in the PCA layout.  
Figure 7c shows the how this selection affects the 
scatterplot display.  The linking between views informs 
us that the objects worst represented in the layout appear 
in the centre.  These objects represent points at opposite 
corners of the cube, forced together in the projected 
layout. 

Having identified such a poorly represented area of 
the layout, it may be desirable to extract the subset of 
objects in that region and lay them out separately.  In 
doing so, we remove the influence of the full data set, 
and examine only relationships between the objects in 
that subset.  The selected region was therefore fed into 
another PCA module and re-projected, yielding the 
layout shown in Figure 7d.  It can be seen that the inter-
object distances are now more accurate; the two corners 
of the cube have been separated. As a quantitative 
measure of the quality of the layouts, the stress of the full 

layout was measured and compared to that of the sub-
layout. As expected the stress of the sub-layout was 
much less than that of the global layout: 0.001 compared 
to 0.149. 

 
4.2.2. Antarctic data set.  The above scenario 
demonstrated, via a simple example on synthetic data, 
how a profiling component could be used interactively in 
combination with other views to encourage further 
exploration of a data set.   We now provide a similar 
example to illustrate the usefulness of such techniques in 
a real-world setting.  The data were gathered with a 
remote sensor probe during an investigation into carbon 
cycling in Antarctic lakes. They represent a number of 
properties measured over time, such as water 
temperature and the level of photosynthetically active 
radiation. 

The data set was initially fed into a PCA module, 
with the Shepard diagram used to identify a local region 
of items that were potentially badly placed.  In a manner 
similar to the previous example, points far away from the 
diagonal trend were selected in the Shepard diagram, 
which resulted in the contributing items being 
highlighted in the connected PCA layout.  The leftmost 
two components of Figure 8 illustrate the scatterplot and 
Shepard diagram following this selection. 

Having identified these poorly represented objects, 
we may observe that they appear to be localised to a 
specific region in the top-right of the layout.  We may 
hypothesise that this area could represent a distinct 
cluster within the data, which has not been made 
apparent by the PCA layout.  A Voronoi component may 
be employed to gain a clearer understanding of the 
partitions within the data.  The output from PCA is fed 
into a Voronoi component, which identifies five separate 
clusters in the layout.   

The Voronoi component is illustrated in the centre 
of Figure 8.  Five clusters were found, and shown in 
different colours.  Outlying objects not identified as 
belonging to a specific cluster were coloured grey.  It 
may be seen that the objects highlighted in the PCA 
layout all belong to the yellow cluster.  We select this 
subset and overlay the Voronoi tessellation. 

Having now identified a cluster of the data within 
which certain distances are poorly represented, we may 
extract it and apply further processing to determine why 
this is so.   Through connecting to the Voronoi output 
port, another component may take as input the selected 
cluster.  The figure illustrates how we pass the cluster to 
an FDP routine.  This nonlinear technique is able to 
discover further detail that PCA could not identify: two 
clear sub-clusters are found within the selected data. 

The PCA layout had clearly failed to adequately 
separate these two sub-clusters, which explains the large 
discrepancy between high and low dimensional distances 
observed from the Shepard diagram.  The measures 
derived from the stress component confirm the findings, 
with the PCA layout giving 0.031 and the FDP layout of 
the extracted cluster giving 0.025. 



 
Figure 8. Various algorithmic and visualisation components working together in a coordinated 
environment.  A PCA layout is made, and the associated Shepard diagram used to detect a local area 
that might be better represented if considered separately.  A Voronoi tessellation component is used to 
cluster the data, and extract the cluster containing the previously identified local area (the yellow 
objects in the central component).  This cluster is processed with an FDP routine, which uncovers 2 
sub-clusters that we had not previously been able to identify. 

Having discovered the presence of two sub-clusters, 
we may be interested in seeing how they were depicted 
in the original PCA layout.  Comparing the FDP layout 
and the Voronoi display, it may seem as if the smaller of 
the two sub-clusters appears on the left of the yellow 
Voronoi region, with the larger C-shaped sub-cluster 
appearing on the right.  Had the two images been 
produced independently, one may have made this 
assumption.  HIVE’s interactive, coordinated view 
framework, however, allows users to compare the 
location of the same objects in different layouts.  Figure 
9 shows the selected C-shaped sub-cluster in the FDP 
layout and the resultant highlighting of the 
corresponding objects in the PCA layout.  It may be seen 
that the division between the two sub-clusters actually 
occurs in the top-right corner of the PCA layout. 

The final stage of processing undertaken in Figure 8 
is the creation of the Shepard diagram of the FDP layout, 
shown in the top right corner.  In tandem with the stress 
calculations, this allows a visual comparison of the 
degree to which the PCA and FDP layouts preserved 
high-dimensional relationships. 

 
Figure 9. The left image shows the FDP layout 
of a selected Voronoi cluster within a PCA 
layout.  On the right is the original PCA layout.  
Selecting the C-shaped sub-cluster on the left 
highlights the corresponding objects in the PCA 
layout, helping us to understand the overlap or 
separation of sub-clusters in the PCA. 

The Shepard diagram resulting from the PCA layout 
exhibits a ‘cleaner’ line on the 45 degree diagonal, as we 
would expect from the discussion in section 3.6.  It is the 
FDP’s Shepard diagram, however, that appears to show 
less deviation from the diagonal overall.  This is perhaps 



better illustrated in Figure 10, where the 45 degree 
diagonal line has been drawn. 

It may be noted that two separate clusters of points 
exist on the Shepard diagram of the FDP layout.  Again, 
an initial reaction may be to assume that each of these 
corresponds to one of the sub-clusters identified in the 
FDP layout.  This is not the case, although the 
‘clustering’ of the Shepard diagram is due to the 
presence of two clusters in the FDP layout.  The Shepard 
diagram plots distances, and therefore the two apparent 
distinct groups of points on the Shepard diagram 
correspond to distinct ranges of distances within the 
layout.  The lower of the two groups refers to pairwise 
distances between objects in the same sub-cluster, 
whereas the higher group represents inter-cluster pairs.  

These examples have illustrated the advantages of 
HIVE’s multi-view framework over single static layouts. 
The provision of profiling modules provides further 
insight into data sets.  Linking and interactive 
coordination between such views encourage further 
exploration and leads to greater understanding. 
 
 

 
Figure 10.  Shepard diagrams based upon the 
PCA layout of the full data set (left) and the FDP 
layout of the selected cluster.  Red lines are 
drawn at 45 degrees to help detect the extent to 
which points deviate from this diagonal. 

5. Future work 

In this section, we examine some areas of related 
work that may lead to interesting future avenues of 
research. 

We are currently investigating the incorporation of 
new analysis tools in HIVE. The force-directed 
placement algorithms developed in HIVE reduce the 
dimensionality of the data so that they can be plotted in 
2D space.  However, we generally rely upon the human 
visual system to pick out clusters and other interesting 
patterns; such structure is not formally classified. These 
perceptual skills are powerful but have limits, and so we 
are currently working upon improving the Voronoi–
based clustering in layouts, and developing ways of 
determining the validity of identified clusters.  

Due to HIVE’s architecture individual clusters may 
be extracted from one view and piped through further 
transformations and into other views. It would be 
interesting to assess the homogeneity of these clusters 

and also ascertain which individual data elements 
contribute most to layout stress and error. 

Functionality originally devised for algorithmic 
components can also extend to these profiling modules. 
For example, in [6] it was described how HIVE could 
automatically generate a recommended hybrid algorithm 
based upon input data and a user’s selection of 
visualisation components.  The generated algorithm is 
part of a ‘cookbook’, where each ‘recipe’ is a set of 
connected components, selected to provide an efficient 
solution by considering dimensionality and cardinality of 
the input data.  

While such automated algorithm generation may 
make it easier for users unfamiliar with the algorithms to 
build visualisation applications, the purpose of 
algorithmic parameters would remain unclear.   For 
example, force-directed placement algorithms typically 
involve constants for properties such as damping and 
tension, and a module in HIVE may allow user 
specification of such constants. In such cases, analysis 
tools could also be automatically generated at 
appropriate locations to aid the user’s understanding of 
the effects of these parameters upon algorithm 
performance. This feedback might enhance the user’s 
comprehension of the solutions generated and, in turn, 
encourage further experimentation and deeper 
understanding. 

Another area that might be of interest is exploring 
the impact made by algorithmic components upon 
system memory.  It may aid designers to have a module 
within HIVE that can measure and visualise this. 

6. Conclusions 

We have presented a number of components within 
the HIVE system that are used to profile, understand and 
control other HIVE components. We outlined their 
construction, and gave examples of their use and utility. 
One of the advantages of bringing such components into 
a visualisation system is to support the process of 
understanding the strengths, weaknesses and 
interdependencies of algorithmic components. Through 
techniques such as recording and displaying the 
performance of ongoing runs, and linking layouts from 
complementary algorithms and from intermediate stages, 
we suggest that designers and users can explore not only 
the data but also the ways that the system represents, 
transforms and presents that data.  

More generally, this work explores the way that 
making a visualisation that is customised to one’s data 
and interests, and which takes advantage of a palette of 
algorithmic components, can be a complex task—a task 
that may be aided by modern tools for interaction and 
visualisation. It would be frustrating and limiting for 
designers and for users if powerful tools for analysis and 
understanding data were themselves difficult to analyse 
and understand. Therefore we suggest that the use of 
visualisation for visualisation – in the form of well-
designed interaction with the components, processes and 



parameters of a visualisation system – may afford deeper 
insight into the visualised information itself.  
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