
Contact author:

Greg Ross
Department of Computing Science
University of Glasgow
Lilybank Gardens
Glasgow
G12 8QQ
UK

Tel: +44 141 3303339
Fax: +44 141 3304913

gr@dcs.gla.ac.uk

Coordinating Components for Visualisation and Algorithmic Profiling

Greg Ross, Alistair Morrison, Matthew Chalmers
University of Glasgow

{gr, morrisaj, matthew}@dcs.gla.ac.uk

Abstract
A number of researchers have put forward

approaches to the development and use of visualisation
systems consisting of a number of components, through
which data and interaction commands flow. Systems
based on hybrid and multistage algorithms can be used
to reduce algorithmic complexity, and to open up
intermediate stages of the algorithm for inspection and
steering. In this paper we present work on aiding the
developer and the user of such algorithms, applying
interactive visualisation techniques to the process of
designing, evaluating and using visualisation systems.
We present a set of tools designed to show and control
the performance of other visualisation components, and
we offer case studies of their application to a number of
data sets. Through this work we are exploring ways in
which techniques traditionally used to prepare for
visualisation runs, and to retrospectively analyse them,
can find new uses within the context of a multi–
component visualisation system. We aim to demonstrate
that when such systems use flexible structures for data
flow and cross–component interaction, developers and
users can gain valuable understanding and control of the
processes and parameters of visualisation, and hence
insight into the information being visualised.

Keywords--- Visual programming, data-flow

model, multiple views, coordinated views, hybrid
algorithms, dimension reduction, algorithmic
profiling.

1. Introduction

The challenge of gaining insight into the information
contained within a set of multidimensional data entails
finding a representation of the data that conveys inherent
patterns and latent structure. A dimension reduction
approach to this problem seeks to represent
multidimensional data in a low dimensional space, such
that inter-object distances are preserved as well as
possible. There have been many layout algorithms
proposed for effectively reducing data dimensionality [1,
2, 3, 4], each with different benefits and drawbacks. For
example, some techniques may be too time-consuming to

be able to process any sizable data set, whereas others
may not be flexible enough to reveal complex and
diverse relationships within the data. A combinatorial or
‘hybrid’ approach to building dimension reduction
solutions has been shown to provide good results in
terms of efficiency and the uncovering of patterns
contained within complex data [5].

A software system called HIVE [6] has been
developed that provides a framework to encapsulate this
approach. The benefits of hybrid layout algorithms are
twofold; as well as providing fast, effective solutions, the
approach also naturally provides multiple views of a data
set as it is transformed in the various algorithmic stages.

HIVE provides an extensible palette of algorithmic
components that can either be used individually or
integrated into hybrid algorithmic models. The system is
designed as an environment in which to design such
hybrid models. As such, this paper introduces a new
suite of tools that permit the evaluation of these models
within the HIVE system, as well as offering further
functionality for the exploration of high dimensional data
sets

Due to the flexibility of the visual programming
approach, these tools can be connected to various stages
of a hybrid algorithm whilst it is running, using visual
metaphors consistent with the rest of the HIVE
framework, and as such they themselves become
visualisations. By coordinating the views provided by
these tools with the views of the data, we can not only
interactively explore our data but also the relationship
between the layout and the performance of the
transformation process as it runs.

In the following section, more background
information is provided on the HIVE framework and
hybrid algorithms in general. Following that, the new
profiling modules are described and then three case
studies are presented that illustrate their benefit. Finally,
a section of future work precedes the presentation of our
conclusions.

2. Background and previous work

This section provides a more detailed overview of
the HIVE system, after a general introduction to hybrid
layout algorithms and the multiple views that such an
approach provides.

2.1 Hybrid algorithms and coordinated views

Several approaches exist for tackling dimensional
reduction, each with different benefits and drawbacks.
While linear projection approaches such as PCA can be
fast to compute, they can only reflect patterns in the data
that can be explained by a linear function of the
dimensions, and thus do not reveal non-linear
relationships. Conversely, methods such as force-
directed placement (FDP) [3, 7] create layouts through
the modelling of physical forces based upon inter-object
relationships. Such algorithms can be used to reveal
such non-linear relationships, but until recently exhibited
high time complexity.

It has been shown that the adoption of a hybrid (or
multi-stage) approach to the creation of layout
algorithms can help to reduce time complexity and aid
data exploration [5, 8, 9, 10]. Based upon trade-offs
between individual algorithms such as those described
above, individual models may be combined or tailored in
such a way as to maximise the benefits of each, whilst
limiting any shortcomings. For example, the hybrid
algorithm presented in [10] applies force-directed
placement to a random sample of the data, and then uses
the resultant layout as a base on which to interpolate the
rest of the set. In doing so, the computationally intensive
process is applied to only a small subset, but we
maximise the benefits gained from the accurate
positioning of this subset in positioning the remaining
objects.

Another benefit of this hybrid approach is the
provision of intermediate views of the data. Hybrid
algorithms may be implemented as a flow of data
through a series of computational components. As such,
the output of each intermediate stage may be visualised
to provide further insight into the data under
investigation. In [9] a two-phase algorithm is proposed
where a self organising map (SOM) [4] – an artificial
neural network, usually visualised as a discrete grid of
glyphs that visually encode the neural weights – is used
to create a topological layout of data, and also used as
the input for force-directed placement. In this case, the
SOM can provide a discretised overview of the data
while the FDP output provides a view where local detail
is better defined.

The hybrid algorithmic approach can potentially
result in multiple views of the data as it is transformed,
and therefore would benefit from some form of view
coordination. In North and Shneiderman’s snap-together
system [11], it is shown that users can direct
coordinations between different views of data, thereby
gaining more information. In [12] a model for view
coordination is described, in which subsets of interactive
components can be connected to support brushing and
linking, and data flow specifications can be used to
control the running of components, e.g. an FDP
component triggering ‘downstream’ components only
when it has stabilised. If users and designers of hybrid
layout algorithms can supplement their views with such
coordination functionality, the effects of individual

algorithmic stages can be gauged and the data explored
within different transformation contexts. An example of
this is given in [6] where significant local detail within a
data set was visible only in a view created by an
intermediate step of the layout process. In this case, the
intermediate view was also coordinated with a histogram
and fisheye table view to gain more insight.

2.2 The HIVE framework

Visual programming can be described as the
adoption of a 2D graphical notation for the creation of
programs, as opposed to the conventional 1D textual
approach [14]. The implementation of visual
programming systems is often based on the data-flow
model where functional components are directly
manipulated by the user to create a block diagram
representing the processes through which data flow. This
provides an intuitive and flexible basis for the creation of
customised computing applications without the need for
any ‘real’ programming expertise.

HIVE (Hybrid Information Visualisation
Environment) [6] is a data-flow visual programming
system developed to examine and create clustering and
layout algorithms, as well as to explore the data that they
transform. HIVE was inspired by systems such as Upson
et al’s AVS [13], which utilises the data-flow model and
visual programming to interactively create scientific
visualisation applications, and North and Shneiderman’s
snap-together software [11], where the user can define
view coordination for interaction flow

The HIVE system uses direct manipulation to allow
users to interactively create and explore hybrid layout
algorithms. Visual programming and a novel algorithmic
architecture allow users to semi–automatically
coordinate multiple views and interactively steer data
flows. The architecture has been designed so that users
can compose exploratory data analysis tools using
modular components for importing data, algorithmic
processing and graphical rendering.

Figure 1 shows an example of HIVE’s workspace
where a simple data-flow network was built manually by
dragging the appropriate component modules from a
GUI tool bar1. Each module has several ports, and by
dragging connections between these, the components
may be ‘wired’ together. Labelled ports are made visible
in HIVE’s ‘link’ mode.

The data set used in the figure is in the form of a file
containing 300 two-dimensional coordinates representing
a ‘C’ shape (a square missing one side). The data
module is connected to an FDP module and a fisheye
table, which uses distortion to provide focus and context
information in a similar way to Table Lens [15]. Note
that the data is fed into the FDP and table modules
simultaneously. In the figure, the FDP process has
completed, although it may be noted that during the

1 Throughout the paper, certain details have been omitted from

screenshots to aid clarity.

iterative process, the scatterplot of the 2D layout
coordinates was updated every ten iterations. The
scatterplot therefore displays an animation of the layout
process, allowing the user to watch the layout form. The
link that is highlighted in red (link between table and
scatter plot) is a coordination link. This means that by
selecting rows on the table or points in the scatter plot,
the corresponding items are highlighted in the other
view. This location probing is an example of the flow of
interaction possible within the system.

HIVE has a novel hybrid algorithmic framework,
offering a general approach to the composition of
efficient and flexible hybrid algorithms. The choice of
each algorithmic component is influenced by many
characteristics including the cardinality, dimensionality
and distribution of the data, computational cost and the
interaction components that might be used within a
larger workspace. These choices can be made
incrementally, so that users may employ intermediate
representations as they work with and explore the data.

Figure 1. A simple example of a data flow
network in HIVE. Synthetic input data is
processed by a force-directed placement (FDP)
routine while being viewed in a fisheye table.
The output of the FDP is fed into a 2D
scatterplot. The two visualisation components
are coordinated, so that selecting objects in one
view will highlight the corresponding objects in
the other.

HIVE can also assist the user by using a pre-

authored classification of data—based on cardinality and
dimensionality of data sets—and a corresponding
classification of available algorithmic components based
on the classes of input data set for which each
component is suited, and the class of data set it outputs.
This means that if a data file is loaded, and a
visualisation component selected, the system will use its
‘cookbook’ of algorithms to set up a number of
components to take the data file’s contents and create
data suitable for visualisation, e.g. reading in a large
high–dimensional data set and choosing an appropriate

dimensional reduction algorithm to create 2D data
suitable for a scatterplot.

While the system provides flexibility in the creation
of layout algorithms and data exploration, there is also a
requirement to be able to assess the quality of the layouts
produced. In some instances, a new layout algorithm
might produce a view of a data set in which there is no
discernable structure. However, this may or may not be
representative of the data and therefore we require some
means of determining how well inter-object distances in
the layout are preserved. In Buja et al’s XGvis software
[16], the user is able to experiment with different hard-
coded MDS algorithms. The software allows the user to
change the algorithmic parameters such as the
dimensionality of the output space, and to quantitatively
measure the effects of such changes on the quality of the
representation. Similar techniques for algorithmic
steering and profiling have been incorporated and given
a more interactive role within HIVE, as discussed in the
following sections.

3. Profiling modules

HIVE has been demonstrated to be an effective
environment within which to explore high dimensional
data sets. A palette of algorithmic components and
visualisation tools provides the user with several
disparate views of a data set and allows a number of
different aspects to be explored. Further insight is
supported via brushing between these views. The
framework is also suitable as an environment for the
design of novel hybrid algorithms. Novel combinations
of implemented modules may be experimented with, and
the extensible nature of the algorithmic palette permits
the simple addition of new components.

In addition to this, we propose that HIVE is a useful
tool for the profiling and evaluation of hybrid
algorithms. A number of HIVE modules have been
implemented to measure and display performance
characteristics of other HIVE modules. The inclusion of
such profiling modules permits algorithm evaluation to
be tightly and interactively coupled with the algorithms
being run. The same visual metaphors may be used in
linking together profiling components, and the decision
as to which properties to measure can be made and
altered at run-time. Profiling tools may also be linked to
existing visual modules, with their coordinated use
providing insight into data sets that would go unnoticed
in a sole visualisation. Examples of such coordination
are provided in section 3.

In this section, we introduce the profiling modules
implemented in HIVE.

3.1. Multiple runs module

In evaluating hybrid algorithms, ‘batch-runs’ of
algorithmic executions need to be performed.
Fundamental to such a system of algorithmic profiling is
a controller to coordinate the execution of each test run.

The Multiple Runs (MR) module fulfils this role. As all
modules in HIVE, the MR module interacts with other
components via a series of signals sent through
connected ports. MR has three output ports: a ‘data out’
port through which to pass the input data to algorithmic
components, a start trigger to activate the first module,
and an optional parameter port to provide a mechanism
for customising the conditions under which each test
should be run. For example, it is possible to customise
the use of an FDP component on each run by supplying
values for the number of iterations to perform, the level
of damping to apply to the model, and the values for
other constants used within the algorithm. It is necessary
to specify algorithmic conditions in such a manner,
rather than via interactive controls on each component,
so that a number of different conditions can be
experimented with during a batch job.

Such parameters are input, along with information
on number of runs and which datasets to use, in a text
entry field within the module. Series of commands are
entered in the form:

(DataFile,[NumRuns,<ModuleID,(parameters)>,<>…])

This input is parsed by the MR module, stripping

out parameter information and passing it to the modules
in the form of a series of (moduleID,(parameters)) tuples.
Each module receives the entire parameter list, and must
search it for the appropriate entry. On the termination of
an algorithm, the final module sends a signal to the MR’s
input port, and the MR begins the next run.

3.2. Clock

Run-time is an important criterion in the evaluation
of a layout algorithm. Regardless of the effectiveness of
a particular technique, excessively high run times may
render its use infeasible, or place a limit on the size of
data set which can be laid out within a time suitable for
interactive use. It is obviously also useful to be able to
compare algorithms’ run times against those of
competitor techniques.

To this end, a clock module has been defined with
which a developer may easily measure the run times of
one or more algorithmic components. Figure 2
illustrates how the clock may be used to measure the
time taken for individual stages of a hybrid model. One
clock module is connected to the first stage, and another
to the second. In the HIVE environment, it is simple to
use the clock to time a complete algorithm, by
connecting the first algorithmic component to the start
trigger and the final module to the stop trigger.

On completion, the run time is displayed on the
clock module and also written to a file, the name of
which may be specified within a text entry box.
Multiple algorithmic runs may therefore be executed,
with each clock appending to a separate results file each
time.

Figure 2. Clock modules connected to each
stage of a hybrid algorithm. HIVE’s extensibility
allows multiple instances of profiling modules
to be connected at run-time. In this screenshot,
HIVE is in ‘link’ mode, meaning that labelled
ports are displayed while other controls are
temporarily hidden.

3.3. Stress

In evaluating a layout algorithm, as well as
examining run times, it is of obvious importance to
consider the quality of layouts produced. Several
metrics exist for the assessment of layout quality [17, 18,
19], often based on the layout’s stress: the discrepancy
between layout distances and high dimensional
relationships. The stress-1 metric [17], for example, is
defined as in the equation below, where h represents
high-dimensional distance and l low-dimensional
(layout) distance:

()
�

�

<

<
−

ji
ij

ji
ijij

l

lh
2

2

 (1)

A stress module has been defined to perform such

evaluations. Taking from input ports a high dimensional
data set and a set of low-dimensional positions, the
above stress calculation may be performed. We choose
to receive data in this form, rather than sets of inter-
object distances for issues of space efficiency. The high
and low-dimensional distances are calculated on the fly
within the stress module. In common with the clock
module, a trigger port can be used to commence stress
calculation. A button is also supplied to give the
instruction to calculate the stress immediately. Although
redundant in batch-job execution, such functionality is
important to interactive exploratory analysis of data.

Calculation of stress is a computationally intensive
undertaking, often a more time-consuming process than
the algorithm itself. Although useful in assessing layout
quality, it may not be integral to the algorithmic process.
The time spent on stress calculations should not,
therefore, contribute to run time measurements. As such,
a ‘pause’ output port is supplied on the stress module.

Stress =

Any clock to which this port is connected will be
instructed to stop timing for the duration of stress
calculations, and the time spent on them will not
contribute to the measured run times.

Like the clock module, the stress component has a
text field to allow users to specify an output file to which
results should be written. Controls are also provided to
allow selection between several implemented stress
algorithms.

3.4. Shepard diagram

The Shepard diagram [2] is another tool that may be
used to determine the quality of an MDS solution. At its
most basic, it is a plot of the low dimensional (or layout)
distance between each pair of objects in the data set
against the corresponding high dimensional (or input)
distance for that pair. Should an MDS solution provide a
good representation of relationships within the high
dimensional space, the points in the Shepard diagram
will have a strong positive correlation with low deviation
from the 45 degree diagonal. Figure 3 illustrates a
Shepard diagram, where high dimensional distances are
plotted on the y-axis and layout distances along the x-
axis. Points that lie above the diagonal represent data
elements that are too close together in the generated
layout, while points that lie below the diagonal represent
those that have been positioned too far apart. It is clear
that points distant from the diagonal in such a plot would
represent pairs of objects that make a large contribution
to layout stress.

Figure 3. The Shepard diagram module. Each
point represents distances between a pair of
objects: high dimensional distances (y-axis) are
plotted against low dimensional layout
distances.

As with obtaining the stress of a layout, acquiring a
full Shepard diagram necessitates the calculation of the
distances between all pairs of elements of the data set,
and this can be very time consuming. To overcome this,
like the stress module, the Shepard diagram module

allows the user to specify the size of a random sample of
objects with which to produce the plot, of default sample
size �N. Brush and link functionality is also provided so
that location probing in the Shepard diagram can
highlight the corresponding data items represented in
other views.

The Shepard diagram has a long tradition of use in
MDS as a tool for the appraisal of layout quality.
Historically, MDS was performed by psychologists and
psychophysicists [19], taking as input experimental
subjects’ judgements of similarity between a set of
stimuli. As such, data sets tended to be small: at most a
few hundred objects. The Shepard diagram could
therefore comfortably cope with the ½N(N-1) distances
between N objects. In more recent times, such
techniques have been used for exploratory data analysis
of much larger data sets. It is not uncommon for a user
to explore a set of 100,000 objects or more. As such, the
Shepard diagram became a less useful tool, due to the
density of points required for such sets.

In an environment such as HIVE, however, the
provision of interactive tools allows us to find new uses
for such traditional tools. Zoom and pan controls, in
conjunction with sampling, can help alleviate the
usability problems encountered by overly dense plots.
Additionally, the interactive coordination of several plots
or views of data can promote understanding into data
that would not be possible with the solo techniques.

3.5. Chart

A general line chart tool has also been added to the
HIVE environment, and is illustrated in Figure 4.
Dependent and independent variables may be specified
via separate ports, with a line chart drawn dynamically as
values are received. Multiple data series may be
accommodated, with each measurement being assigned
to a series via parameters or interactively.

Although simple, such a tool has many practical
applications. For example, algorithmic characteristics
such as run time or stress can be graphed, allowing
comparisons to be made between various models or
algorithm stages. The chart can also be used
dynamically during algorithm execution, for example to
view the stress of a layout over time. Such usage has
been illustrated in Figure 4. The chart’s y-axis
represents layout stress, while the x-axis counts the
number of iterations performed. Such a graph could be
used in detecting situations where an iterative model has
become stuck in a local minimum. Functionality is also
provided to support the simple export of the chart as an
image file.

Figure 4. The Chart component being used in
conjunction with an FDP routine to display
stress per iteration. Note that stress initially
grows as energy is put into the system, before
dropping as the layout progressively improves.
The scatterplot visualisation shows the layout
after 158 iterations. Using the two views in
parallel, a user can determine whether the
layout is complete, or further processing is
required.

3.6. Coordination of profiling modules in HIVE

The previous sections have described isolated
instances of HIVE’s new profiling modules. The real
power of such techniques, however, comes in their
combination and interaction with existing components
within the HIVE environment. Histograms, fisheye
tables and scatterplots all have interactive functionality,
allowing coordination with the profiling components.

For example, the Shepard diagram is traditionally a
static presentation technique for qualitatively evaluating
the quality of a low-dimensional representation of high-
dimensional data. By incorporating it into the HIVE
framework, the plot can have as many instantiations as
necessary, with each instance connected to a different
part of the visualisation’s data flow. By connecting a
Shepard diagram to a scatterplot, we create an interactive
link between the two plots. Making a selection in the
Shepard diagram will therefore highlight those objects in
the scatterplot layout whose pairwise distances
correspond to the selected points. For example, in
Figure 5, we use Shepard diagrams to compare layouts
obtained from PCA and FDP. It is apparent that the
Shepard diagram of the PCA layout has a distinct
diagonal edge, below which no points are plotted. This
may be explained by the fact that PCA functions via a
projection of the high dimensional space onto a 2D
plane. In contrast, FDP has no linear constraints and
attempts to position objects to best preserve high-
dimensional relationships. This results in a Shepard
diagram where there are points both above and below the
diagonal, as well as the points that represent items
ideally placed in the plane.

Figure 5. The top two images show 2D layouts
of the Antarctica data (described in section
4.2.2) using linear PCA (left) and nonlinear FDP
(right). Below each layout is the associated
Shepard diagram. The PCA layout has no pair
of objects at a greater distance from each other
than in high-dimensional space. This is
confirmed by the fact that no objects appear
below the diagonal in the PCA’s Shepard
diagram.

Another implemented component that may be used

in interactive combination with the profiling modules is a
module for Voronoi tessellation. This module may be
used to partition a completed layout [20]. Each point is
contained by a convex polygon so that the portion of
space contained within the polygon is closer to that point
than any other. Clustering may then be performed by
finding contiguous groups of polygons where the density
of points is similar. The module may be used in
combination with profiling modules to detect clusters
that may benefit from closer examination.

In the following section, we provide more concrete
examples of the coordination of components with a
series of case studies.

4. Case studies

This section details several case studies, illustrating
the coordinated use of existing components with the
novel profiling modules within the HIVE environment.

4.1. Batch job of executions for algorithm
evaluation

The first case we will examine is the thorough
evaluation of a novel algorithm. Through the use of the
profiling modules described in the previous section, such
evaluation may be performed simply and in an intuitive
manner. The following describes the evaluation process
undertaken in the writing of [10]: a presentation of a
novel hybrid layout algorithm.

In performing such algorithmic profiling, a large
number of executions are necessary. Several models
may be evaluated on several different data sets of several
different sizes. In addition, results should be averaged
over numerous runs: an especially important
consideration in the case of iterative models such as that
proposed in [10], which can occasionally become stuck
in local minima. With several hundred executions
necessary for a thorough evaluation, then, it is clear that
an automated profiling process is a useful aid to the
designer. Figure 6 illustrates the configuration of
components required for such an evaluation. To avoid
describing the specific model in depth, details such as the
names of individual components have been omitted from
the figure.

Having built a hybrid algorithm (composed of the
modules shaded in yellow in Figure 6), we wish to
examine its performance in comparison with an
alternative technique. Profiling modules (grey) may be
added to the module configuration at the user’s
discretion. Here, we have elected to measure the run
time of two stages. We also measure stress at the
conclusion of stage 4. By specifying file names on each
of these components, separate output files are generated
by each, allowing the detail of performance
characteristics to be explored further in other
applications.

Figure 6. The yellow modules represent
different stages of a hybrid algorithm. The
Multiple Runs module coordinates a sequence
of executions, loading data and parameters into
each component. Charts graph run time over
data set size at various stages of the algorithm.
The bottom left chart shows run times under 3
separate sets of parameters for stage 3. Having
connected the various components and
provided instructions to the MR module, the
algorithm executions and chart plotting may
proceed unsupervised.

The MR module (top left) is provided with a list of
data files and parameter commands. It systematically
loads in each file, and passes the instructions for the
current execution to each algorithm component. The
MR module passes a start trigger into stage 1, and
receives another from the final stage to indicate that the

algorithm has terminated: the cue to reset all modules
and begin another run.

Finally, charts at the bottom of the figure display
experimental results. A test data collection has been
sampled to create data sets of varying size. The charts
graph run times against data set sizes under different
algorithmic conditions, with each line on the chart
representing a different condition. Each chart is
connected to a different clock module, and therefore
displays times taken by different algorithmic
components.

For example, the chart at the left hand side displays
the run times required by the third stage of the model.
Three separate approaches were experimented with for
this stage (as specified by the experimenter in the MR
module and passed to stage 3 via parameters), as
indicated by the 3 lines on the chart. We can deduce that
on small data sets, condition 1 executed the fastest,
whereas condition 2 becomes optimal as data size
increases.

Charts of this type formed the basis of the results
section of [10]. What could have been a laborious
evaluation procedure was undertaken via a simple,
unsupervised process. The algorithms could be left to
run overnight, with the generated charts being exported
in graphics format as they were created.

4.2. Exploratory analysis

This section demonstrates via two examples how the
profiling modules may be used interactively to further
understanding of a data set.

4.2.1. Synthetic data. In this example, we illustrate the
interactive combination of the Shepard diagram with
other HIVE visualisations. As previously mentioned,
brush-and-link coordination has been incorporated in the
Shepard diagram to allow interaction with other
components. For example, linking the Shepard diagram
and scatterplot views allows insights into the
relationships between quality of positioning and objects’
placement within the layout.

To illustrate the usefulness of this interactive
capability, we provide an example using a synthetic data
set representing a 3D cube. Such a data set is a useful
test case, as it is impossible to represent perfectly in a 2D
space, and no 2D projection of the data is much better or
worse than any other. To begin, we use PCA to obtain a
scatterplot layout (Figure 7a). Linear projection-based
layout techniques such as PCA, although fast, provide a
layout based upon global data properties. It is therefore
the case that certain local area may be especially poorly
represented. This example illustrates how interactive use
of the Shepard diagram component can help a user to
resolve inaccuracies in these areas, and thereby enhance
understanding of the structure of the data.

Figure 7. PCA layout and Shepard diagram
working together interactively to help build user
understanding of a data set. (a) The PCA
layout. (b) A Shepard diagram of the layout. A
selection is made of points corresponding to
distances in the layout that may benefit from
further analysis (highlighted region). (c) The
selection in the Shepard diagram is also
highlighted in the PCA layout. (d) A re-
projection of the selected points and their
immediate region confirms their
misrepresentation in the original layout.

The cube structure is clearly visible from Figure 7a,
coloured dark to light from top to bottom. In Figure 7b,
we show a Shepard diagram of the layout generated by
PCA. Each point in the Shepard diagram represents a
distance between a pair of objects. In Figure 7b, we
have highlighted a section of points in the upper left of
the layout: those points corresponding to the
relationships worst represented in the PCA layout.
Figure 7c shows the how this selection affects the
scatterplot display. The linking between views informs
us that the objects worst represented in the layout appear
in the centre. These objects represent points at opposite
corners of the cube, forced together in the projected
layout.

Having identified such a poorly represented area of
the layout, it may be desirable to extract the subset of
objects in that region and lay them out separately. In
doing so, we remove the influence of the full data set,
and examine only relationships between the objects in
that subset. The selected region was therefore fed into
another PCA module and re-projected, yielding the
layout shown in Figure 7d. It can be seen that the inter-
object distances are now more accurate; the two corners
of the cube have been separated. As a quantitative
measure of the quality of the layouts, the stress of the full

layout was measured and compared to that of the sub-
layout. As expected the stress of the sub-layout was
much less than that of the global layout: 0.001 compared
to 0.149.

4.2.2. Antarctic data set. The above scenario
demonstrated, via a simple example on synthetic data,
how a profiling component could be used interactively in
combination with other views to encourage further
exploration of a data set. We now provide a similar
example to illustrate the usefulness of such techniques in
a real-world setting. The data were gathered with a
remote sensor probe during an investigation into carbon
cycling in Antarctic lakes. They represent a number of
properties measured over time, such as water
temperature and the level of photosynthetically active
radiation.

The data set was initially fed into a PCA module,
with the Shepard diagram used to identify a local region
of items that were potentially badly placed. In a manner
similar to the previous example, points far away from the
diagonal trend were selected in the Shepard diagram,
which resulted in the contributing items being
highlighted in the connected PCA layout. The leftmost
two components of Figure 8 illustrate the scatterplot and
Shepard diagram following this selection.

Having identified these poorly represented objects,
we may observe that they appear to be localised to a
specific region in the top-right of the layout. We may
hypothesise that this area could represent a distinct
cluster within the data, which has not been made
apparent by the PCA layout. A Voronoi component may
be employed to gain a clearer understanding of the
partitions within the data. The output from PCA is fed
into a Voronoi component, which identifies five separate
clusters in the layout.

The Voronoi component is illustrated in the centre
of Figure 8. Five clusters were found, and shown in
different colours. Outlying objects not identified as
belonging to a specific cluster were coloured grey. It
may be seen that the objects highlighted in the PCA
layout all belong to the yellow cluster. We select this
subset and overlay the Voronoi tessellation.

Having now identified a cluster of the data within
which certain distances are poorly represented, we may
extract it and apply further processing to determine why
this is so. Through connecting to the Voronoi output
port, another component may take as input the selected
cluster. The figure illustrates how we pass the cluster to
an FDP routine. This nonlinear technique is able to
discover further detail that PCA could not identify: two
clear sub-clusters are found within the selected data.

The PCA layout had clearly failed to adequately
separate these two sub-clusters, which explains the large
discrepancy between high and low dimensional distances
observed from the Shepard diagram. The measures
derived from the stress component confirm the findings,
with the PCA layout giving 0.031 and the FDP layout of
the extracted cluster giving 0.025.

Figure 8. Various algorithmic and visualisation components working together in a coordinated
environment. A PCA layout is made, and the associated Shepard diagram used to detect a local area
that might be better represented if considered separately. A Voronoi tessellation component is used to
cluster the data, and extract the cluster containing the previously identified local area (the yellow
objects in the central component). This cluster is processed with an FDP routine, which uncovers 2
sub-clusters that we had not previously been able to identify.

Having discovered the presence of two sub-clusters,
we may be interested in seeing how they were depicted
in the original PCA layout. Comparing the FDP layout
and the Voronoi display, it may seem as if the smaller of
the two sub-clusters appears on the left of the yellow
Voronoi region, with the larger C-shaped sub-cluster
appearing on the right. Had the two images been
produced independently, one may have made this
assumption. HIVE’s interactive, coordinated view
framework, however, allows users to compare the
location of the same objects in different layouts. Figure
9 shows the selected C-shaped sub-cluster in the FDP
layout and the resultant highlighting of the
corresponding objects in the PCA layout. It may be seen
that the division between the two sub-clusters actually
occurs in the top-right corner of the PCA layout.

The final stage of processing undertaken in Figure 8
is the creation of the Shepard diagram of the FDP layout,
shown in the top right corner. In tandem with the stress
calculations, this allows a visual comparison of the
degree to which the PCA and FDP layouts preserved
high-dimensional relationships.

Figure 9. The left image shows the FDP layout
of a selected Voronoi cluster within a PCA
layout. On the right is the original PCA layout.
Selecting the C-shaped sub-cluster on the left
highlights the corresponding objects in the PCA
layout, helping us to understand the overlap or
separation of sub-clusters in the PCA.

The Shepard diagram resulting from the PCA layout
exhibits a ‘cleaner’ line on the 45 degree diagonal, as we
would expect from the discussion in section 3.6. It is the
FDP’s Shepard diagram, however, that appears to show
less deviation from the diagonal overall. This is perhaps

better illustrated in Figure 10, where the 45 degree
diagonal line has been drawn.

It may be noted that two separate clusters of points
exist on the Shepard diagram of the FDP layout. Again,
an initial reaction may be to assume that each of these
corresponds to one of the sub-clusters identified in the
FDP layout. This is not the case, although the
‘clustering’ of the Shepard diagram is due to the
presence of two clusters in the FDP layout. The Shepard
diagram plots distances, and therefore the two apparent
distinct groups of points on the Shepard diagram
correspond to distinct ranges of distances within the
layout. The lower of the two groups refers to pairwise
distances between objects in the same sub-cluster,
whereas the higher group represents inter-cluster pairs.

These examples have illustrated the advantages of
HIVE’s multi-view framework over single static layouts.
The provision of profiling modules provides further
insight into data sets. Linking and interactive
coordination between such views encourage further
exploration and leads to greater understanding.

Figure 10. Shepard diagrams based upon the
PCA layout of the full data set (left) and the FDP
layout of the selected cluster. Red lines are
drawn at 45 degrees to help detect the extent to
which points deviate from this diagonal.

5. Future work

In this section, we examine some areas of related
work that may lead to interesting future avenues of
research.

We are currently investigating the incorporation of
new analysis tools in HIVE. The force-directed
placement algorithms developed in HIVE reduce the
dimensionality of the data so that they can be plotted in
2D space. However, we generally rely upon the human
visual system to pick out clusters and other interesting
patterns; such structure is not formally classified. These
perceptual skills are powerful but have limits, and so we
are currently working upon improving the Voronoi–
based clustering in layouts, and developing ways of
determining the validity of identified clusters.

Due to HIVE’s architecture individual clusters may
be extracted from one view and piped through further
transformations and into other views. It would be
interesting to assess the homogeneity of these clusters

and also ascertain which individual data elements
contribute most to layout stress and error.

Functionality originally devised for algorithmic
components can also extend to these profiling modules.
For example, in [6] it was described how HIVE could
automatically generate a recommended hybrid algorithm
based upon input data and a user’s selection of
visualisation components. The generated algorithm is
part of a ‘cookbook’, where each ‘recipe’ is a set of
connected components, selected to provide an efficient
solution by considering dimensionality and cardinality of
the input data.

While such automated algorithm generation may
make it easier for users unfamiliar with the algorithms to
build visualisation applications, the purpose of
algorithmic parameters would remain unclear. For
example, force-directed placement algorithms typically
involve constants for properties such as damping and
tension, and a module in HIVE may allow user
specification of such constants. In such cases, analysis
tools could also be automatically generated at
appropriate locations to aid the user’s understanding of
the effects of these parameters upon algorithm
performance. This feedback might enhance the user’s
comprehension of the solutions generated and, in turn,
encourage further experimentation and deeper
understanding.

Another area that might be of interest is exploring
the impact made by algorithmic components upon
system memory. It may aid designers to have a module
within HIVE that can measure and visualise this.

6. Conclusions

We have presented a number of components within
the HIVE system that are used to profile, understand and
control other HIVE components. We outlined their
construction, and gave examples of their use and utility.
One of the advantages of bringing such components into
a visualisation system is to support the process of
understanding the strengths, weaknesses and
interdependencies of algorithmic components. Through
techniques such as recording and displaying the
performance of ongoing runs, and linking layouts from
complementary algorithms and from intermediate stages,
we suggest that designers and users can explore not only
the data but also the ways that the system represents,
transforms and presents that data.

More generally, this work explores the way that
making a visualisation that is customised to one’s data
and interests, and which takes advantage of a palette of
algorithmic components, can be a complex task—a task
that may be aided by modern tools for interaction and
visualisation. It would be frustrating and limiting for
designers and for users if powerful tools for analysis and
understanding data were themselves difficult to analyse
and understand. Therefore we suggest that the use of
visualisation for visualisation – in the form of well-
designed interaction with the components, processes and

parameters of a visualisation system – may afford deeper
insight into the visualised information itself.

Acknowledgements

We thank Stefan Rennick Egglestone and Chris
Greenhalgh (U. Nottingham) for the Antarctic data.

References

[1] Warren Torgerson. Multidimensional scaling: I. Theory
and method. Psychometrika, 17, 401-419. 1952.

[2] Roger Shepard. The analysis of proximities:
multidimensional scaling with an unknown distance
function. Psychometrika, 27, 2, 125-140. 1962.

[3] Matthew Chalmers. A Linear Iteration Time Layout
Algorithm for Visualising High-Dimensional Data. In
Proceedings of IEEE Visualization 1996, San Francisco,
127-132. 1996.

[4] Tuevo Kohonen, Kaski, S., Lagus, K., Salojrvi, J.,
Paatero, V., Saarela, A. Self Organization of a massive
document collection. IEEE Transaction Neural Networks,
11, 3, 574-585. 2000.

[5] Alistair Morrison, Greg Ross and Matthew Chalmers. Fast
Multidimensional Scaling through Sampling, Springs and
Interpolation. Information Visualization 2, 1. 68-77. 2003.

[6] Greg Ross and Matthew Chalmers. A visual workspace
for constructing hybrid multidimensional scaling
algorithms and coordinating multiple views. Information
Visualisation 2, 4. 247-257. 2003.

[7] Peter Eades. A heuristic for graph drawing. Congressus
Numerantium 42. 1984.

[8] Mu-Chun Su and Hsiao-Te Chang. Fast Self-Organizing
Feature Map Algorithm. IEEE Transactions on Neural
Networks, 11, 3, 721-733. 2000.

[9] Dominique Brodbeck and Luc Girardin. Combining
Topological Clustering and Multidimensional Scaling for
Visualising Large Data Sets. Unpublished paper (accepted
for, but not published in, Proeedings IEEE Information
Visualization 1998).

[10] Alistair Morrison and Matthew Chalmers. M. Improving
hybrid MDS with pivot-based searching. To appear in
Information Visualization 3, 2. 2004.

[11] Chris North and Ben Shneiderman. Snap-together
visualization: can users construct and operate coordinated
visualizations? International Journal of Human-Computer
Studies 53, 715-739. 2000.

[12] Nadia Boukhelifa and Peter Rodgers. A Model and
Software System for Coordinated and Multiple Views in
Exploratory Visualization. Information Visualisation 2, 4.
258-269. 2004.

[13] Craig Upson, Thomas Faulhaber, David Kamens, David
Laidlaw, David Schlegel, Jeffrey Vroom, Robert Gurwitz
and Andries Van Dam. The application visualization
system: a computational environment for scientific
visualization. IEEE Computer Graphics and Applications.
30-42. 1989.

[14] Paul Haeberli. ConMan: a visual programming language
for interactive graphics. Computer Graphics, 22, 4, 103-
111. 1988.

[15] Ramana Rao and Stuart Card. The Table Lens: Merging
Graphical and Symbolic Representations in an Interactive
Focus+Context Visualization for Tabular Information. In
Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems. ACM, April 1994.

[16] Andreas Buja, Deborah Swayne, Michael Littman and
Nathaniel Dean. XGvis: Interactive data visualization with
multidimensional scaling. Under review Journal of
Computational and Graphical Statistics. 1998.

[17] Joseph Kruskal, Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis, Psychometrika,
29, 1-27. 1964.

[18] Jonathan Cohen. Drawing graphs to convey proximity: an
incremental arrangement method. ACM Transactions on
Human-Computer Interaction 1997, 4, 3. 197-229. 1997

[19] I Borg, P. J. Groenen, Modern Multidimensional Scaling:
Theory and Applications, Springer. 1997.

[20] A. Okabe, B. Boots, K. Sugihara, S.N. Chiu. Spatial
Tessellations. Concepts and Applications of Voronoi
Diagrams. Wiley, Chichester, second edition, 2000.

