

Domino: Exploring Mobile Collaborative Software
Adaptation

Marek Bell, Malcolm Hall, Matthew Chalmers, Phil Gray and Barry Brown

Department of Computing Science
University of Glasgow

Glasgow, UK

{marek, mh, matthew, pdg, barry}@dcs.gla.ac.uk

Abstract. Social Proximity Applications (SPAs) are a promising new area for
ubicomp software that exploits the everyday changes in the proximity of mobile
users. While a number of applications facilitate simple file sharing between co–
present users, this paper explores opportunities for recommending and sharing
software between users. We describe an architecture that allows the recommen-
dation of new system components from systems with similar histories of use.
Software components and usage histories are exchanged between mobile users
who are in proximity with each other. We apply this architecture in a mobile
strategy game in which players adapt and upgrade their game using components
from other players, progressing through the game through sharing tools and his-
tory. More broadly, we discuss the general application of this technique as well
as the security and privacy challenges to such an approach.

1 Introduction

Discovering and learning about new software tools and customisations are important
parts of using modern computer systems. However, attempts to support the process of
software change and adaptation have generally had limited success. Most users still
rely on browsing websites, reading magazines or conversing with friends and col-
leagues, to obtain new software. Most frequently, users generally call upon the expe-
rience of others to find more efficient or enjoyable systems and practices [16, 17, 19].
There are key advantages to learning about software from others. One can reduce the
time spent learning about software that might not be applicable to one’s actual activi-
ties and interests. Instead, one can concentrate on what colleagues and friends in simi-
lar contexts found to be useful or interesting [8]. Applications, recommended by ex-
pert users, are also likely to be worth the time and effort it takes to investigate and
learn, and are likely to fit smoothly into the user’s current pattern of use. Through this
social process, many members of a community of use benefit from others’ unique
areas of expertise and experience.

One example of this is finding new plug-ins that are both useful and compatible
with the current configuration of one’s web browser or email tool. Relying on com-
munity and expert knowledge aids in avoiding what was called, in a recent ACM
Queue article, the ‘plug-in hell’ of incompatible plug-ins with complex patterns of

interdependence and joint use [4]. Such levels of complexity may become more likely
in the future if we see more applications such as the 1000 plug-in system that Birsan
reports on in [4].

System adaptation and evolution are especially important as the use of computers
expands beyond work activities focused on pre-planned tasks, into leisure and domes-
tic life. Indeed, users’ modification (or ‘modding’) of complex software structures is
relatively common within at least one leisure area, games—although the skill thresh-
old required for modding is high. Ubicomp applied to leisure and domestic life sug-
gests even more variety and dynamics of peoples’ activities, contexts and preferences,
making it especially hard for the designer to foresee all possible functions and mod-
ules, and their transitions, combinations and uses. Instead of relying on the devel-
oper’s foresight, incremental adaptation and ongoing evolution under the control of
the users may be more appropriate [11, 25].

The Domino architecture actively supports incremental adaptation and ongoing
evolution of ubicomp systems. In effect, Domino changes a system’s structure on the
basis of the patterns of users’ activity. It supports each user in finding out about new
software modules through a context-specific collaborative filtering algorithm, and it
integrates and interconnects new modules by analysing data on past use. Domino al-
lows software modules to be automatically recommended, integrated and run, with
user control over adaptation maintained through acceptance of recommendations
rather than through manual search, choice and interconnection. One way of looking at
Domino is to see it as a means of broadening access to and lowering the skill thresh-
old needed for system adaptation—not just for games, but for many mobile applica-
tions. Our overall approach is exemplified by the following scenario. James enjoys
dining out and going to the theatre, and he frequently travels into the city centre by
bus. On his phone is a Domino-powered application consisting of a restaurant guide, a
list of upcoming theatre shows and a map of bus routes. As he walks down the street,
his phone discovers another Domino system carried by someone else nearby. The two
systems connect and transfer data between each other. Later in the evening, he notices
that he has a recommendation on his phone for a module displaying bus time sched-
ules. This module is clearly useful to him and complements his map of bus routes
perfectly, and so he accepts the recommendation. Domino installs the module, and
James soon makes use of it to plan when to make his journey home. In summary,
while James simply went about his day as normal, his phone discovered another
Domino system, shared data with it, generated module recommendations, prepared
new modules, and presented them for his approval before installing and running them.
Most of this adaptation was carried out with minimal explicit user interaction, as
James only had to handle the choice of which recommendations, if any, to accept.

In the next sections we summarise related research and then describe the details of
our implementation work, set within the Equator IRC (www.equator.ac.uk). We de-
scribe Domino’s application model, involving a modular architecture, the logging of
modules’ use and configuration, the transmission of modules between mobile com-
puters and the dynamic integration of new modules into a user’s running configura-
tion, and we discuss issues of security and privacy. We report on initial experiments
with a prototype application, a strategy game for phones and PDAs. We discuss our
ongoing work and issues of generalisation and evaluation of such system models and
applications.

2 Related Work

One of the early landmarks in the study of collaboration in software adaptation cen-
tred on the Buttons system [18], in which modules were shared via email, and could
be activated individually within the Xerox Lisp desktop environment. Users could
make small changes to buttons, generally by setting parameters via pop-up menus, but
deeper changes and integration of buttons were feasible only for experienced pro-
grammers. Instead, MacLean et al. relied on a ‘tailoring culture’ in which changes
were made by experts and then spread among the community. More broadly, this tai-
loring culture has been supported by tools such as Answer Garden [1], which allowed
users to help each other through creating a knowledge base of information about sys-
tems and organisation processes. These tools supported the creation of an ‘organisa-
tional memory’ of previously implicit knowledge.

We have also drawn from recent work in ubicomp, in particular recombinant com-
puting and Speakeasy [20]. This relies on three key elements: a small set of fixed do-
main-independent interfaces that modules can use to initiate communication, mobile
code that allows dynamic extension of functionality to meet possibly unforeseen re-
quirements, and ‘user-in-the-loop’ interaction that accepts that users will be the ulti-
mate arbiters with regard to when and whether an interaction among compatible enti-
ties occurs. Speakeasy relies on contextual metadata, in the form of predefined
name/value pairs, which are used in describing the semantics of each component to a
potential user. Such descriptions also support users’ editing of task templates, chang-
ing or setting parameters, much as in Buttons. Speakeasy focuses on supporting users
in handling a relatively small number of components associated with devices and re-
lated services in the local context, filtering on the basis of known locations, owners
and other contextual features, but “information filtering was only static—components
did not update their contextual information, and the organisation of components was
not responsive to the user's current context”. Newman et al. also stated that “a more
dynamic approach to information filtering, in which the organisation presented to the
user is tailored to the user's location, history, and tasks, could prove useful”.

Another ubicomp system that supports adaptation is Jigsaw [14], but it may be bet-
ter described as adaptable rather than adaptive, to use the distinction of Findlater and
McGrenere [12]. A graphical editor allowed a user to choose from a small set of com-
ponents based on JavaBeans, and configure to form simple data-flows. Like Speak-
easy, Jigsaw focused on a relatively constrained set of devices and transformations
particular to one location—in this case, a home. When a component had several out-
puts (or inputs), the user made an explicit choice as to what to interconnect. Users
were given little support for knowing what might be a useful component to choose or
connection to make, but successful connections between components were confirmed
through ‘snap-together’ motion and audio feedback. Findlater and McGrenere focused
on relatively ‘shallow’ system changes in [12], i.e. on menu items rather than deep
system structure, but they offered a useful comparison and overview of the issues
surrounding static, adaptable and adaptive interfaces. They carried out an experiment
comparing a static interface with an adaptable one, in which a user could manually
reorder menu items, and an adaptive interface, in which the system reordered items
according to a predictable but simple algorithm based on the user’s most frequently

and recently used items. Building on the premise that personalisation is needed in the
face of the growing size and dynamism of the sets of functions in modern applica-
tions, and citing [27], they suggest that “adaptable and adaptive interaction techniques
are likely the only scalable approaches to personalisation.” Their study found over-
whelming support for personalisation, and more of their experimental subjects pre-
ferred a manually adaptable menu to an automatically adaptive one. However, they
found that users who favoured the adaptive system expressed very strong support for
it. This echoes earlier adaptive systems work such as [7], which suggested “collabora-
tive dialogues with the user” might help strengthen adaptive systems. Their sugges-
tion was that the best way to satisfy a wide range of users may be the under-explored
area of ‘mixed-initiative’ interfaces, i.e. combining adaptable and adaptive elements
so that the system and the user both control some of the interaction.

Persson et al. [22] created a mobile phone application, DigiDress, which transmits
profiles to other users as a digital expression of oneself. It was able to self-replicate
and spread among phones using Bluetooth and infrared connections. The application
was able to spread through a population of users in a viral manner, similar to epi-
demic algorithms for replicated database maintenance [9]. Persson et al. stated that
this distribution technique was “critical to the success” of the application as such an
epidemic spread of the application allowed for an extremely quick uptake.

3. System Overview

The current version of Domino runs on Windows systems (Desktop and PocketPC)
that support WiFi. We have tested Domino on various brands of PocketPC devices
including HP iPAQ hx2750s with built in WiFi, Qtek S100 phones with a WiFi SD
card, and O2 XDA IIs phones with built in WiFi. Domino is also capable of running
on desktop machines, and on a wireless or a wired Ethernet connection.

Each instance of the Domino system consists of three distinct parts: handling
communication with peers; monitoring, logging and recommending module use; and
dynamically installing, loading and executing new modules. We refer to the items that
Domino exchanges with peers and dynamically loads and installs as modules. A mod-
ule consists of a group of .NET classes that are stored in a DLL (Dynamic Link Li-
brary) that provides a convenient package for transporting the module from one sys-
tem to another. Each Domino system continually monitors and logs what combination
of modules it is running. When one Domino system discovers another, the two begin
exchanging logs of usage history. This exchange allows each system to compare its
history with those of others, in order to create recommendations about which new
modules a user may be interested in. Recommended modules are then transferred in
DLL format between the systems. Recommendations that the user accepts are dy-
namically installed, loaded and executed by Domino. This constant discovery and
installation of new modules at runtime allows a Domino system to adapt and grow
continually around a user’s usage habits.

Domino systems continually broadcast their existence over their local network
connections in order that they may quickly become aware of any nearby peers. We
use local network connections, mainly ad hoc, rather than long distance connections

such as GPRS and UMTS. Firstly, local connections offer the possibility of filtering
relevance by location. That is to say, that those geographically proximate to a user
may potentially have software components more relevant to a particular user—in that
we spend much of our time in close proximity with friends and work colleagues.

Moreover, WiFi and Bluetooth are currently free to use whilst, for mobile devices,
longer-range connections are expensive if large amounts of data are to be exchanged.
Furthermore, local WiFi connections offer significant bandwidth and speed, important
since Domino needs to transfer large amounts of data. Finally, by using only local
connections rather than public phone and WiFi networks, we strengthen privacy, in
that no personal data about users is ever sent through a third party. If connections
such as 3G improve in the future then it may become prudent to use them, as they
would greatly increase the population of available peers from which information can
be cultivated—but only with the addition of a privacy system offering a suitable de-
gree of anonymity for users interacting with each other, to mask personal data such as
phone numbers.

Awareness of peers is critical to Domino, and having a variety of up-to-date log
data from these peers is key to the recommendation system’s performance. When
connected to a network, be it fixed or wireless, each Domino system repeatedly sends
out packets containing an IP address and port number on which it can accept connec-
tions from other Domino systems. This allows any other Domino systems on the same
network to discover, connect to, and request and receive history data and modules
quickly from other peers. In order to maximise opportunities for encounter, peers con-
tinually attempt to meet on a certain network, and will consistently switch to one ap-
propriate network. Domino systems running on devices with wireless connectivity
actively seek out infrastructure mode networks and connect to them whenever possi-
ble. When no networks are available, Domino switches to its own ad hoc network.
Since most standard wireless drivers may attempt connections to the nearest network
and interrupt the user with a “New Network Found” notification window when such a
connection happens, we created a custom wireless driver that allows the system to
‘lock on’ to a chosen network SSID until explicitly directed to switch to another.
These features allow Domino systems to contact each other even when no 802.11
infrastructure mode networks are present, while still permitting users to use infra-
structure access points, i.e. hotspots, to connect to the Internet as they normally
would. In our trials we found our custom wireless driver code was extremely quick in
carrying out the required switching between networks and network modes. Typical
times involved with Domino’s 802.11 connections are as follows:

• Switching between infrastructure mode and ad hoc mode: 1ms
• Associating with an infrastructure access point: 3s
• Time to acquire IP address via DHCP for infrastructure: 5s
• Time to set IP address for ad hoc: 3s
• Discovering a peer after joining a network: 1s

The DHCP time for infrastructure varies strongly with the quality of signal to the

access point and the number of users on the network. When in ad hoc mode we assign
static IP addresses, as we found automatic private addressing to be slow and unreli-
able. It should be noted that the above times are taken from the moment a Domino

system makes the decision to switch to another network. In our code we typically
make this decision after trying but failing to reconnect to the previous network four
times with a period of 250ms between each attempt. Thus, the effective total duration
for switching from one infrastructure network to another is typically 9s ±5s.

This ‘network discovery followed by service discovery’ approach has advantages
over IP-based discovery protocols such as ZeroConf, which only provide the latter
service. Searching for other networks and discovering new clients continues even
while connected and transmitting data over a network. This behaviour results in
nearby Domino systems being able to locate each other in most situations. Indeed,
unless the network card is required to be exclusively locked to another application, a
Domino system is likely to locate another nearby in a matter of seconds.

The UDP packet that each Domino system broadcasts every second holds an IP
address, a port number and a unique ID for the device. In order to protect a Domino
user’s privacy, his or her own username, actual device ID or MAC address are never
used as identifiers in any of the data transmitted over the network. Instead, each user
can choose one of two types of anonymous ID. Firstly, when Domino is initially run
on a system, a random number can be generated and permanently stored on the device
to be used as the ID in all subsequent Domino transactions. As the ID is randomly
generated the user’s anonymity is preserved. The main advantage of this technique is
that if two or more sets of data are exchanged with a peer at different times then the
receiver, although not able to identify the actual user, will be able to identify that the
data comes from the same source and so will subsequently be able to determine more
exact recommendation weightings for the entries. For example, if a new set of data is
received and shows a moderate similarity to the current Domino user, the likelihood
of it being recommended would be high. However, if it was found that previous data
had been received from this user in the past, in addition to this new set, the chance of
recommendation could be significantly higher.

The alternative ID that can be used is simply a random number generated for each
transaction with a peer. Whilst this technique is the most efficient at protecting the
originator’s identity, it does result in it being impossible to determine if two different
data sets came from the same source. However, the recommendation system mainly
relies on finding similarities within short windows and, as these windows are com-
monly far smaller than any set of data transferred in a typical Domino transaction, this
method actually has little impact on the quality of the overall recommendations.

When another Domino system receives the UDP packet broadcast by another, it
can use the information contained therein to act as a client and create a TCP connec-
tion to the advertised IP address and port. Thus, the systems temporarily assume the
traditional client/server roles. The most commonly used requests in our systems so far
are to list the users for whom one has history data, to send the N most recent history
entries for user X, and to send N history entries starting from the Mth most recent en-
try for user X. These three request types allow a client to identify which histories are
available on the server, to begin obtaining the most recent history data and then to
continue to gather more data as time allows. As connections can be lost at any time, a
request generally consists of a single message, and we parse incoming streams so that
we can make use of most of the data received up to the point when the connection was
lost. As all connections are threaded and handled separately, each Domino system can
act as a server and a client simultaneously. Indeed, this is the typical behaviour for

Domino systems, as they will normally discover each other at approximately the same
time.

The recommendation subsystem employs a collaborative filtering algorithm based
on that of Recer [5] in order to recommend new modules for a Domino system. It also
logs all the information required to generate such recommendations, and trades usage
data with peer recommenders on other devices. Whenever a module is activated or
deactivated, the entire configuration—that is, the set of identifiers of all running mod-
ules—is logged to the history database. It is by scanning through this logged history
of other users’ data and searching for sections that are similar to the current user’s
current module configuration, i.e. the current ‘context’, that recommendations can be
generated. Matching in this context-specific way distinguishes the collaborative filter-
ing algorithm from most others, which tend to match people on the basis of all the
data logged for each user rather than attempting to concentrate on specific windows of
history data that are most likely to relevant.

Figure 1: Recommendations for user A are taken by finding past occurrences
of the modules in A’s current context, and then finding which other modules

were most frequently used at those times.

When similar, but not exactly matching, history sections are found, the modules
not in the current context are tallied, ranked and delivered as recommendations (Fig-
ure 1). New recommendations are generated whenever a module is activated or deac-
tivated, as these changes alter the current context of the user and so may alter the rec-
ommendation results—even if no new history data has been created in the interim.
Recommendations are also generated when new history data is received from another
Domino system, as this is likely to provide novel module recommendations.

Each Domino system can carry not only its own user’s history but also the histories
of many other users. The recommendation system periodically analyses the similarity
between the owner’s history and all other cached histories. It identifies the most simi-
lar histories in terms of overlap in module usage, and stores the IDs associated with
their owners. As the more similar users are likely to provide the most relevant rec-
ommendations, similar users’ histories are the last to be thrown out when storage
space is low and the first to be requested from other devices when they meet. The
similarity comparisons are carried out as an average of matches per history entry since
a basic overlap would unfairly favour longer histories.

4 The Spread of Modules and Data

The transfer of history data and modules when Domino clients meet leads to con-
trolled diffusion that is inspired by the epidemic algorithms of Demers et al. [9].
Popular modules are quickly spread throughout the community, while modules that
fulfil more specific needs spread more slowly but are likely eventually to locate a
receptive audience because of history-based context matching and the use of ‘wanted
lists’ to find required modules.

Once a module recommendation is received, it is the role of the adaptation compo-
nent to seek and obtain this new module and, subject to user acceptance, dynamically
load it into the running configuration. Due to the inherent unreliability of ad hoc con-
nections, it cannot be guaranteed that the Domino system that was the source of the
recommendation will still be available to service a subsequent module transfer re-
quest. This is one of the reasons why Domino maintains a ‘wanted module list’.

Each Domino system supports FTP, for receiving modules and servicing requests.
Once the DLL containing a module is received, the adaptation component is trig-
gered. First, it uses reflection over the DLL to obtain the module’s root class, which
implements a simple interface, the Domino Module Interface (DMI). As well as basic
start, stop and pause methods, the DMI contains methods for querying and modifying
the module’s dependencies and dependants, and a method to expose what types of
modules it can support. During development, the programmer must specify the mini-
mal set of modules it is dependent on for successful execution. Since dependencies
are defined as type name strings, modules can support multiple dependencies accord-
ing to the class or interface types its DMI-implementing class inherits from or imple-
ments.

Due to the generic nature of the system model, when a module is received there is
no predetermined place for it in the system. In the simplest case, the new module can
query the Domino system’s running modules to find ones that satisfy its dependen-
cies, by analysing their classes and the interfaces they implement. However, a prob-
lem arises when multiple satisfactory modules are found. For example, if there are
two map viewers running (i.e. two instances of the same map viewer class), each of
which could support a new map layer module, which viewer should the new module
be connected to? To resolve such ambiguities, we make a second use of the history
data and the recommendation algorithm. By using the new recommended module as
the ‘context’, we can obtain a ranked list of modules previously used in conjunction
with it, to determine which is the most likely target. For example, imagine the case
where a new ‘pollution’ layer module is to be added to a system that has two existing
map viewers running, one with a traffic layer and the other with a restaurant layer. By
using this technique it becomes possible to determine that the traffic and pollution
layers are used in conjunction more often than the pollution and restaurant layer.
Thus, Domino would connect the new pollution layer to the viewer that has the traffic
layer, where it is likely to be of most value. Alternatively, when starting up a new
module, one or more of its dependencies may not be matched. If the required module
is available on the system, then a new instance of it can be started up-generating a
new check for dependencies and so forth. However, if the required module is not
available on the system, the adaptation process for the new module is suspended, and

the module is added to the wanted list. The user is informed, and can either drop the
recommendation or wait until the wanted module is discovered.

5 Security

Security is a serious problem for any system that uses mobile code which moves
between different devices, and it has been an important focus of our own and others’
research, e.g. [2], [21], [23], [24]. One particular threat is so called ‘sleeper viruses’
that act as valid and useful modules for a period of time, become accepted in a com-
munity, and then after an incubation period ‘turn bad’ and start to act as damaging
viruses.

Currently, one of the most widely used techniques for deciding which applications
to trust is that of signing, in which a trusted authority analyses each possible applica-
tion or module, and decides whether it is harmful or not. Those that are determined to
be non-harmful are signed with a secure key that end-clients know they can trust. In
theory this can inhibit harmful applications from spreading to many machines, how-
ever most implementations permit a user to decide to force an unsigned module or
application to run, allowing dangerous code to spread regardless of its lack of authori-
sation.

Whilst employing signing for Domino would provide an almost complete solution
to security concerns, there are severe disadvantages that have, so far, stopped us from
implementing it. Firstly, one of Domino’s main strengths is that it allows for an ex-
tremely open community where anyone can contribute a new module or amend an
existing one. In an environment where each module had to be signed a large number
of users would decline to create new modules, as those modules would then have to
go through the signing process. As this would be likely to involve some cost (in terms
of money or time for developers) this would further deter potential developers from
contributing to the community. Furthermore, forcing each module to go through a
central location where it was signed would negate the strength of the epidemic spread-
ing Domino supports. There would be little or no reason to provide epidemic spread-
ing if one source had access to every possible module in the community and could
therefore, in theory, simply distribute them all from one central location.

A second possible solution is to create a sandbox environment for both the entire
Domino environment running on a device and for each individual module within that
environment. Indeed, as Domino is coded in the .NET language it already runs
through the CLR (Common Language Runtime)—basically a virtual machine. It is
extremely easy, and fully supported in the .NET API, to restrict any .NET application
from having access to a part of or the entirety of the rest of the operating system. Fur-
thermore, as every Domino module must adhere to an interface it would be a simple
matter to get them to communicate through a mediator rather than directly with one
another. Such a mediator could ensure that one module did not have the opportunity
to damage another.

Another possible solution is to use a permission–based model, in a manner similar
to the Java language and to most modern operating systems. For example, if a Dom-
ino module wanted to access a file on the local device, it would first have to ask per-

mission from the user who could deny, accept once or accept forever the module’s
request. Whilst this method is employed by many languages that run on virtual ma-
chines, it would be likely to be too intrusive to users in a Domino environment. Previ-
ously, this method has usually been used where the number of new modules or appli-
cations is relatively low, and so the user is required to intervene on an infrequent ba-
sis. In a typical Domino system there can be an extremely large number of modules
running at any one time, and requiring the user to intervene for each one could prove
too time-consuming. Furthermore, as one of the advantages of Domino is that it al-
lows users to quickly obtain expert tools, it is unlikely that the user would have the
required in-depth knowledge of each particular module to make the correct decisions
about when to trust them. Methods of automating the process of determining which
applications should be permitted to run or have access to a particular part of the oper-
ating system may aid the user in this process. For example, Deeds [10] attempts to
analyse code and roughly categorise it before comparing it to the access levels given
to code that previously fell into the same category. Such a technique could make per-
missions a viable option in the Domino architecture, by removing many of the con-
stant interruptions that might otherwise be presented to the user.

 A third potential solution relies on the same epidemic algorithms as the spread of
the modules themselves, spreading information about malicious modules during any
contact with peers. For example, if one user found a malicious module they could,
after removing it, add it to a list of known bad modules. From then on, the list would
be transmitted to any Domino peers that were encountered. A Domino client which
had received this information could then refuse to accept the module if it ever encoun-
tered that module. Similarly, a client that was running the module and received infor-
mation that it was malicious could quickly remove the module even if it had not yet
done any damage. As the information about malicious modules would be constantly
spread rather than having to be recommended, and as clients would be able to remove
the module before it done any damage, the spread of the information that the module
was malicious would be faster than the spread of the module itself. In this way, viral
outbreaks of malicious modules could generally be prevented. However, this solution
is not perfect as, although it would stop a large viral outbreak in the community, it
would not stop damage to a particular client who received the module before receiv-
ing the information that it was malicious. More advanced implementations could
make use of the Internet to broadcast information about malicious modules, ‘overtak-
ing’ their spread through peer-to-peer contact. In so–called ‘honeypot’ implementa-
tions, this has been shown to be particularly effective at stopping the spread of con-
ventional computer viruses [13].

Apart from these technical approaches to countering viruses, it is possible for a
user to view a module’s history of use: on which device it originated, on which other
devices it was used prior to its arrival, and in what contexts it was used along the way
with regard to other modules. This helps users to decide for themselves whether the
history is typical of a trustworthy module. Alternatively this history information could
be fed into an algorithm such as that in [6] or [26], to give a calculated level of trust.
Although this technique may not be sufficient in itself, we advocate its use as an addi-
tional protection method to be used in conjunction with other measures.

As stated, security is a serious issue and, whilst we are researching these and other
possible solutions, we have not yet settled on a single robust solution that we fully

trust. For this reason, we have so far avoided creating ‘mission critical’ applications
based on the Domino architecture and have instead, for the time being, concentrated
implementing Domino into game systems. While this does not avoid problems of vi-
ruses and malware (since ‘bad’ modules could destroy a user’s game, or be used as a
way of cheating) it does provide an environment for experimenting with module rec-
ommendation and broader security issues, limiting the potential damage to users’ de-
vices.

6 A Prototype Application: Castles

To test the Domino architecture we developed a mobile strategy game, Castles.
Games have wide social and financial impact, and form an interesting application area
in themselves, but we chose a game because one can design a game to explore spe-
cific technical issues raised by wider research, and adapt it with ongoing findings
relatively easily. Additionally, players find new ways to stretch one’s designs, as-
sumptions and concepts, and are often keen to participate in tests of one’s systems.
Games offer an example of an application area in which users are already often in-
volved in radical re-engineering of systems, i.e. in modding. Our work is influenced
by Treasure [3], which was a mobile game used to explore the exposure of system
infrastructure in a ‘seamful’ way, so that users might appropriate variations in the
infrastructure. Similarly, Castles is a seamful design in that it selectively exposes
software structure to users, so that they can be aware of software modules and appro-
priate them for their own contextually relevant patterns of use.

The majority of the Castles game is played in a solo building mode, in which the
player chooses which buildings to construct and how many resources to use for each
one. Each type of building is a Domino module. The goal of this stage is for the
player to create a building infrastructure that efficiently constructs and maintains the
player’s army units. For example, a player may wish to have many ‘Knight’ units
being produced. However, to achieve this, the player must first ensure that he or she
has constructed suitable buildings to produce enough food, iron, stone and wood to
build and continually supply a Knights’ ‘School’. When the game starts, there are
over thirty types of building and eleven types of army units available to the player,
allowing for extremely varied combinations of buildings supporting distinct types of
army. For example, one player may wish to have an army consisting mainly of
mounted units whilst another may try a strategy of having a large number of ranged
units such as archers. In addition to buildings, there are ‘building adapters’, which are
Domino modules able to alter the output level of buildings. Adapters may have differ-
ent effects based on which building they are applied to. For example, the ‘scythe’
adapter has no effect if applied to the Knight School but doubles output levels when
applied to a wheat field. In order to mimic the way that plug-ins and components for
many software systems continually appear over time, new buildings, adapters and
units are introduced throughout the game, as upgrades and extensions that spread
among players while they interact with each other.

When two players’ devices are within wireless range, one may choose to attack an-
other. Behind the scenes, Domino also initiates its history-sharing and module-sharing

processes. When a battle commences, both players select from their army the troops
to enter into battle. Players receive updates as the battle proceeds, and at any time can
choose to retreat or concede defeat. At the same time, players can talk about the
game, or the modules they have recently collected, or modules they have used and
either found useful or discarded.

With such a high number of buildings, adapters and units, there is significant varia-
tion in the types of society (module configurations) that a player may create. Selecting
which buildings to construct next or where to apply building adapters can be a confus-
ing or daunting task. However, Domino helps by finding out about new modules as
they become available, recommending which modules to create next, and loading and
integrating new modules that the player accepts. When new buildings and units are
available to be run but not yet instantiated, we notify the user of the new additions by
highlighting them in the menu of available buildings. The three buildings that the sys-
tem most recommends the user construct next are shown when the user clicks the R
(recommendation) button (Figure 2). Thus, the user has quick access to guidance from
the Domino system about how to proceed.

Figure 2: Recommendations show when

user clicks the R button
Figure 3: Details showing why a

recommendation was made

If the user desires, he or she can get additional information about recommenda-

tions, such as its dependencies or the modules most frequently used in conjunction
with it in the past in similar contexts. This information, obtained in a pop-up dialog by
clicking the recommendation information button in the build panel, can help the
player understand more fully how the module might be used (Figure 3). Thus, a new
module is smoothly integrated into the player’s system without requiring substantial
module management, or indeed any knowledge of the low-level transfer or installa-
tion process. Simply, the user sees the new options and recommendations, and can
make use of that information without having to search manually for or install the new
modules. On the other hand, Domino does not go too far in automatically loading and
running modules. It presents them in a way that lets the user see them as he or she
plays, find out something of their past use, and show this information to others when

meeting and talking with other players. Overall, Domino complements the conversa-
tion and discussion among players about new and interesting modules, and eases the
introduction of new modules into each individual system and into the community.

7 Initial Experience and Ongoing Work

Having run a pilot study we now offer some initial evidence from the system’s use
during that study. We set up the game so that four players sat in different rooms, out-
with wireless network range of each other. We periodically moved the players be-
tween rooms, so that they passed by each other, and met up in pairs. This meant that
users spent most of the time alone but periodically met up to start battles and to talk
about the game and its modules, much as they might if they were walking with their
phones during a normal day.

Each player started with the same base set of buildings, adapters and units avail-
able, as well as two extra buildings, two extra adapters and one extra unit. Thus, each
player started with a substantial core set of items (33 buildings, 10 building adapters
and 11 units) plus 5 items that were unique to him or her. For example, amongst the
additional items given to one player was the catapult factory. As anticipated, when
players met for battle, their Domino systems exchanged usage information and trans-
ferred modules between phones so as to be able to satisfy recommendations. Thus, the
catapult factory and catapult unit began with one player, but were transferred, in-
stalled and run by two of the three other players during the game. Several players who
had been performing poorly because of, for instance, a combination of buildings that
was not efficient for constructing large armies, felt more confident and seemed to
improve their strategies after encountering other players. They started constructing
more useful buildings by following the recommendations. In each of these cases, this
did not appear to stem from players’ conversation, but directly from the information
provided by the system. After the first meeting with another player, the system had
gathered its first history data from another player to compare against, and thus it was
the first time the player saw recommendations. When the player began to construct a
new building, he or she always saw at least one recommendation for which building
to construct next—and followed it.

Each Domino system’s interactions with others were mainly hidden from the users.
When devices came into wireless range of one another they exchanged history data
and modules, but this was not explicitly shown to the users. Rather, the information
was stored and displayed to users when they were constructing new buildings. For
example, in one game we introduced diverse building adapters to each system after
approximately ten minutes of play, when the users were still isolated from one an-
other. Player A was given an ‘advanced toolkit’ adapter with the deliberately generic
description “A set of tools which workers can use to do their jobs more efficiently”.
Later, when players A and B were in the same room, they went into battle. When B
returned to solo play and continued constructing buildings, the new toolkit adapter
appeared in his available adapter list and, when he selected it, the game suggested that
he use it with the Iron Mine building. Player A had discovered that the toolkit worked
quite efficiently in conjunction with the iron mine and had mainly used it on that

building. This example is typical of Domino helping to disambiguate how or where
modules can be used based not only on general or objective fit, but with specific pat-
terns of use in play. In the toolkit example, the toolkit may be applied to any building
at all and does provide an improvement in output regardless of the building’s type.
However, the toolkit provides most benefit (the highest output multiplier) when used
with quarries rather than any other building type. Although B had no way of knowing
this from the description provided with the module, the history of use from other
players allowed a recommendation about where the adapter might provide the most
benefit, and B subsequently used this to add it to one of his quarries.

Overall, our initial experience is promising. Domino’s epidemic style of propaga-
tion of modules seems to be well suited to mobile applications where users may po-
tentially encounter others away from high-bandwidth and freely (or cheaply) accessi-
ble networks, quickly and automatically exchange log data and modules, and possibly
engage in more sustained direct interaction with each other. We are preparing for a
larger user trial involving non-computer scientists in a less controlled environment
than the one used for our pilot. We have begun to instrument the code so as to create
detailed logs of GUI activity and module handling, to feed into tools for analysis and
visualisation of patterns of use.

We are working on making Domino show the benefits in removing a running mod-
ule from a system, rather than only adding new ones. Users can manually remove
modules, to reduce the system becoming bloated or confusing, but at the moment
Domino does not assist users in this process. Analysing logs of user activity can help
with these issues, if we record the detail of modules’ use and removal. Normal, con-
tinuing use could involve periodically recording a small positive weight for each
module in the current configuration. However, if users consistently install one module
and then manually remove another soon after, this may indicate that the former is an
upgraded version of the latter or otherwise replaces the latter’s functionality. This
recorded pattern of use might then be interpreted by the system so as to record a sub-
stantial negative weight for the removed module in the history database, to help lower
it in the rankings of modules while the new module builds up its use. If a user does
not have the apparently older or superseded module, then he or she will be less likely
to receive recommendations for it. If a user does have the module, the system may be
able to recommend the new module as well as the removal of the old one.

A different area of our ongoing work relates to the way that the concepts and tech-
niques behind Domino have application to less mobile settings. We are exploring ap-
plications in software development, and plug-ins for IDEs (integrated development
environments) and web browsers such as Firefox. As pointed out in [4], many such
systems are large and yet rather chaotic, and a Domino-like system might assist users.

In IDEs, mail tools and in mobile systems, we suggest that Findlater and
McGrenere’ comments about involving the user should be borne in mind. There may
well be applications that would demand or involve automatic changes to an interac-
tive system without a user’s permission, but we have not been able to come up with
very many examples of them. Instead, we see the techniques explored in Domino as a
means to combine adaptable and adaptive elements, so that the system and the user
both control some of the interaction. Unlike most other systems that we are aware of,
we also suggest that collective records and patterns of use can be a productive re-
source for individuals adapting their adaptive systems.

8 Conclusion

In this paper we introduced the Domino architecture, and its approach to dynamic
adaptation to support users’ needs, interests and activities. Domino identifies relation-
ships between code modules beyond those specified in code by programmers prior to
system deployment, such as classes, interfaces and dependencies between them. It
uses those relationships, but it also takes advantage of code modules’ patterns of use
and combination after they have been released into a user community. The Castles
game demonstrated Domino’s components and mechanisms, exemplifying its means
of peer-to-peer communication, recommendation based on patterns of module use,
and adaptation based on both module dependencies and history data. The openness
and dynamism of Domino’s system architecture is applicable to a variety of systems,
but is especially appropriate for mobile systems because of their variety and unpre-
dictability of patterns of use, their frequent disconnection from fixed networks, and
their relatively limited amount of memory. As people visit new places, obtain new
information and interact with new peers, they are likely to be interested in new soft-
ware, and novel methods of interacting with and combining modules.

In our ongoing work, we continue to evaluate and refine Domino’s effectiveness in
Castles as well as in other seamful designs. Building larger and longer-lived applica-
tions will provide us with an opportunity to evaluate system robustness and perform-
ance, as well as user interest and acceptance. We foresee a strong need to tightly in-
terweave the technical and interactional evaluation of the system, as Domino operates
in a way that is simultaneously highly technological and thoroughly social. Again, we
perceive this as appropriate to the area of ubiquitous computing, where technology is
seen not as standing apart from everyday life, but rather as deeply interwoven with
and affected by everyday life. In the long run, we hope to better understand how pat-
terns of user activity, often considered to be an issue more for HCI than software en-
gineering, may be used to adapt and improve the fundamental structures and mecha-
nisms of technological systems.

9 Acknowledgements

This research was funded by the UK EPSRC (GR/N15986/01). We wish to thank all
the trial participants for their involvement in the pilot, and also colleagues working on
Castles and related projects such as Louise Barkhuus, Julie Maitland, Scott Sherwood
and Paul Tennent.

References

1 Ackerman, M. S. and Malone, T. W., Answer Garden: A Tool for Growing Organisational
Memory, Proc. ACM Conf. on Office Information Systems, 1990, 31-33

2 Ametller, J., Robles, S. & Ortega-Ruiz, J. A. Self-Protected Mobile Agents. Proc. Joint
Conference on Autonomous Agents and Multiagent Systems (Volume 1). July 2004.

3 Barkhuus, L. et al., Picking Pockets on the Lawn: The Development of Tactics and Strate-
gies in a Mobile Game Proc. Ubicomp 2005, 358-374.

4 Birsan, D. On Plug-ins and Extensible Architectures. ACM Queue 3(2) March 2005
5 Chalmers, M., et al., The Order of Things: Activity-Centred Information Access. Proc.

WWW 1998. 359-367.
6 Chen, F. and Yeager, W., Poblano: A Distributed Trust Model for Peer-to-Peer Networks,

JXTA Security White Paper, 2001.
7 Crow, D., Smith, B., The role of built-in knowledge in adaptive interface systems. Proc.

ACM IUI 1993, 97-104
8 Cypher, A., EAGER: programming repetitive tasks by example, ACM CHI 1991, 33-39.
9 Demers A. et al, Epidemic algorithms for replicated database maintenance, Proc. 6th ACM

Symposium on Principles of Distributed Computing (PODC), 1987, 1-12
10 Edjlali, G., Acharya, A. & Chaudhary, V. History-based Access Control for Mobile Code.

Proc. ACM Computer and Communications Security 1998, 38-48.
11 Edwards, W.K., Grinter, R. At Home with Ubiquitous Computing: Seven Challenges.

Proc. Ubicomp 2001, Springer LNCS, 256-272
12 Findlater, L, McGrenere, J. A comparison of static, adaptive and adaptable menus. Proc.

ACM CHI 2004, 89-96.
13 Goldenberg, J., Shavitt, Y., Shir, E. & Solomon, S. Distributive immunization of networks

against viruses using the ‘honey-pot’ architecture. Nature Physics, 1(3), December 2005,
184-188.

14 Humble, J. et al., Playing with the Bits: User-configuration of Ubiquitous Domestic Envi-
ronments, Proc. UbiComp 2003, Springer LNCS, 256-263.

15 Khelil, A, Becker, C. et al. An Epidemic Model for Information Diffusion in MANETs,
Proc. ACM MSWiM, 2002

16 Mackay, W. Patterns of Sharing Customizable Software. Proc. ACM CSCW 1990, 209-
221.

17 Mackay, W. Triggers and barriers to customizing software. Proc. ACM CHI 1991, 153-160
18 MacLean, A., et al. User-Tailorable Systems: Pressing the Issues with Buttons. Proc. ACM

CHI 1990, 175-182.
19 Nardi, B.A. and Miller, J. Twinkling Lights and Nested Loops: Distributed Problem Solv-

ing and Spreadsheet Development, CSCW and Groupware, Academic Press, 1991, 29-52
20 Newman, M., et al. Designing for Serendipity: Supporting End-User Configurations of

Ubiquitous Computing Environments, Proc. ACM DIS 2002, 147-156.
21 Page, J., Zaslavsky, A. & Indrawan, M. A buddy model of security for mobile agent com-

munities operating in pervasive scenarios. Proc. Australasian Information Security, Data
Mining and Web Intelligence, and Software Internationalisation—Volume 32. CRPIT 2004.

22 Persson, P. et al., DigiDress: A Field Trial of an Expressive Social Proximity Application.
Proc. Ubicomp 2005, 195-212.

23 Pfitzmann, A., Pfitzmann, B. & Waidner, M. Trusting Mobile User Devices and Security
Modules. Computer, February 1997, 30(2), 61-68.

24 Ravi, S. et al., Security as a new dimension in embedded system design. Proc. Design
Automation, June 2004

25 Rodden, T., Benford, S. The evolution of buildings and implications for the design of ubiq-
uitous domestic environments. Proc. ACM CHI 2003, 9-16.

26 Saeb, M., Hamza, M. & Soliman, A. Protecting Mobile Agents against Malicious Host
Attacks Using Threat Diagnostic AND/OR Tree. Proc. sOc 2003

27 Weld, D. et al. Automatically personalizing user interfaces. Proc IJCAI 2003, Morgan
Kaufmann, 1613-1619

