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1 Abstract

We describe work on the visualization of bibliographic data
and, to aid in this task, the application of numerical tech-
niques for multidimensional scaling.

Many areas of scientific research involve complex multi-
variate data. One example of this is Information Retrieval.
Document comparisons may be done using a large number
of variables. Such conditions do not favour the more well-
known methods of visualization and graphical analysis, as it
is rarely feasible to map each variable onto one aspect of
even a three-dimensional, coloured and textured space.

Bead is a prototype system for the graphically-based explo-
ration of information. In this system, articles in a bibliogra-
phy are represented by particles in 3-space. By using
physically-based modelling techniques to take advantage of
fast methods for the approximation of potential fields, we
represent the relationships between articles by their relative
spatial positions. Inter-particle forces tend to make similar
articles move closer to one another and dissimilar ones
move apart. The result is a 3D scene which can be used to
visualize  patterns in the high-D information space.

C.R. Categories: H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval; I.3.3 [Computer Graph-
ics]: Picture/Image Generation; I.3.5 [Computer Graphics]
Computational Geometry and Object Modeling; I.6 [Simu-
lation and Modeling]: Applications.

Additional key words and phrases: visualization, informa-
tion retrieval, particle systems, N-body problem.
†Current address: School of Information Systems, University of
East Anglia, Norwich, Norfolk, NR4 7TJ, United Kingdom.

2 Background

The work described in this paper draws upon techniques
from several areas, including information retrieval, numeri-
cal optimization and computational physics. These tech-
niques are combined in order to form a prototype system for
the graphically-based exploration of a complex information
space. In short, this work explores the viability of the con-
cept that one can use particles in 3-space to represent docu-
ments in ‘information space’, and can set up rules of
physical behaviour for these particles (e.g. force and
motion) which are driven by the documents’ characteristics.
These rules are chosen in order to make of spatial proximity
approximate thematic similarity. This metaphor is used to
interpret word-based information using the everyday phe-
nomena of spatial position and colour. The following sub-
sections describe the basic concepts underlying this work.

2.1 Numerical Techniques for Structuring Data

Most of the work done on the graphical exploration of com-
plex information spaces has been in the realm of Scientific
Visualization [McCormick 87]. These techniques have been
developed for fields such as physics, engineering, aerody-
namics and chemistry. In a manner complementary to more
traditional analytic approaches to the treatment of data, visu-
alization gains its power by drawing upon our everyday cog-
nitive skills. The accent is on providing the user with the
opportunity to discern interesting features in the analysed
information. This is most straightforward when the data to
be explored is of low dimensionality and has a regular or
well-structured domain. Slightly higher levels of dimension-
ality  — beyond the three used for spatial position — are
often tackled by employing features such as colour and tex-
ture. More recently, attempts have been made to embed 3-
dimensional coordinate systems within others [Feiner 90].

Such images become increasingly complex as further
dimensions are employed. Ultimately one must either
restrict the number of dimensions considered, or one must
map some number of these dimensions onto a lower, more
tractable number. The latter approach is the basis of several
techniques in Multivariate Analysis including multidimen-
sional scaling (MDS). As described in  [Chatfield 80], MDS



is “a term used to describe any procedure which starts with
the ‘distances’ between a set of points (or individuals or
objects) and finds a configuration of the points, preferably in
a smaller number of dimensions, usually 2 or 3.” Such a
configuration may then afford the graphically-based, explor-
atory styles of manipulation usually reserved for lower-
dimensional data.

Standard techniques for MDS usually involve an eigenvec-
tor analysis of ann × n matrix, wheren is the number of
points to be configured. ThisO(n3) analytic procedure gen-
erates the required configuration of points in a single step,
but changes or additions to the set of points require re-exe-
cution of the entire analysis. As mentioned by Chatfield &
Collins with regard to a special case of MDS, ordinal scal-
ing, one can treat the configuration task as an optimization
problem. This has allowed the introduction of iterative
numerical techniques such as thesteepest descent method
[Press 88].

Steepest descent models a familiar physical situation, where
objects respond to the forces upon them by moving down
the local gradient towards states of lower energy. As an
example, a ball on a slope rolls downhill. The method there-
fore has an intuitive appeal, especially when the simulation
is to be graphically presented to people wishing to maintain
some mental model of the dynamics of their data. One prob-
lem of steepest descent is that it may be unable to climb out
of a local minimum. The points become stuck in a configu-
ration which disallows progress towards a ‘better’ configu-
ration. A rock on a hillside may obstruct a ball rolling down
into a valley.

One technique suited to such situations draws upon a pro-
cess for hardening metals known asannealing. Metal can be
raised to a high temperature where its consituent atoms can
move relatively freely: it melts. By gradually cooling the
liquid, the atoms have time to move towards crystal lattice
positions of low energy. The thermal mobility of atoms can
allow escape from local minima. As the temperature is low-
ered and mobility decreases, the probability of such escapes
decreases. Gradual cooling leads to the configuration of
minimum energy i.e. the optimal state.

Applying these principles to numerical optimization led to
the Metropolis algorithm for simulated annealing [Metropo-
lis 53]. This requires a way of describing possible configura-
tions (e.g. the spatial position of points), a method of
generating random changes in the configuration (e.g. pertur-
bation of position), an objective function, analogous to
energy, whose minimization is the goal of the procedure
(e.g. the error between the actual and desired inter-point dis-
tances), and finally a control parameter analogous to temper-
ature, in tandem with a schedule for its reduction.

As the schedule progresses, random changes in configura-
tion are successively generated. At each step the change in
system energy is calculated. If the step lowers the energy
then the change is accepted. If the step increases the energy
then the change is accepted with a probability which
depends on both the size of the energy step and the current
temperature of the system. ‘Uphill’ steps are taken less often
as temperature decreases.

Simulated annealing has been used in a variety of applica-
tion areas to good effect [Kirkpatrick 83]. These areas
include VLSI layout, the Travelling Salesman problem, and,
of course, statistical mechanics. More recently it has been
used in clustering tuples in databases [Bell 90]. Bell et al.
reported on techniques for moving tuples of data (each rep-
resenting a document) between files in order to bring similar
tuples together and so enhance responsiveness to queries.
They found that annealing produced good results but was
computationally expensive.

2.2 Structuring Textual Information

In the vector space model [Salton 89], each documentDi is
described by a vector oft terms {ai1, ai2, ..., ait}. Each term
usually corresponds to a unique word or word stem in the
document, and has associated with it a coefficent of its ‘sig-
nificance’ in the document. For example, aik may be set to 1
when the termk appears in the document, and to 0 when the
term is absent from the vector. Alternatively, one might use
eachaik to store the weighted frequency of occurrence of
each termk in documentDi. One can choose to compare the
similarity of vectors using a variety ofdocument distance
measures [Raghavan 86].

Relevance searches usually return a ranked list of docu-
ments, with little information as to how each is related to
each other or how each is placed in the overall structure of
the corpus. Information Retrieval systems tend to give a loc-
alised view of data, and there is scarcity of tools available to
explore relationship of local characteristics to global pat-
terns.

To some degree an exception to this lack of displayed con-
textual information is given in a paper on the use of singular
value decomposition (SVD) to the organisation of docu-
ments [Dumais 88]. The authors used SVD to decompose
high-dimensional information on documents into a lower-
order representation of about 50 to 150 dimensions. The
examples in the paper used a very small database whose
approximate structure was presented in two dimensions. The
associated ease of interpretation was not extended to larger
bodies of information: instead the lower dimensionality was
used to allow faster database operations. While SVD is very



stable, it is a moderately expensive one-step analytical pro-
cess. Also, it is sensitive to numerical rounding inaccuracies
[Press 88].

In partitioning a corpus into clusters of similar documents,
one may represent the members of a cluster by a single term
vector. Clusters may be organized hierarchically, with clus-
ters of clusters &c. A variety of techniques for hierarchical
clustering and their consequent applicability to document
search and retrieval are surveyed in [Willett 88].  One can
perform document distance calculations on a cluster much
as one would on a single document. One can compare clus-
ters to find which is a good candidate for insertion of a new
document. Similarly one can use aggregate vectors in order
to reduce the range of documents involved in relevance
searches. Clustering and partitioning can be used in them-
selves for browsing [Cutting 92].

Standard clustering techniques have at their disposal a very
high number of dimensions within which to represent docu-
ments and clusters. Each dimension allows an axis which
potentially can be used to differentiate documents (or clus-
ters). The cost of having such precision available is the com-
plexity of searching and sorting. The use of SVD shows a
slight change in the trade-off between precision and cost:
lower dimensionality means rougher representation of docu-
ment relationships but cheaper access and manipulation.
One can consider, then, choosing to accept progressively
more approximate representations of a corpus as one
decreases the dimensionality of the space used. The benefits
will be in ease of access and an increasing approach towards
the levels of dimensionality we are familiar with in the
everyday physical world.

2.3 Using Forces to Create Structure

Physically-based modelling, for the purposes of animation
and simulation, has grown by drawing upon mathematical
techniques relevant to the physics of motion and deforma-
tion [Witkin 91].

The behaviour of a body of matter can be considered as the
aggregate of the behaviours of its constituent particles. Fea-
tures such as elasticity and fracture can be derived from the
many interactions at a finer level of detail. Ultimately one
becomes grounded in particle dynamics, at the expense of
having to consider the many interactions of the particles
making up a scene. Potentially, allN particles can lead to
N(N -1) pairwise interactions. ThisN-body problem is par-
ticularly well-known in computational physics where inter-
actions due to gravitational or Coulombic fields are often of
exactly thisO(N2) complexity.

Approximate solutions of lower orders of complexity have
therefore been subjects of research activity in recent years.
By using hierarchical structures for spatial subdivision such
as k-d trees [Appel 85] and octrees [Barnes 86] relatively
straightforward algorithms ofO(N logN) complexity have
been developed. A slightly more complex algorithm of lin-
ear complexity also now exists [Greengard 88].  A region of
partitioned 3D space is commonly called avoxel, from ‘vol-
ume cell’.

All these methods employ the principle of superposition
whereby the potential field due to a cluster of particles
within a given region of space can be approximated by a sin-
gle ‘metaparticle’ which is the aggregate of the cluster. The
modelled space is subdivided into a tree of voxels contain-
ing clusters of particles, each region having its own meta-
particle (see Figure 1).

The position of a metaparticle is at the centre of mass of the
set of particles inside the voxel. If each particle is defined as
having unit mass, then a metaparticles’ mass is the number
of particles in its voxel. In calculating the forces acting upon
any particular particle, the effects of other particles can be
approximated by using progressively larger metaparticles
(i.e. higher nodes in the tree) as one considers progressively
more distant particles.

FIGURE  1. A rectangular space is subdivided using a 2-d tree
into nine leaf-level subregions. Each leaf is labelled
with a single letter. The root node contains all leaf
nodes and so might be labelledABCDEFGHI. It is
made up of two children, the subregionsABCD and
EFGHI. Similarly EFGHI is split into two children
EF andGHI, GHI into G andHI, andHI into H and
I.

A particle inI might then have the forces on it calculated
using the other particles inI and the siblings of ancestors in
the tree: the metaparticlesH, G, EF andABCD. In this man-
ner one can reduce the force computation process for each
particle toO(m + log(N/m)) wherem is the average size of a
leaf andlog(N/m) is the average depth of the tree containing
N particles. Hence the overall algorithm isO(N logN).

Given that we can calculate the forceF acting on a particle,
then the next position of the particle can be found by solving
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the familiar second order ordinary differential equation
(O.D.E). A variety of numerical solution techniques can be
used, such as Euler and Runge-Kutta [Press 88]. With these
methods, an O.D.E. is solved for a given time interval. Nor-
mally a number of smaller time steps will be taken in the
solution process for the required time interval. During the
computation the size of the time step will change in attempts
to control the accuracy of the solution.

Such algorithms make more tractable simulations involving
potential fields and forces. They aid the modelling of com-
plex dynamics where, from littlea priori positional informa-
tion, the forces between particles lead to the emergence of
structures and patterns in the modelled data.

3 Combining Concepts

The generic nature of the discretization at the basis of fast
N-body techniques can be applied to Information Retrieval.
We associate documents with particles in space, and use two
concepts to underpin this work: a cluster of such hybrid
objects can be represented by a metaparticle, and when com-
paring particles, the difference between the actual ‘geomet-
ric’ distance and the desired ‘document’ distance can be
used as the basis for a potential field.

We use a model of a damped spring in order to generate
forces of attraction and repulsion between particles. When
particles are too close the spring pushes them apart, and
when they are too far apart they are drawn towards each
other. In each case the spring works to regain its ‘rest dis-
tance’ which we use as a metaphor for the document dis-
tance. We use hierarchical spatial subdivision in order to
speed up the calculation of the interactions between the full
set of particles. We also use the hierarchy to form document
clusters, using addition and normailization of term vectors.

The raw data we have been using is drawn from the HCI
Bibliography Project [Perlman 91]. This project has as its
goal the construction of a publicly accessible extended bibli-
ography on Human-Computer Interaction. Rather than per-
form full-text comparisons at this early stage, we have
chosen to use keyword lists. Each keyword in an articleα is
then stored as an element in a vectorK = { kα1, kα2, ..., kαt}
along with a vector of coefficentsC = {cα1, cα2, ..., cαt} such
that |C| = 1. At present we weight keywords equally i.e. for
all m,n, cαm=cαn.  The version of the database we obtained
has 301 articles with such keyword lists.

We denote the set of documents being modelled in the sys-
tem by the setD = {α, β, χ, ....}, and the corresponding set
of representative particles by the setP = { a, b, c, ....}. The
document distance function,δ(α,β), that we currently use

combines the coefficients associated with pairs of matching
keywordskαi andkβj:

After initial experiments with no power term (i.e. using the
scalar product) we changed to using the formulation above.
The squaring tended to be more revealing of structure. We
use Euclidean distance for the inter-particle distance func-
tion, d(a,b). We define the spring force magnitude between
particles (α,a) and (β,b) as being linearly proportional to
δ(α,β) - d(a,b), although for stability we add viscous damp-
ing proportional to the velocity of the particle. Using spring
constantκs, damping constantκd and l = a-b (and hence
d(a,b) = |l|) the forceFαβ on (α,a) due to (β,b), is then:

The overall forceFα on a particleα is the sum of the forces
arising from all such pairwise interactions with the other
particles inD. Note thatFβα = -Fαβ.

We use a 3-D tree to hierarchically subdivide the space into
which particles are placed. We maintain a metaparticle for
each node in the tree, consisting of a particle position, a
mass, and a term vector. We use document distances to
metaparticles to recursively descend the tree in an effort to
insert a new document near to similar documents. We main-
tain a maximum number of particles inside each leaf node
— usually 10 — and split a leaf when that limit is reached.
In splitting voxels we try to find an axis and coordinate with
which to split the number of particles as evenly as possible.

Finally, we iteratively use fourth-order adaptive Runge-
Kutta in applying either a simulated annealing step or a
steepest descent step to the particle system. In this way we
attempt to minimize the unbalanced force on each particle.In
this way we try to find positions where the often-conflicting
demands for proximity reach the best available compromise.

While looking at the maximum unbalanced force on any
particle in the system is one useful measure of progress, we
have also found it informative to look at the residual sum of
squares. Analogous to the mechanical stress of the spring
system and denoted here asS, this metric is built up by
examining each pair of particlesα andβ. We compare geo-
metric distance gαβ and document distance dαβ:
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The ‘ideal’ value forS is zero. This is difficult to achieve, as
it is unlikely that the low dimensionality of the modelled
space will afford a ‘perfect’ configuration. We assume that
an ‘acceptable’ configuration has been reached when contin-
ued iteration produces roughly constant levels of stress and
maximum force. One must bear in mind, however, that there
is always some chance that the gradual motion of particles
may slip and slide the configuration over the edge of some
local minimum or plateau of energy. New additions to the
set of particles as well as the stochastic nature of the cooling
process may lead to such an event. Note also that like any
such stochastically-produced result, the configuration
achieved may vary if different orders of addition or different
starting positions are used. Lastly, there is always some
chance of there being more than one stable configuration,
but damping can be used to avoid infinite oscillation
between such states.

4 Lessons from Early Experiments

In early trials of the particle engine, we noticed a problem
with the accuracy of our N-body approximation. This
evinced itself in an overall drifting of the cluster of particles
i.e. even though only internal forces were being modelled,
the centre of mass of the system gradually moved.

A basic assumption of the family of N-body approximations
is that the farther away in space one goes from a particle, the
larger the metaparticle can be used when performing force
calculations. In our tree usage, however, there was occasion-
ally a disparity between geometric distances of particles and
the length of the path between them over the tree structure.
Referring back to Figure 1, a particle in leaf B may be geo-
metrically very close to a particle in E, but is relatively far
from it in the tree.

In order to address this we changed to an algorithm which
works outward, in spatial terms, from each leaf node and
takes into account the geometric distance to each neighbour-
ing node before accepting a metaparticle as a good approxi-
mation.

Another concern arising from early experiments related to
the way that a large amount of work was being directed
towards making all pairs of unrelated particles be a precise
distance apart. Enforcing this precision seemed to be a less
significant or informative constraint, and therefore we
changed the rule invoking force calculations. Now, unre-
lated particles only interact with each other when their geo-
metric distance is less than the document distance signifying
unrelatedness. It is possible that this rule can lead to oscilla-
tion, but we decided that the likelihood was low enough and
the benefits large enough to warrant the asymmetric rule.

One of the most significant issues in aiding performance is
the choice of the schedule for reducing the modelled ‘tem-
perature’ of the system, and we are starting to experiment
with various schedules and also a simple facility for manu-
ally ‘kicking’ the temperature up by a multiplicative factor.

Another issue is how one adds particles to the simulation.
Setting off with allN particles randomly positioned within
the root voxel is inefficient and unstable: instead one gains
an advantage by using the ongoing structuring of the
space.We start with just a handful of particles, and alternate
between performing one or more steps of the particle engine
and adding in new particles. As the structure of the particle
system develops we are better able to use the tree of meta-
particles to place new particles near to ‘relevant’ neigh-
bours. Currently we take in at most√N new particles at each
iteration, and we are experimenting with performing multi-
ple iterations between such additions.

The present system brings down the stressS of 301 particles
to approximately 0.3. With 100 particles this value is
approximately halved. On a Sun SPARCstation 2, an anneal-
ing step takes around 18 minutes for 100 particles, 90 min-
utes for 200, and 150 minutes for 301. While this growth is
well belowO(N2), these times are still high.

Document distances are recalculated at every step, and so
the most immediate and fruitful adjustment is likely to be
the construction of a table of particle-particle document dis-
tances. The initial cost of calculation would be amortized
over subsequent iterations. Space might become an issue as
the size of the database grew, but the present experimental
system could comfortably store all the particle-particle dis-
tances. Metaparticle distances might also be woven in to
such a scheme, but their variability might induce excessive
costs.

In the longer term, full-text comparisons will be used, and it
would seem necessary to move towards experimentation
with a larger-scale corpus and more sophisticated text analy-
ses. Rather than build the requisite tools locally, it is more
likely that integration with some of the tools of Xerox
PARC’s Natural Language Theory and Technology group
will occur [Cutting 91].

5 System Architecture

Bead is made up of a number of processes, all of which exe-
cute in parallel and communicate by means of the facilities
provided by the Isis Distributed Programming Toolkit [Bir-
man 87]. Figure 2, below, sketches out the system.



Bead makes use of the process group model whereby a pro-
cess can join (or create) one or more named groups and so
receive all messages which are broadcast to them. For exam-
ple, since thedb process is in theiiNewDocs group,db
receives information on new documents broadcast (or, more
accurately, multicast) to the group. The sender,newDocs,
does not have to know where on the computer network the
members ofiiNewDocs are. Such location independence
makes it easier to take advantage of spare CPU cycles and
graphics screens on the local network.

FIGURE  2. Processes (e.g.newDocs) communicate with each
other by multicasting to named process groups (e.g.
iiNewDocs). Often a process will obtain
information for its own group by sending a request
for a multicast e.g. apew obtains new articles to
work on by sending a message (shown as a black
arrow) toiiNewDocs. A member of that group acts
upon the message by multicasting the required
information to all members ofworld (grey arrow).
Computed particle positions are sent bypew to
iiWorld, where eachgrid displays a 3D view. A user
can zoom in on a chosen subset of particles, whose
IDs can be passed on to anamer which outputs
more verbose information to a terminal.

The essential numerical calculations of the ‘particle engine’
are performed by a process calledpew. It obtains informa-
tion on articles by communicating with thedb process (or
processes). By joining a group and so receiving messages, a
db declares and makes active an interest in new documents:
hence the group nameiiNewDocs. At any time, anewDocs
process can be used to read a file and send information to
this group.

pew

grid ‘foo’

namer ‘foo’

db

tty

gfx

iiWorld

world iiNewDocs

foo

newDocssearch

log file

The particle engine creates the configuration in 3D which
represents the modelled corpus. Once the configuration is
stable, interactive visualization and exploration of the cor-
pus can begin. This is done by running one or more tools in
parallel with the engine, and having them connected so as to
build up the required description of browsed documents.

For each particle, the corresponding position and velocity
(and also a colour) are sent to the group of processes which
has declared an interest in this ‘world’. A number ofgrid
processes can join this group and each display a view of the
scene. By default the grid viewer shows three orthogonal
plots (in XY, XZ and YZ) as well as an animated perspective
view as seen from a point of view rotating around the centre
of mass.

One way of exploring the particle world is to ask thepew
processes to make displayable the distribution of a chosen
set of query words. Asearch process reads in the words and
sends the appropriate message. Each particle is then given a
colour according to its document distance from the query,
and the resulting shading information is sent on toiiWorld
e.g. Figure 3.

FIGURE  3. A view of the main cluster of documents with a
search done on the keywords “information
retrieval”. From this current point of view one can
see a number of matches e.g. article IDs 139, 67,
etc. which might be suitable for zooming in on.
Note that matching articles are not in a tight cluster
but are mixed through the corpus of HCI-related
articles.

One can zoom in on a chosen particle in order to see neigh-
bouring particles and how they relate to each other. An
adjustable radius defines a ‘sphere of interest’ centred at the
chosen particle. This is used to frame a more confined
region of space for display. Also, particles outside the
sphere have their colour reduced in intensity slightly so as to
allow their patterns and proximity to be noticeable without
being imposing e.g. Figure 4.



FIGURE  4. Following on from the previous figure we zoom in
on 67 (Cone Trees: Animated 3D Visualizations of
Hierarchical Information, Card et al., CHI ‘91). The
closest article, 66, is another paper by the same
authors.

The remaining ‘interesting’ particles can also have their IDs
sent off to a group (specified individually for eachgrid)
where it is expected anamer will exist. A namer listens for
sets of particle IDs, and by communicating with theiiNew-
Docs group obtains information on the original articles e.g.
the title, authors, source and date of publication, and the
keyword list. These details are printed out to the terminal
but can also be logged for later perusal. A command-line
version of this program,whatis, provides a simple tool for
checking on any document id.

The architecture is intended to support varying configura-
tions and extensions to the system e.g. it should be possible
to split the workload of the ‘particle engine’ between more
than onepew process. Also one can combine different types
of processes within a group e.g. a new graphical application
with an interest in the particle world might joiniiWorld
without necessitating modifications topew or grid. Gener-
ally, flexibility of construction makes it easier to integrate
and experiment with a greater variety of viewers, filters and
loggers independently of the basic data-generating system
core.

6 Conclusion

The geometrically-represented document space offers a
means for providing users for a ‘naturalistic’ model of docu-
ment relationships. The interactive visualization and naviga-
tion of the space becomes a means to browse and explore
the corpus. This veers slightly away from systems whose
aim is more to support retrieval of some small set of relevant
items in the corpus which match predetermined characteris-
tics.

We are still building up experience with the present system
and making basic improvements and additions. As this work
progresses, we will be better able to assess where to concen-
trate future effort, what should be the focus of usage experi-
ments, what the strengths and weaknesses of the basic
modelling process are, and what types of tools and styles of
interaction can make best use of such models.

The system in its current state could be used as a component
for a prototype ‘reactive information environment’. Making
the underlying model comprehensible should aid in gaining
acceptability for the tools built on top of it. The ultimate
goal of this work is to make information spaces explorable
both graphically, by humans, and automatically, by pro-
grams or ‘dæmons’. With these in hand we would go on to
investigate how somebody might use a database of docu-
ment-based information for formal queries as well as more
casual, exploratory use. If the ongoing writing and reading
of electronic documents can be modelled and shared, then
new possibilities for computer-based support of both indi-
vidual and collaborative work may be opened up.
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