
ABSTRACT

A technique is presented for the layout of high–dimensional data in
a low–dimensional space. This technique builds upon the force–
based methods that have been used previously to make visualisa-
tions of various types of data such as bibliographies and sets of
software modules. The canonical force–based model, related to
solutions of the N–body problem, has a computational complexity
of O(N2) per iteration. In this paper is presented a stochastically–
based algorithm of linear complexity per iteration which produces
good layouts, has low overhead, and is easy to implement. Its per-
formance and accuracy are discussed, in particular with regard to
the data to which it is applied. Experience with application to bib-
liographic and time series data, which may have a dimensionality
in the tens of thousands, is described.

CR Descriptors: H.1.2[Information Systems]: Models and Prin-
ciples - User/machine systems; H.5.2 [Information Systems]:
Information Interfaces and Presentation -User interfaces; [Com-
puter Graphics]: Methodology and Techniques.

Keywords: layout algorithms, visualization, high–dimensional
data, spring models, stochastic algorithms, force–directed place-
ment.

INTRODUCTION

A great deal of information now available to us from our ever–
growing networks and databases is complex, multidimensional
data. Textual data such as document collections and time series
data such as histories of currency fluctuations are growing in num-
ber and size. This same growth means that the data is often difficult
to access and understand, as traditional data access techniques
show little of the patterns within such data: how individual objects
are related to each other, whether larger–scale topics or clusters
exist, and how data attributes are distributed across such patterns.
Such tasks are at the core of visualisation, and it would therefore
seem appropriate to try to apply visualisation techniques. At the
core of such an information visualisation task is the generation of a
layout in a low–dimensional space which represents the multidi-
mensional data well, affords browsing and overview, and can be
produced efficiently. Information design and interaction issues
related to making such a layout easy to navigate through and to
understand undoubtedly interact with the layout process, but this
paper will largely confine itself to the topic of algorithmic effi-

UBILAB, Union Bank of Switzerland, Bahnhofstrasse 45, 8021
Zürich, Switzerland. EMail: chalmers@ubilab.ubs.ch

ciency. The focus is on techniques which help to make data analy-
sis as interactive as possible and to make available data sets which
are as large as possible.
Background work, on several kinds of data and various techniques
for layout and structuring, is discussed in the next section. Follow-
ing that is a description of a novel algorithm which is efficient and
which produces good layouts. Performance of the algorithm and
the effects of algorithmic parameters and data characteristics are
discussed in an ensuing section. This precedes a brief overview of
future work plans and a conclusion.

BACKGROUND AND RELATED WORK

Information visualisation broke away from its roots in scientific
visualisation when researchers began to explore data which did not
have a simple set of orthogonal dimensions that could be mapped
on to two or three spatial axes plus a few others mapped to such
attributes as colour and texture.
The n-Vision system was a move on from using only the basic
three spatial dimensions of most scientific visualisation systems
[9]. Nested sets of dimensions were presented to the user. At cho-
sen points in a basic three-dimensional space, a further set of three
axes would be placed. This nested set of axes could then be used to
render a new graph or plot, and also to insert another more deeply
nested set of axes. The dimensionality of the financial data ren-
dered in this way was of the order of 10. Note that only the selected
points had deeper data rendered as nested dimensions. No over-
view of the entire data set, using the entire set of dimensions, was
possible as the rendered image would be strongly cluttered.
Another step forward from basic scientific visualisation techniques
was taken at Xerox PARC and presented in a trio of papers: [1],
[14] and [17]. The Information Visualizer paper described a frame-
work for breaking up information based on task activity into differ-
ent rooms, for controlling and scheduling interaction to offer better
interaction to the user, and also gave a lead in laying out data by
use of abstract data structures such as hierarchies and common lin-
ear dimensions. The Cone Tree and Perspective Wall papers
described the implementation and detail of visualisations employ-
ing these two data structures. These three papers rightly empha-
sised the importance of human perception in making visualisations
effective. The authors demonstrated static and dynamic features of
their information designs which helped with this task. The data
structures they used were relatively simple, however, and the
shapes of Cone Trees also led to severe occlusion problems.
One of the fundamental works in visualising more complexly
structured data is SemNet [8]. Multidimensional scaling (MDS)
techniques were used in order to reduce the dimensionality of data
on Prolog modules and their inter–calling relationships down to

A Linear Iteration Time Layout Algorithm for Visualising
High–Dimensional Data

Matthew Chalmers

UBILAB, Union Bank of Switzerland

three dimensions. MDS concentrates on finding a linear combina-
tion of the original dimensions which maximises the ‘spread’ of
the data [4]. It blends together dimensions which seem to be
strongly correlated. Note that this is a very strong constraint on the
layout: ordering according to the final dimensions must be pre-
served, even if global metrics of similarity, or indirect relationships
and clustering, might contradict this ordering. As the authors
noted, standard MDS algorithms are slow (O(N3) or O(N4)), which
led them to experiment with a heuristic based on simulated anneal-
ing. Also, most MDS algorithms are non–iterative, which means
that they have to be re-run in their entirety for adaptive and ongo-
ing applications.
MDS is one of many techniques for dimensional reduction, or lay-
out, which are based on optimisation. An error metric for layout
quality is defined, and the algorithm is applied to find a layout with
the lowest possible error. The simplest one of these uses a spring
model to try to minimise the difference between the geometric dis-
tances in the visualised space and distances in the high–dimen-
sional space. Examples are the software modules in [6] and the
WWW graphs mentioned in [12]. The springs generate forces in
directions which tend to pull distant but similar objects towards
each other, and push close but dissimilar ones apart. It is often the
case that instead of there being only a few well-defined links from
each object to others, every object is connected to some degree to
every other one. Therefore the force calculation isO(N2), which
tends to limit the scale of the system modelled.
This is the familiar N-body problem, and gradient descent (also
sometimes known as force–directed placement) and simulated
annealing are common methods to employ in this situation. For the
basics of these techniques, please refer to [16]. Gradient descent is
simpler, but occasionally prone to getting stuck in local minima.
Annealing is more robust as it tends to ‘shake free’ of such below–
optimal layouts. Techniques such as Greengard–Rokhlin [10] can
reduce the force calculation to linear time by using hierarchical
spatial subdivision techniques, effectively by discretising the set of
objects over 3D space. Maintaining the spatial information can
create significant overhead, and integration with annealing is diffi-
cult due to annealing’s backtracking steps.
An O(N.logN) per iteration annealing algorithm for the layout of
textual information, using spatial subdivision, was presented in
[2]. Textual data is of high dimensionality, as each word (or term)
contained in the set of modelled documents effectively defines an
independent axis in a vector space used to describe the set. Each
document is represented by the set of words occurring in it and
each word’s relative frequency of occurrence, collectively known
as a term vector. Subject to some normalisation of term vector
lengths, the vector space model also allows metrics of high–
dimensional distance to be used such as the scalar product [19].
More recently, experiments were run by the author on an algorithm
with iteration time linear inN. This uses spatial subdivision in the
manner of Greengard–Rokhlin, with gradient descent combined
with added stochastic jitter along the lines of [11] to help avoid
local minima. In this algorithm, as with that in [2], each modelled
object has a term vector to represent a document and also has a
particle with a position and velocity in 3-space. A tree of voxels is
maintained, with each voxel maintaining a metaparticle (at the
centre of mass) and a ‘metadocument’ (the aggregate of all the
documents contained by the voxel).
Although the force calculation for all leaf–level objects can then
be approximated in linear time with the use of voxels’ metaparti-
cles and metadocuments, the metadocuments are significantly
larger than the leaf documents. Since each voxel’s metadocument
has to represent all the terms contained in all of its leaves, the size
of term vectors grows as one goes up towards the root. In experi-
ments, the root voxel’s metaparticle would often have a term vec-
tor two orders of magnitude longer than that of the average leaf. As

objects move, they may change voxel leaf sets, which means
updates of the tree have to be done frequently. This also means that
the significantly more complex force and high–dimensional dis-
tance calculations involving metadocuments cannot be cached.
This hampered attempts to scale up to larger data sets.
One possible solution considered was to try to threshold the term
vectors so as to only represent more heavily weighted (frequently
occurring) words higher up in the tree. This might be combined
with a maximum length of term vector for every metadocument. It
seemed that many tree maintenance overheads would still be
present, however, and experiments with a technique complemen-
tary to the discretisation methods of spatial subdivision were
promising enough to abandon the voxel-based techniques for the
moment. This technique, which avoids many of the overheads
associated with discretisation, is based on stochastic sampling. It is
described in the following section.
Other techniques have been applied to visualising sets of docu-
ments. Kohonen maps were used by [13] in an iterative layout
technique which requires at leastO(N2) per iteration and has not
been shown to handle larger data sets. More recently, [20]
described a technique whereby documents are clustered and the
cluster centroids laid out using either principal component analysis
or MDS. Individual documents are then scattered or interpolated
near to their associated centroids in order to visualise the data set.
Computational complexity is much reduced, but the technique
tends to ignore the detail of inter–document relationships by rely-
ing on the coarse discretisation offered by this initial clustering.
Choosing the number and acceptable sizes of clusters to partition
the set can be a difficult, data–dependent task, although the tech-
niques of [18] might help in this regard..

STOCHASTIC SAMPLING AND NEIGHBOUR SETS

In this section, we build upon gradient descent to iteratively

Figure 1. An example layout produced by Bead, seen in over-
view, of 831 bibliography entries from CHI, CSCW and UIST

conferences. The dimensionality (the number of unique words in
the set) is 6925 and the layout stress is 0.16. After a search for

‘cscw or collaborative’ we see the pattern of occurrences
coloured dark blue, mostly to the right. The central rectangle is

the visualiser’s motion control.

improve the position of each ofN objects involved a layout.
Spring-based forcesFij between each pair of objectsi and j act to
improve interobject separation in the layout. The magnitude of
eachFij is linearly proportional to the magnitude ofdij - gij, where
gij is the current geometric distance betweeni andj in the layout,
and dij is their high–dimensional distance. An example layout is
shown in Figure 1.
In the case of bibliographic data, we usedij = (1 -sij

p), wheresij is
the scalar product of the term vectors ofi and j, and p is an expo-
nent used to increase the discrimination of the distance metric.
Currently we usep=4. For time series data we are currently exper-
imenting with a simple metric akin to the scalar product as well as
an information theoretic metric, mutual information. The distance
metricdij will be discussed further in a later section.
Instead of doing all the possibleN(N-1) pairwise force calculations
as in the standard technique, we do force calculations between
each objecti and the members of two sets whose size is bounded
by a constant. In this way, we maintain a computational cost for
each iteration which is linear with respect toN
The first set is stored as a dynamically–maintained list of refer-
ences to ‘neighbour’ objects,Vi. This list is of maximum length
Vmax, and entries inVi are stored in order of distance in high–
dimensional space.Vi is initially null. Along withVi is kept a value,
maxDisti, which is the maximum distance to any member ofVi.
While the neighbour set is carried over between iterations, the sec-
ond set is constructed anew each time. This is a randomly chosen
subsetSi of all the objects, whereSmaxis a constant and no mem-
ber ofVi is inSi.
As each candidate elementj for the setSi is selected, the distance
dij is calculated. Ifdij < maxDisti thenj is inserted into the appropri-
ate position in the setVi instead ofSi, perhaps forcing out the most
distant neighbour in the process. Otherwisej is added toSi, and
once we haveSmax members then the forces oni are calculated
using a number of calculations constrained to be less than or equal
to the constantVmax+Smax:

Extra weights can be applied to shift the balance between the sum-
mations overVi andSi in the force calculation, or to make this sum-
mation more closely approximate the full N-body calculation, but
we have not found it necessary to employ them. Typical values
used in our system areVmax=5 andSmax=10.
Note that as sampling continues, the setSi evolves towards the set
of Smax objects most closely related toi. If additions to the data set
are made between iterations, they can easily but gradually be
accommodated — without performing a global recalculation of
complexity greater than linear. If we do not expect further addi-
tions to the set, we would generally terminate the layout process
after roughlyN to 3N iterations or terminate it automatically based
on having little decrease over several successive stress measure-
ments.
An additional force whose effect is gradually added over the first
2N iterations is another spring force between each particle and the
plane i.e. a force is added which is proportional to the height above
(or depth below) the plane. This force gradually makes the layout
shift from being a 3D point cloud to being a near-planar ‘2.1D’
layout, while allowing unassociated clusters to slide away from
each other — unlike the overlaying that would happen with projec-
tion onto the plane.
Given the summed forces acting on eachi, we can perform an inte-
gration step to update its position and velocity. Note that sampling
adds jitter in a way which helps break out of local minima. For sta-
bility we add to each object viscous damping proportional to its
velocity, and we also clip excessively high forces. We normally
employ 4th order Runge-Kutta integration, although the simpler
Euler step is often adequate. Note also that some symmetries aid in

Fi Fiv
v Vi∈
∑ Fis

s Si∈
∑+=

efficiency e.g.Fij = -Fji . Also, a new neighbourj for an objecti
may suggest that i should be evaluated as a potential new neigh-
bour for j. We are looking at work such as [5] to see if epidemic–
like algorithms can efficiently spread the news of new arrivals
through the network of neighbours.
Objects are then meshed together with a Delaunay tesselation so as
to make an island-like landscape. Occasional rough patches can
then more easily be seen, where either the layout algorithm has not
been able to find a good planar layout or the data’s mutual dis-
tances do not permit a planar layout. Design issues for such land-
scapes are the subject of [3]

EVALUATION AND EARLY EXPERIENCE

At the centre of most evaluation of the layout algorithm is a metric
based on the mechanical stress of the spring system. It is essen-
tially the residual sum of squared errors of all interobject distances,
but has some normalisation which favours more compact layouts:

The relationship to the stress minimisation involved in the stan-
dard spring-based layout algorithm should be clear. Note also that
the stress calculation is itself anO(N2) operation. Consequently we
normally only perform it every√N iterations.
In the example layout of 831 bibliography entries from CHI,
CSCW and UIST conference proceedings taken from the HCI Bib-
liography [15] shown in Figure 1, stress levelled out at 0.15. A
chart of stress against iteration number is shown in Figure 2. The
average iteration time, 6 seconds, is one of the data points shown
in the chart of iteration time growth withN in Figure 3, below.
Modified to calculate the force on each particle in the standard
quadratic way but running on the same data set, the iteration time
was 372 seconds.
The layout program, written in C, was run on an SGI High Impact
with a MIPS R4400 250MHz processor and R4010 floating point
chip. All runs usedVmax=5, Smax=10, and 4th order Runge-Kutta
integration This program can either dump a layout file or position
objects within a DIVE virtual environment [7]. Objects in visual-
ised layouts can have their titles shown upon mouse selection, or
can be coloured according to whether they match a search word (or

Stress

dij gij–() 2

i j<
∑

gij
2

i j<
∑

-----------------------------------=

S
tr

es
s

 0
 2

0
 4

0
 6

0
 8

0
10

0

Iteration

 20 40

Figure 2. Stress falls quickly against iteration number in the first
iterations of the example layout. Before any layout work was
done, the stress was 4102.9, but this and two following values
(1,1284.4 and 2,274.6) have been elided for legibility. After 56

iterations, the stress was 0.23, and at 896 it was 0.16.

boolean expression) entered via an accompanying Java widget.
The stress falls quickly in the initial iterations, but then the rate of
decrease slows. The addition of the flattening force further slows
this rate, but allows for lower final stress values than layout pro-
cesses which operate only in 2D. This characteristic is shared with
the standard quadratic algorithm. Layouts of smaller sets have
lower stress values e.g. CHI91 with 52 articles has a stress of 0.11,
which is (to two decimal places) the same as that resulting from
the quadratic algorithm. Below anN of approximately one thou-
sand, stress values are essentially the same. Comparisons with
higherN values were not done due to the excessive overall times
required for the quadratic algorithm. The linear algorithm starts to
show problems with data sets of a few thousand objects, with less
coherent clustering and stresses above 0.2..

DISCUSSION

The neighbour sets are a lightweight way to concentrate work in
the layout process where it is most needed. With the standard qua-
dratic method, a great deal of work is spent on the separation of
objects which are relatively dissimilar. As a first step to reduce this
load we adapted the standard algorithm to only exert forces if
objects had words in common or were within a threshold distance
i.e. distant unrelated objects did not have extra work done on them.
This helped the layout process significantly, and was a progenitor
of the sampling idea.
In the initial sampling experiments, each objecti had a third set
involved. This contained those objects for which previous sam-
pling had found a high force. As sampling continued, such ‘prob-
lem’ objects would be pushed or pulled as appropriate until other
objects were found to have a higher force. The overhead of main-
taining this set was found to be excessive. The many dissimilar
objects would jockey for positions in the set, continually entering
and leaving it, when all we really wanted to do was be sure that
they were all far from i. Exactly how far was not so important, as
long as it was ‘far enough’. We therefore abandoned the use of the
high force set.
In early experiments, we also had higher values for bothVmax and
Smax, for example 20 and 30. It was out of curiosity that we cut
these values back to the current 5 and 10. Given that layout quality
is still good, one must ask: why is it still good? It is suggested that
it works because of indirect linkage via neighbours. Although the
objectk with theVmax+1th high-dimensional distance toi will not
long be in the neighbour setVi, it is likely that it will be in a neigh-

tim
e

(s
)

 0
 2

0
 4

0
 6

0

N

 0 2000 4000 6000 8000

Figure 3. The linear order growth of average iteration time with
N is significantly less than the quadratic growth of standard algo-
rithms. The data sets, from the HCI Bibliography, extend to anN

of 7135 with an iteration time of 63s and a dimensionality of
20488.

bour setVj where j is a member ofVi i.e. k will be a neighbour’s
neighbour. Therefore the neighbour will indirectly pullk closer to
i. If k andi are directly involved in a random sample at some itera-
tion, then they will be given an extra pull closer.
Tracking the rate of neighbour set insertions shows a very fast ini-
tial drop. With the pictured example, the first iteration has 6509
insertions. This number falls to 328 after 12 Runge-Kutta steps i.e.
after 3 iterations. After 10 iterations it reaches 77. The figure jitters
up and down slightly, but falls to negligible levels after 50 itera-
tions.
We might also mention that a few runs were tried with 831 objects,
Vmax=0 andSmax=15 i.e. purely random sampling. Initially, stress
fell very quickly — in fact more quickly than withVmax=5 and
Smax=10. After the first 56 iterations and a minimum stress of
0.15, when the normal process was still at 0.23, the stress started to
rise. It climbed up to 0.18 and slowly fell to a stress value near to
that of the layout using neighbours. Although very much prelimi-
nary, these results may lead to a hybrid method which takes advan-
tage of this initial speed and then brings in neighbour usage for
refinement.
Certain data characteristics have been found to be a significant
determinant in layout quality. With the HCI Bibliography, certain
years and certain journals or proceedings have large abstracts and
also have keyword lists. The latter were found to be especially use-
ful in the layout process. Weighting in the distance metric favours
keywords and the more general use of language in abstracts (and
in, to some extent, titles) meant that data with a good level of key-
word use produces lower stress values than sets where few key-
words appear.
Keywords tended to offer better discrimination, giving (as for
human readers) a concise set of relatively reliable clues for cate-
gorisation or comparison. Older articles in the HCI Bibliography
tend to have shorter abstracts and to have keywords less often.
When running experiments with larger data sets, programs would
inevitably read in many older and less easily discriminated articles.
These were harder to lay out.
Another significant factor in generating a low stress value was
found to be the exponentp of the scalar product used in the high–
dimensional distance metric. Initially we usedp=1, but found that
stress would be reduced significantly when a larger value was
used. Again, data discriminability is suggested as being the domi-
nant factor. With a lowp, we found that the values fordij were
tightly bunched in a small subrange of the feasible range of [0..1].
Higher values ofp tended to widen this subrange. This led to sub-
jectively better layouts as shown by features such as the clustering
of related articles and clearer separation of clusters.
Along a related line, we offer a few comments and comparisons
based on early experimention with a body of time series data. This
data consists of a set of 331 stocks, with each stock represented by
a vector of 60 monthly stock price values. Initially we constructed
a very simple distance metric akin to the scalar product, based on
the proportion of months for which the prices of a pair of stocks
would either both rise or both fall. Very recently we have begun
experimenting with an information theoretic metric, mutual infor-
mation. Our tentative results suggest that again discrimination is a
key factor. At present, the data set seems to be less cohesively
clustered than we would wish. Stress levels reach down to around
0.2, and browsing reveals that although small clusters do appear,
global patterns are harder to determine.
It must be admitted that it is harder for an eye untutored in the
details of finance and economics to appreciate time series layout
subtleties, especially when compared to more familiar biblio-
graphic data. Nevertheless, it is suggested that at present we are
not employing a highly discriminating distance metric, and conse-
quently our time series layouts are less cohesive than our biblio-
graphic layouts. Furthermore, we posit that this dependence on

discriminability is not particular to the presented algorithm but is a
performance factor for most layout algorithms that practitioners
might bear in mind.
Stress is the metric we use most when looking at layout quality.
Others are the maximum force between objects and a histogram of
speed distribution. Its correspondence with our notion of a ‘good’
layout means it is a major focus in assessments. We note, however,
two aspects of it.
Firstly, relatively minor changes of stress can lead to significant
changes in subjective assessments in layout quality. We notice a
strong improvement between 0.16 and 0.14, for example. Another
aspect is that dissimilar layouts can have identical (to two decimal
places) stress values. This was especially obvious when comparing
layouts from an annealing program and a force–based program
using the standardO(N2) technique. Annealing was slightly slower,
and tended to lack the consistency and separation of clusters that
the force–based program had, even though the two programs led to
similar stress values.
These points remind us that subjective assessments of a layout —
its ‘sense’ and ‘feel’ and ease of use — are the ultimate measure of
layout quality. As mentioned in the following section, exploring
such human assessments is a topic for future work.

ONGOING AND FUTURE WORK

In the preceding sections, a few comments as to ongoing and future
extensions of the presented work were made. We now describe
several other directions being followed.
We consider that we should be able to decrease further our mini-
mum stress levels and increase our maximum tractable data set
sizes. Occasionally, objects stuck in bad positions are still visible
during browsing. One possibility to assist such isolated objects is
to selectively add more jitter, as in [11], but we may also try to use
the neighbour set to suggest a good place to jump to. If an object’s
neighbours seem to be staying far away and the object is under
stress, then it may be fruitful to jump past intervening objects to
where the neighbours are. Also, as mentioned earlier with regard to

hybrid algorithms, dynamic variation ofVmax and Smaxvalues
may be useful.
We are experimenting with use of the ongoing structuring process
to make the overall layout more efficient. We start with just a hand-
ful of objects randomly positioned within a large 3D cube, and
alternate between performing one or more steps of the above force/
move process and adding in new objects (either randomly or using
samples to find ‘good’ initial locations). We have not yet imple-
mented a scheme for deletions, but refer the reader to [5] for an
outline of some approaches.
As mentioned earlier, the stress metric is a significantly complex
value to calculate. We have just begun to use sampling methods to
approximate the exact stress, and hope to produce reasonably reli-
able estimates of layout quality at every iteration. Although not
directly related to improving layout quality, this would assist
experimentation with layout algorithms, most obviously when
working on larger data sets. As we start to experiment with time
series and other financial data, we hope to learn more of the inter-
relationship between distance metric, stress and algorithmic
effiency.
Another goal of applying this work to financial data is to apply it
within UBS, the corporation within which Ubilab operates. We are
currently obtaining a body of data with a view to applying our
techniques to a ‘front desk’ situation. If early experiments are suc-
cessful we will begin a pilot implementation scheme inside the
bank this autumn.
Lastly, we briefly mention the information design aspects of our
layout work, examples of which are given in Figure 4. Details are
the subject of a forthcoming paper, but we are currently experi-
menting with the addition of static and dynamic features to biblio-
graphic layouts in order to aid navigability and imageability. Static
imageability features include the shoreline, local areas of surface
roughness and also the colouring of clusters of objects based on
geometric proximity (sometimes combined with higher–dimen-
sional proximity). Clusters, paths and landmarks are found using
the techniques of [12].
Dynamic features are further subdivided into two types: view–spe-
cific and view–independent. Specific to the current field of view
are successively sampled words and documents, which are high-

Figure 4. Imageability features build upon basic layout positions. Static features such as coloured districts
and paths aid orientation and navigation, as well as describing global features of the data set. In this exam-
ple, documents are dynamically but randomly chosen to be highlighted with a yellow colour, with a bias
based on nearness to the eye. Topic words are also dynamically placed in the scene, based on locality, fre-
quency of occurrence in the field of view, and also word usage history. Topic and title words (e.g. ‘graph-

ical’) can be clicked on to start searches, which colour hits white.

lighted and have their titles shown. The orientation of text is kept
orthogonal to the view of the user as he or she moves. This aids
legibility for that user and also helps support awareness of the
activities of others inside the shared virtual environment. Indepen-
dent of the viewpoint are indicators of usage frequency which are
shown only on demand. This usage information reflects past activ-
ity by all users as measured by mouse selection, keyword search
hits, &c., and is updated within the virtual environment as such
activities progress. One topic of current interest is the feedback of
usage information into the layout process, for example by adjust-
ing term vectors according to the history of use.

CONCLUSION

A layout algorithm has been presented which is suitable for high–
dimensional data and which offers significant performance
improvements over standard methods for force–based placement.
Performance results show a linear order growth in iteration time,
without a sacrifice in layout quality. Issues such as data discrim-
inability and the influence of algorithmic parameters were dis-
cussed.
The algorithmic work presented here is intertwined with our com-
plementary work on information design and interaction. We have
found that apparently high–level design issues such as ease of use
and perception are inseparable from low–level issues such as sca-
lar product exponents. Furthermore, we see the need to consider
social issues as we start to take advantage of shared environments
and usage histories. By treating holistically this range of design
factors, it is suggested that we will better reflect the data we visua-
lise in our system and better support the people who use it. As we
push on in this direction, we hope that along with our users we will
gain further insight and not just numbers.

ACKNOWLEDGMENTS

This work has advanced with the help of Rob Ingram, whose post-
doctoral visit led to the clustering features as well as first steps on
visualising usage data. Other imageability and Java work was done
by Roberto Brega, Christoph Pfranger and Raimond Reichert. My
thanks to all of them.

REFERENCES

[1] Card, S.K., G.G. Robertson & J.D. MacKinlay, “The Infor-
mation Visualizer, an Information Workspace”,Proc. ACM
CHI’91 (New Orleans, April 1991), pp. 181–188.

[2] Chalmers, M. & P. Chitson, “Bead: Explorations in Informa-
tion Visualisation”, inProc. ACM SIGIR’92 (Copenhagen,
June 1992), published as a special issue ofSIGIR Forum, pp.
330–337.

[3] Chalmers, M., “Using a Landscape Metaphor to Represent a
Corpus of Documents”,Proc. European Conf. on Spatial
Information Theory, (Elba, September 1993). Published as
Spatial Information Theory, Springer Verlag LNCS 716, A.
Frank & I. Campari (eds.), pp. 377–390.

[4] Chatfield, C., & A. Collins, Introduction to Multivariate
Analysis, Chapman & Hall, London, 1980.

[5] Demers, A., et al., “Epidemic Algorithms for Replicated
Database Maintenance”,Operating Systems Review 22, 1
(January 1988), pp. 8-32.

[6] Drew, N., & B. Hendley, “Visualising Complex Interacting

systems”, CHI’95 Conference Companion, Proc. ACM
CHI’95, (Denver, May 1995), pp. 204-205.

[7] Fahlén, L., et al., “A Space Based Model for User Interaction
in Shared Synthetic Environments”,Proc. ACM InterCHI’93,
pp. 43–48.

[8] Fairchild, K. S. Poltrock & G. Furnas, “SemNet: Three–
dimensional Graphic Representation of Large Knowledge
Bases”. In R. Guindon (Ed.),Cognitive Science and its Appli-
cations for Human–Computer Interaction. Erlbaum, 1988.

[9] Feiner, S. & C. Beshers, “Worlds within Worlds: Metaphors
for Exploring n-Dimensional Virtual Worlds”,Proc. ACM
UIST 90, 76-83.

[10] Greengard, J.,The Rapid Evaluation of Potential Fields,
ACM Distinguished Dissertation Series, ACM Press, 1988.

[11] Hanson, S.J., “A Stochastic Version of the Delta Rule”, Phys-
ica D 42 (1990), (Special Issue on Emergent Computation),
pp. 265-272.

[12] Ingram, R. & S. Benford, “Legibility Enhancement for Infor-
mation Visualisation”,Proc. IEEE Visualization 95, (Atlanta,
Oct. 1995), pp. 209-216.

[13] Lin, X., D. Soergel & G. Marchionini, “A Self–Organizing
Semantic Map for Information Retrieval”, inProc. SIGIR’91,
published as a special issue ofSIGIR Forum,October 1991,
ACM Press, pp. 262–269.

[14] MacKinlay, J.D, G.G. Robertson & S.K. Card, “The Perspec-
tive Wall: Detail and Context Smoothly Integrated”,Proc.
ACM CHI’91 (New Orleans, April 1991), pp. 173–180.

[15] Perlman, G., “The HCI Bibliography Project”,SIGCHI Bulle-
tin 23, 3 (July 1991), pp. 15-20.

[16] Press, W.H., B.P. Flannery, S.A. Teukolsky & W.T. Vetterling,
Numerical Recipes in C (2nd Edition), Cambridge University
Press, 1993.

[17] Robertson, J.D. MacKinlay & S.K. Card, “Cone Trees: Ani-
mated 3D Visualizations of Hierarchical Information”,Proc.
CHI’91 (New Orleans, April 1991), pp. 189–194.

[18] Rose, K., E. Gurewitz & G. Fox, “Statistical Mechanics and
Phase Transitions in Clustering”,Physical Review Letters, 65,
8, 20 August 1990, pp. 945–948.

[19] Salton, G., Automatic Text Processing, Addison–Wesley,
1989.

[20] Wise, J et al., “Visualizing the Non-Visual: Spatial Analysis
and Interaction with Information from Text Documents”,
Proc. IEEE Information Visualization, October 1991, pp. 51–
58.

