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Abstract

Clustering is the problem of grouping objects on the basis of a similarity measure. Cluster-
ing algorithms are a class of useful tools to explore structures in data. Nowadays, the size
of data collections is steadily increasing, due to high throughput measurement systems and
mass production of information. This makes human intervention and analysis unmanage-
able without the aid of automatic and unsupervised tools. The use of kernels is definitely
having an important place in the application of supervised machine learning tools to real
problems. In recent years, the interest in the use of kernels in unsupervised applications
has grown. The focus of this thesis is on new advances in the central clustering paradigm,
with a special emphasis on kernel methods for clustering. In this thesis, we propose some
advances in both the theoretical foundation and the application of such algorithms. The
main contributions of the thesis can be summarized as follows:

1. A survey of kernel and spectral methods for clustering. We propose a classification
of kernel methods for clustering, reporting the strong connections with spectral clus-
tering. An explicit proof of the fact that these two paradigms optimize the same
objective function is reported from literature.

2. A comparison of kernel and spectral methods for clustering. Many kernel and spectral
clustering algorithms have not been experimentally validated on a wide range of real
applications. We propose a comparative study of several clustering methods, based
on kernels and spectral theory, on many synthetic and real data sets. The tested
clustering algorithms, implemented during the work of thesis, have been collected in
a software package written in R language.

3. Advances in fuzzy relational clustering. In this thesis, we study in detail the re-
lational fuzzy clustering problem, proposing theoretical studies on the applicabil-
ity of relational duals of central clustering algorithms in situations when patterns
are described in terms on non-metric pairwise dissimilarities. As a byproduct, the
equivalence between clustering of patterns represented by pairwise dissimilarities and
central clustering in kernel-induced spaces is shown.

4. A novel algorithm, named the Possibilistic c-Means in Feature Space, that is a clus-
tering method in feature space based on the possibilistic approach to clustering. The
proposed algorithm can be used also for non-parametric density estimation and as an



outlier detection algorithm. We show the strong connections between this learning
model and One Class SVM. The regularized properties and the simple optimization
procedure suggest the potentialities of this novel algorithm in applications. The ex-
perimental validation consists in a comparison with One Class SVM in the context
of outlier detection on synthetic and real data sets.
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In theory there is no difference between theory and practice.

In practice there is. (L. P. Berra / J. L. A. van de Snepscheut)



Acknowledgements

There are a lot of people I have to thank for their support during these three years. A
special thanks goes to my family and Erica, for supporting my choices when I needed to
take some hard decisions. I want to thank my friends at DISI (ViCoLab and 210) and all
my friends (in particular, my training buddies and my band), for sharing with me several
moments. Among them, a special thanks goes to Gabriele, Federico, and Dario... they
know what they did for me. In the last year, I had the chance to live a unique experience
in USA, thanks to extraordinary people like Carlotta, Daniel, and Zoran, whose influence
has been very important. Among all the people I met in USA, I want to thank also Marko,
Sean, Jessica, Rick, Ed, Aline, Cristiane, Andrew, and Ayanna; without them, it would
have been hard to live there. Finally, I want to thank all the people I exchanged ideas
with, in particular: Federico, Dario, Franco, Stefano, Francesco, Carlotta, Daniel, Zoran,
Matte, Giuse, and Giorgio. 1

1Ci sono molte persone che vorrei ringraziare per il loro sostegno durante questi tre anni. Un ringrazia-
mento speciale va alla mia famiglia e ad Erica per aver sostenuto le mie scelte quando ho dovuto prendere
decisioni difficili. Voglio ringraziare i miei amici del DISI (ViCoLab e 210) e tutti i miei amici (in partico-
lare i miei compagni di allenamento e la mia band), per aver condiviso con me molti momenti. Fra loro,
un ringraziamento speciale va a Gabriele, Federico e Dario... loro sanno quello che hanno fatto per me. Lo
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Chapter 1

Introduction

Clustering is the problem of grouping objects on the basis of a similarity measure. Clus-
tering algorithms represent a class of useful tools to explore structures in data. Nowadays,
the size of data collections is steadily increasing, due to high throughput measurement
systems and mass production of information. This makes human intervention and analysis
unmanageable, without the aid of automatic and unsupervised tools. The use of kernels
is definitely having an important place in the application of supervised machine learning
tools to real problems. In recent years, the interest in the use of kernels in unsupervised
applications is growing.

The focus of this thesis is on new developments in the central clustering paradigm, with a
special emphasis on kernel methods for clustering. In this thesis, we propose some advances
in the use of kernel in clustering applications. Such advances, are both in the theoretical
foundation of these algorithms and in their extensive application to synthetic and real data
sets. In particular, the main contributions of the thesis can be summarized as follows:

A survey of kernel and spectral methods for clustering. We propose a classifica-
tion of kernel methods for clustering, reporting the strong connections with spectral
clustering. We can broadly classify kernel approaches to clustering in three categories,
based respectively on the kernelization of the metric, clustering in feature space, and
description via support vectors. Methods based on kernelization of the metric search
for centroids in input space, and compute the distances between patterns and cen-
troids by means of kernels. Clustering in feature space is made by mapping each
pattern in the kernel-induced space; centroids are then computed in this new space.
The description via support vectors makes use of the quadratic programming ap-
proach to find a minimum enclosing sphere in the kernel-induced space. This sphere
encloses almost all data excluding the outliers, and creates a separation among clus-
ters in the input space. Spectral clustering arises from spectral graph theory. The
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clustering problem is configured as a graph cut problem, where an appropriate ob-
jective function has to be optimized. The connection between kernel and spectral
methods for clustering lies in the equivalence between the objective function of the
K-means in the kernel-induced space and the spectral clustering algorithm minimiz-
ing the ratio association objective function. An explicit proof of the fact that these
two algorithms optimize the same objective function is reported from literature.

A comparison of kernel and spectral methods for clustering. Many kernel and spec-
tral clustering algorithms have not been experimentally validated on a wide range
of real applications. We propose a comparative study of several clustering meth-
ods based on kernels and spectral theory. This comparison is conducted on many
synthetic and real data sets, showing the performances of the studied clustering
algorithms in comparison with those of standard methods. The tested clustering al-
gorithms, implemented during these years have been collected in a software package
written in R language.

Advances in fuzzy relational clustering. When patterns are represented by means of
non-metric pairwise dissimilarities, central clustering algorithms cannot be directly
applied. Moreover, their relational duals are not guaranteed to converge. Sym-
metrization and shift operations have been proposed to transform the dissimilarities
between patterns from non-metric to metric. It has been shown that they modify the
K-Means objective function by a constant, that does not influence the optimization
procedure. In literature, some fuzzy clustering algorithms have been extended, in or-
der to handle patterns described by means of pairwise dissimilarities. The literature,
however, lacks of an explicit analysis on what happens to central fuzzy clustering
algorithms, when the dissimilarities are transformed to become metric. In this the-
sis, we study in detail the relational fuzzy clustering problem, proposing theoretical
studies on the applicability of relational duals of central clustering algorithms in
situations when patterns are described in terms on non-metric pairwise dissimilari-
ties. As a byproduct, the equivalence between clustering of patterns represented by
pairwise dissimilarities and clustering in kernel-induced spaces is shown.

A novel algorithm, named the Possibilistic c-Means in Feature Space, that is a
kernel method for clustering in feature space based on the possibilistic approach
to clustering. The proposed algorithm can be used also for non-parametric density
estimation, as it retains the properties of the possibilistic clustering, and as an outlier
detection algorithm. In this thesis, we study the strong connection of the proposed
model with One Class Support Vector Machines. In particular, we show the duality
between the Lagrange multipliers in One Class Support Vector Machines and the
memberships in One Cluster Possibilistic c-Means in feature space and the regularized
properties of the proposed algorithm. These facts, along with the simple optimization
procedure, suggest the potentialities of this novel algorithm in applications. The
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experimental validation shows a comparison with One Class Support Vector Machines
in the context of outlier detection. Such comparison is performed by means of a
statistics-based procedure.

The thesis is organized as follows: Chapter 2 introduces the state of the art on clustering.
Chapter 3 shows a comparison of kernel and spectral clustering methods on some bench-
marks and real data sets. Chapter 4 is devoted to the advances in relational clustering;
Chapter 5 introduces the possibilistic clustering in feature space. The last Chapter draws
the conclusions.
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Chapter 2

State of the art

In this Chapter, we review the state of the art on kernel, spectral, and relational clustering
algorithms. This survey contains the general background that represented the starting
point of the original contributions proposed in this thesis. The Chapter is divided in four
Sections. The first Section introduces some basic concepts about the central clustering
paradigm. Here, the K-means and the fuzzy and possibilistic variants are discussed. The
second and third Sections are devoted to the kernel and spectral methods for clustering,
along with the discussions on the theoretical connections between them. Section 2 contains
a categorization of kernel methods for clustering in three main families: clustering in feature
space, clustering with the kernelization of the metric, and support vector clustering. In
particular, the kernel versions of central clustering algorithms are presented. Section 3
introduces the clustering algorithms based on the spectral graph theory, showing two among
the most popular algorithms. Moreover, we report from literature the formal equivalence
between the objective functions of the spectral clustering with the ratio association as
objective function and K-means in feature space. Section 4 extends the survey to the class
of relational clustering algorithms, with a special emphasis on the relational duals of the
central clustering algorithms. Several parts of Sections 1, 2, and 3 have been published as
a survey paper [FCMR08].

The overview of the state of the art is not complete. Some approaches involving kernels,
that are worth to be mentioned, are not present in this thesis. In particular, there is a
vast literature comprising the probabilistic and Bayesian approaches to clustering [BR93,
Bis06, RD06, LJGP07, OMSRA07, Mac02]. Also, Gaussian processes [RW05, Bis06], that
have been widely studied for regression and classification, have been recently applied to
the clustering problem [KL07]. In Gaussian processes, and more in general in stochastic
processes, kernels arise in a natural way. Therefore, when such methods are applied to the
clustering problem, they belong to the framework of kernel methods for clustering.

9



2.1 Central Clustering

In this section we briefly recall some basic facts about partitioning clustering methods.
Let X = {x1, . . . ,xn} be a data set composed by n patterns, for which every xi ∈ R

d.
The codebook (or set of centroids) V is defined as the set V = {v1, . . . ,vc}, typically with
c≪ n. Each element vi ∈ R

d is called codevector (or centroid or prototype)1.

The Voronoi region Ri of the codevector vi is the set of vectors in R
d for which vi is the

nearest vector:

Ri =

{

z ∈ R
d

∣

∣

∣

∣

i = arg min
j

‖z − vj‖
2

}

. (2.1)

It is possible to prove that each Voronoi region is convex [LBG80], and the boundaries of
the regions are linear segments.

The definition of the Voronoi set πi of the codevector vi is straightforward. It is the subset
of X for which the codevector vi is the nearest vector:

πi =

{

x ∈ X

∣

∣

∣

∣

i = arg min
j

‖x − vj‖
2

}

, (2.2)

that is, the set of patterns belonging to Ri. A partition on R
d induced by all Voronoi

regions is called Voronoi tessellation or Dirichlet tessellation.

Figure 2.1: An example of Voronoi tessellation where each black point is a codevector.

1We will use indifferently these terms to denote the elements of V .
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2.1.1 K-Means

A simple algorithm able to construct a Voronoi tessellation of the input space was proposed
in 1957 by Lloyd [Llo82], and it is known as batch K-Means. Starting from the finite data
set X, this algorithm moves iteratively the k codevectors to the arithmetic mean of their
Voronoi sets {πi}i=1,...,k. Theoretically speaking, a necessary condition for a codebook V
to minimize the Empirical Quantization Error :

E(X) =
1

2n

k
∑

i=1

∑

x∈πi

‖x − vi‖
2 (2.3)

is that each codevector vi fulfills the centroid condition [GG92]. In the case of a finite data
set X and with Euclidean distance, the centroid condition reduces to:

vi =
1

|πi|

∑

x∈πi

x . (2.4)

Batch K-Means is formed by the following steps:

1. choose the number k of clusters;

2. initialize the codebook V with vectors randomly picked from X;

3. compute the Voronoi set πi associated to the codevector vi;

4. move each codevector to the mean of its Voronoi set using Eq. 2.4;

5. return to step 3 if any codevector has changed, otherwise return the codebook.

At the end of the algorithm a codebook is found and a Voronoi tessellation of the input
space is provided. It is guaranteed that after each iteration the quantization error does not
increase. Batch K-Means can be viewed as an Expectation-Maximization [Bis96] algorithm,
ensuring the convergence after a finite number of steps.

This approach presents many disadvantages [DH73b]. Local minima of E(X) make the
method dependent on initialization, and the codevectors are sensitive to outliers. More-
over, the number of clusters to find must be provided, and this can be done only using
some a priori information or additional validity criterion. Finally, K-Means can deal only
with clusters with spherically symmetrical point distribution, since Euclidean distances
of patterns from centroids are computed, leading to a spherical invariance. Different dis-
tances lead to different invariance properties as in the case of Mahalanobis distance which
produces invariance on ellipsoids [DH73b].
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Batch K-Means takes into account the whole data set to update the codevectors. When
the cardinality n of the data set X is very high (e.g., several hundreds of thousands), the
batch procedure is computationally expensive. For this reason, an on-line update has been
introduced, leading to the on-line K-Means algorithm [LBG80, Mac67]. At each step,
this method simply randomly picks an input pattern and updates its nearest codevector,
ensuring that the scheduling of the updating coefficient is adequate to allow convergence
and consistency.

2.1.2 Fuzzy Central Clustering Algorithms

In many applications, it is desirable that the membership of patterns is shared among
clusters. This would allow to better describe situations where some patterns can belong to
overlapped clusters, or some patterns do not belong to any clusters, since they are outliers.
These are few examples of scenarios where the generalization of the concept of membership
from crisp to fuzzy can be useful in applications.

Popular fuzzy central clustering algorithms are the fuzzy versions of the K-means with
the probabilistic and possibilistic description of the memberships: Fuzzy c-means [Bez81]
and Possibilistic c-means [KK93]. These algorithms, belonging to the K-means family, are
based on the concept of centroids and memberships. Given a set X of n patterns, the set of
centroids V = {v1, . . . ,vc} and the membership matrix U are defined. The set V contains
the prototypes/representatives of the c clusters. U is a c×n matrix where each element uih

represents the membership of the pattern h to the cluster i. Both Fuzzy and Possibilistic
c-means are fuzzy, since uih ∈ [0, 1], while uih ∈ {0, 1} for K-means. In K-means and FCM
algorithms the memberships of a pattern to all the c clusters are constraint to sum up to
one:

c
∑

i=1

uih = 1 ∀k = 1, . . . , n (2.5)

This is the so called Probabilistic Constraint. In the possibilistic paradigm, this constraint
is relaxed, leading to an interpretation of the membership as a degree of typicality.

Among the presented fuzzy central clustering algorithms, we may recognize an algorithm,
the FCM II, resembling the Expectation Maximization algorithm for fitting a mixture of
isotropic Gaussians [Bis06]. It can be found also with the name of Soft K-means [Mac02].
For the sake of presentation, however, we prefer to present all the fuzzy algorithms under
the same formalism, viewing them as the optimization of a general objective function.

The formal definition of fuzzy c-partition is the following [Bez81]:

Definition 2.1.1. Let Acn denote the vector space of c × n real matrices over R. Con-
sidering X, Acn and c ∈ N such that 2 ≤ c < n, the Fuzzy c-partition space for X is the

12



set:

Mfc =

{

U ∈ Acn

∣

∣

∣

∣

∣

uih ∈ [0, 1] ∀i, h;
c
∑

i=1

uih = 1 ∀h ; 0 <
n
∑

h=1

uih < n ∀i

}

. (2.6)

This definition generalizes the notion of hard c-partitions in Ref. [Bez81].

In general, all the K-means family algorithms are based on the minimization of a functional
composed of two terms:

J(U, V ) = G(U, V ) +H(U) (2.7)

The first term is a measure of the distortion (or intra-cluster distance) and the second is
an entropic score on the memberships. The distortion can be written as the following sum:

G(U, V ) = 2
c
∑

i=1

n
∑

h=1

uθ
ih‖xh − vi‖

2 (2.8)

with θ ≥ 1. The aim of the entropy term H(U) is to avoid trivial solutions where all the
memberships are zero or equally shared among the clusters. For the algorithms having a
constraint on U , the Lagrange multipliers technique has to be followed in order to perform
the optimization. This means that a further term, depending only from U , must be added
to J(U, V ). The Lagrangian associated to the optimization problem can be introduced:

L(U, V ) = G(U, V ) +H(U) +W (U) (2.9)

The technique used by these methods to perform the minimization is the so called Picard
iteration technique [Bez81]. The Lagrangian L(U, V ) depends on two groups of variables
U and V related to each other, namely U = U(V ) and V = V (U). In each iteration one of
the two groups of variables is kept fixed, and the minimization is performed with respect
to the other group. In other words:

∂L(U, V )

∂vi

= 0 (2.10)

with U fixed, gives a formula for the update of the centroids vi, and:

∂L(U, V )

∂uih

= 0 (2.11)

with V fixed, gives a formula for the update of the memberships uih. The algorithms
start by randomly initializing U or V , and iteratively update U and V by means of the
previous two equations. It can be proved that the value of L does not increase after each
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iteration [HK03]. The algorithms stop when a convergence criterion is satisfied on U , V or
G. Usually the following is considered:

‖U − U ′‖p < ε (2.12)

where U ′ is the updated version of the memberships and ‖‖p is a p-norm.

We now explicitly derive the update equations of four clustering algorithms based on
fuzzy memberships, in particular: Fuzzy c-means I (FCM I) [Bez81], Fuzzy c-means II
(FCM II) [BL94], Possibilistic c-means I (PCM I) [KK93], and Possibilistic c-means II
(PCM II) [KK96]. In the following derivations, we will use the Euclidean distance function:

d2
E(x,y) = (x − y)T (x − y) =

d
∑

i=1

(xi − yi)
2

with x, y ∈ R
d. It is worth noting that it is possible to use other distance functions, e.g.,

Minkowski:

dp
M(x,y) =

d
∑

i=1

(xi − yi)
p

with p ≥ 1, that extends the Euclidean distance. For all values of p, such distance lead to
hyperspherical clusters. Other popular choices of metrics extending the Euclidean one are
those belonging to this class:

dA = (x − y)T A−1 (x − y)

with A invertible. When A is the identity matrix, dA corresponds to the Euclidean distance.
When A is diagonal, the features are scaled, leading to ellipsoid-shaped clusters oriented
along the directions of the features. When A is the covariance matrix, dA is the so called
Mahalanobis distance, that leads to ellipsoid-shaped clusters oriented along the principal
components of data. Other modifications are represented by the incorporation of prior
information on the shape of clusters. These algorithms, called Fuzzy c-Varieties, can be
found in Ref. [Bez81].

2.1.2.1 Fuzzy c-means I - FCM I

The Lagrangian L(U) is introduced [Bez81]:

L(U, V ) =
c
∑

i=1

n
∑

h=1

um
ih‖xh − vi‖

2 +
n
∑

h=1

βh(1 −

c
∑

i=1

uih) (2.13)

The first term is the distortion G(U, V ) and the second is W (U) which is not zero, since the
memberships are subject to the probabilistic constraint in Eq. 2.5. The parameter m > 1
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works as a fuzzifier parameter; for high values of m, the memberships tend to be equally
distributed among clusters. Setting to zero the derivatives of L(U, V ) with respect to uih:

∂L(U, V )

∂uih

= mum−1
ih ‖xh − vi‖

2 − βh = 0 (2.14)

we obtain:

uih =

(

βh

m‖xh − vi‖2

)
1

m−1

(2.15)

Substituting the expression of uih into the constraint equation:

c
∑

i=1

(

βh

m‖xh − vi‖2

)
1

m−1

= 1 (2.16)

we can obtain the Lagrange multipliers:

βh =

[

c
∑

i=1

(

1

m‖xh − vi‖2

)
1

m−1

]1−m

(2.17)

Substituting Eq. 2.17 into Eq. 2.15, the equation for the update of the memberships uih

can be obtained:

u−1
ih =

c
∑

j=1

(

‖xh − vi‖
2

‖xh − vj‖2

)
1

m−1

(2.18)

To compute the equation for the update of the vi, we set to zero the derivatives of L(U, V )
with respect to vi:

∂L(U, V )

∂vi

= −

n
∑

h=1

um
ih (xh − vi) = 0 (2.19)

obtaining:

vi =

∑n
h=1 u

m
ihxh

∑n
h=1 u

m
ih

(2.20)

2.1.2.2 Fuzzy c-means II - FCM II

This algorithm, also known as soft K-means, fits a mixture of isotropic Gaussians. In the
formalism we are using in this thesis, the FCM II Lagrangian L(U, V ) is [BL94]:

L(U, V ) =
n
∑

h=1

c
∑

i=1

uih‖xh − vi‖
2 + λ

n
∑

h=1

c
∑

i=1

uih ln(uih) +
n
∑

h=1

βh(1 −
c
∑

i=1

uih) (2.21)
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The entropic term favors values of the memberships near zero or one (Fig. 2.2). Let’s
compute the derivative of L(U, V ) with respect to uih:

∂L(U, V )

∂uih

= ‖xh − vi‖
2 + λ(ln(uih) + 1) − βh = 0 (2.22)

This leads to:

uih =
1

e
exp

(

βh

λ

)

exp

(

−
‖xh − vi‖

2

λ

)

(2.23)

Substituting the last equation into the probabilistic constraint, we obtain:

c
∑

i=1

1

e
exp

(

βh

λ

)

exp

(

−
‖xh − vi‖

2

λ

)

= 1 (2.24)

This allows to compute the Lagrange multipliers:

βh = λ− λ ln

(

c
∑

j=1

exp

(

−
‖xh − vj‖

2

λ

)

)

(2.25)

Substituting Eq. 2.25 into Eq. 2.23, we obtain the equation for the update of the uih:

uih =
exp

(

−‖xh−vi‖
2

λ

)

∑c
j=1 exp

(

−
‖xh−vj‖2

λ

) (2.26)

Setting to zero the derivatives of L(U, V ) with respect to vi:

∂L(U, V )

∂vi

= −
n
∑

h=1

uih (xh − vi) = 0 (2.27)

the following update formula for the centroids vi is obtained:

vi =

∑n
h=1 uihxh
∑n

h=1 uih

(2.28)

2.1.2.3 Possibilistic c-means I - PCM I

The PCM I Lagrangian L(U, V ) does not have theW (U) term coming from the probabilistic
constraint on the memberships [KK93]:

L(U, V ) =
n
∑

h=1

c
∑

i=1

um
ih‖xh − vi‖

2 +
c
∑

i=1

ηi

n
∑

h=1

(1 − uih)
m (2.29)
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Figure 2.2: (a) Plot of the FCM II entropy H(uih) = uih ln(uih). (b) Plot of the PCM I
entropy H(uih) = (1 − uih)

m for increasing values of m. (c) Plot of the PCM II entropy
H(uih) = uih ln(uih) − uih.

The entropic term penalizes small values of the memberships.

Setting to zero the derivatives of L(U, V ) with respect to the memberships uih:

∂L(U, V )

∂uik

= mum−1
ih (‖xh − vi‖

2) − ηim(1 − uih)
m−1 = 0 (2.30)

We obtain directly the update equation:

u−1
ih =

(

‖xh − vi‖
2

ηi

)
1

m−1

+ 1 (2.31)

The following derivative of L(U, V ):

∂L(U, V )

∂vi

= −
n
∑

h=1

um
ih (xh − vi) = 0 (2.32)

gives the update equation for the centroids vi:

vi =

∑n
h=1 u

m
ihxh

∑n
h=1 u

m
ih

(2.33)

The following criterion is suggested to estimate the value of ηi:

ηi = γ

∑n
h=1 (uih)

m ‖xh − vi‖
2

∑n
h=1 (uih)

m (2.34)

where γ is usually set to one. In order to have a reliable estimation of ηi, it is suggested
to use the results of a fuzzy clustering algorithm (e.g., FCM I or FCM II).
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2.1.2.4 Possibilistic c-means II - PCM II

The PCM II Lagrangian L(U, V ) is [KK96]:

L(U, V ) =
n
∑

h=1

c
∑

i=1

uih‖xh − vi‖
2 +

c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) (2.35)

The entropic term penalizes small values of the memberships.

Setting to zero the derivatives of L(U, V ) with respect to the memberships uih:

∂L(U, V )

∂uik

= ‖xh − vi‖
2 + ηi ln(uih) = 0 (2.36)

we obtain:

uik = exp

(

−
‖xh − vi‖

2

ηi

)

(2.37)

Setting to zero the derivatives of L(U, V ) with respect to vi:

∂L(U, V )

∂vi

= −

n
∑

h=1

uih (xh − vi) = 0 (2.38)

we obtain the update formula for the centroids vi:

vi =

∑n
h=1 uihxh
∑n

h=1 uih

(2.39)

As in the PCM I, the value of ηi can be estimated as:

ηi = γ

∑n
h=1 uih‖xh − vi‖

2

∑n
h=1 uih

(2.40)

2.2 Kernel Methods for Clustering

In machine learning, the use of the kernel functions [Mer09] has been introduced by Aiz-
erman et al. [ABR64] in 1964. In 1995 Cortes and Vapnik introduced Support Vector
Machines (SVMs) [CV95], which perform better than other classification algorithms in
several problems. The success of SVM has brought to extend the use of kernels to other
learning algorithms (e.g., Kernel PCA [SSM98]). The choice of the kernel is crucial to
incorporate a priori knowledge on the application, for which it is possible to design ad hoc
kernels.
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2.2.1 Mercer kernels

We recall the definition of Mercer kernels [Aro50, Sai88], considering, for the sake of sim-
plicity, vectors in R

d instead of C
d.

Definition 2.2.1. Let X = {x1, . . . ,xn} be a nonempty set where xi ∈ R
d. A function

K : X ×X → R is called a positive definite kernel (or Mercer kernel) if and only if K is
symmetric (i.e. K(xi,xj) = K(xj,xi)) and the following equation holds:

n
∑

i=1

n
∑

j=1

cicjK(xi,xj) ≥ 0 ∀n ≥ 2 , (2.41)

where cr ∈ R ∀r = 1, . . . , n

Each Mercer kernel can be expressed as follows:

K(xi,xj) = Φ(xi) · Φ(xj) , (2.42)

where Φ : X → F performs a mapping from the input space X to a high dimensional
feature space F . One of the most relevant aspects in applications is that it is possible to
compute Euclidean distances in F without knowing explicitly Φ. This can be done using
the so called distance kernel trick [MMR+01, SSM98]:

‖Φ(xi) − Φ(xj)‖
2 = (Φ(xi) − Φ(xj)) · (Φ(xi) − Φ(xj))

= Φ(xi) · Φ(xi) + Φ(xj) · Φ(xj) − 2Φ(xi) · Φ(xj)

= K(xi,xi) +K(xj,xj) − 2K(xi,xj) (2.43)

in which the computation of distances of vectors in feature space is just a function of the
input vectors. In fact, every algorithm where input vectors appear only in dot products
with other input vectors can be kernelized [SS01]. In order to simplify the notation, we
introduce the so called Gram matrix K, having its entries kij representing the scalar
product Φ(xi) · Φ(xj). Thus, Eq. 2.43 can be rewritten as:

‖Φ(xi) − Φ(xj)‖
2 = kii + kjj − 2kij . (2.44)

Examples of Mercer kernels are the following [Vap95]:

• linear:
K(l)(xi,xj) = xi · xj (2.45)

• polynomial of degree p:

K(p)(xi,xj) = (1 + xi · xj)
p p ∈ N (2.46)
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• Gaussian:

K(g)(xi,xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

σ ∈ R (2.47)

It is important to stress that the use of the linear kernel in Eq. 2.43 simply leads to the
computation of the Euclidean norm in the input space. Indeed:

‖xi − xj‖
2 = xi · xi + xj · xj − 2xi · xj

= K(l)(xi,xi) +K(l)(xj,xj) − 2K(l)(xi,xj)

= ‖Φ(xi) − Φ(xj)‖
2 , (2.48)

shows that choosing the kernel K(l) implies Φ = I (where I is the identity function).
Following this consideration, we can think that kernels can offer a more general way to
represent the elements of a set X and possibly, for some of these representations, the
clusters can be easily identified.

In literature there are some applications of kernels in clustering. These methods can be
broadly divided in three categories, based respectively on:

• kernelization of the metric [WXY03, ZC03, ZC04];

• clustering in feature space [GO98, IM04, MF00, QS04, ZC02];

• description via support vectors [CV05, HHSV01].

Methods based on kernelization of the metric look for centroids in input space and the
distances between patterns and centroids is computed by means of kernels:

‖Φ(xh) − Φ(vi)‖
2 = K(xh,xh) +K(vi,vi) − 2K(xh,vi) . (2.49)

Clustering in feature space is made by mapping each pattern using the function Φ and
then computing centroids in feature space. Calling vΦ

i the centroids in feature space, we

will see in the next sections that it is possible to compute the distances
∥

∥Φ(xh) − vΦ
i

∥

∥

2
by

means of the kernel trick.

The description via support vectors makes use of One Class SVM to find a minimum
enclosing sphere in feature space able to enclose almost all data in feature space excluding
outliers. The computed hypersphere corresponds to nonlinear surfaces in input space
enclosing groups of patterns. The Support Vector Clustering algorithm allows to assign
labels to patterns in input space enclosed by the same surface. In the next sub-sections
we will outline these three approaches. We decided to include the clustering with the
kernelization of the metric in the subsection about fuzzy clustering using kernels.
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2.2.2 K-Means in Feature Space

Given the data set X, we map our data in some feature space F , by means of a nonlinear
map Φ and we consider k centers in feature space (vΦ

i ∈ F with i = 1, . . . , k) [Gir02,
SSM98]. We call the set V Φ = (vΦ

1 , . . . ,v
Φ
k ) Feature Space Codebook, since in our represen-

tation the centers in the feature space play the same role of the codevectors in the input
space. In analogy with the codevectors in the input space, we define for each center vΦ

i

its Voronoi Region and Voronoi Set in feature space. The Voronoi Region in feature space
(RΦ

i ) of the center vΦ
i is the set of all vectors in F for which vΦ

i is the closest vector

RΦ
i =

{

xΦ ∈ F

∣

∣

∣

∣

i = arg min
j

∥

∥xΦ − vΦ
j

∥

∥

}

. (2.50)

The Voronoi Set in Feature Space πΦ
i of the center vΦ

i is the set of all vectors x in X such
that vΦ

i is the closest vector to their images Φ(x) in the feature space:

πΦ
i =

{

x ∈ X

∣

∣

∣

∣

i = arg min
j

∥

∥Φ(x) − vΦ
j

∥

∥

}

. (2.51)

The set of the Voronoi Regions in feature space define a Voronoi Tessellation of the Feature
Space. The Kernel K-Means algorithm has the following steps:

1. Project the data set X into a feature space F , by means of a nonlinear mapping Φ.

2. Initialize the codebook V Φ = (vΦ
1 , . . . ,v

Φ
k ) with vΦ

i ∈ F

3. Compute for each center vΦ
i the set πΦ

i

4. Update the codevectors vΦ
i in F

vΦ
i =

1

|πΦ
i |

∑

x∈πΦ

i

Φ(x) (2.52)

5. Go to step 3 until any vΦ
i changes

6. Return the feature space codebook.

This algorithm minimizes the quantization error in feature space.

Since we do not know explicitly Φ, it is not possible to compute directly Eq. 2.52. Nev-
ertheless, it is always possible to compute distances between patterns and codevectors by
using the kernel trick, allowing to obtain the Voronoi sets in feature space πΦ

i . Indeed,
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writing each centroid in feature space as a combination of data vectors in feature space,
we have:

vΦ
j =

n
∑

h=1

γjhΦ(xh) , (2.53)

where γjh is one if xh ∈ πΦ
j and zero otherwise. Now the quantity:

∥

∥Φ(xi) − vΦ
j

∥

∥

2
=

∥

∥

∥

∥

∥

Φ(xi) −
n
∑

h=1

γjhΦ(xh)

∥

∥

∥

∥

∥

2

(2.54)

can be expanded by using the scalar product and the kernel trick in Eq. 2.43:
∥

∥

∥

∥

∥

Φ(xi) −
n
∑

h=1

γjhΦ(xh)

∥

∥

∥

∥

∥

2

= kii − 2
∑

h

γjhkih +
∑

r

∑

s

γjrγjskrs . (2.55)

This allows to compute the closest feature space codevector for each pattern and to update
the coefficients γjh. It is possible to repeat these two operations until any γjh changes to
obtain a Voronoi tessellation of the feature space.

An on-line version of the kernel K-Means algorithm can be found in [SSM98]. A further
version of K-Means in feature space has been proposed in Ref. [Gir02]. In his formulation
the number of clusters is denoted by c and a fuzzy membership matrix U is introduced.
Each element uih denotes the fuzzy membership of the point xh to the Voronoi set πΦ

i .
This algorithm tries to minimize the following functional with respect to U :

JΦ(U, V Φ) =
n
∑

h=1

c
∑

i=1

uih

∥

∥Φ(xh) − vΦ
i

∥

∥

2
. (2.56)

The minimization technique used in Ref. [Gir02] is Deterministic Annealing [Ros98] which
is a stochastic method for optimization. A parameter controls the fuzziness of the mem-
bership during the optimization and can be thought proportional to the temperature of a
physical system. This parameter is gradually lowered during the annealing and at the end
of the procedure the memberships have become crisp; therefore a tessellation of the feature
space is found. This linear partitioning in F , back to the input space, forms a nonlinear
partitioning of the input space.

There are other popular clustering algorithms that have a formulation in kernel-induced
spaces. For example, the the SOMs [Koh90] and Neural Gas [MBS93] versions in feature
space can be find respectively in Refs. [IM04, MF00] and [QS04].

2.2.3 One-Class SVM

One among the approaches using kernels in clustering applications, is based on the support
vector description of data [TD99, SS01]. The aim of this approach is to look for an hyper-
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sphere centered in v containing almost all data, namely allowing some outliers. Support
Vector Clustering (SVC) [HHSV01, HHSV00] takes advantage of this description to per-
form clustering. In particular, the support vector description of data in the kernel-induced
space, leads to possibly non-linear surfaces separating the clusters in the original space. A
labeling algorithm is necessary to assign the same label to the patterns belonging to the
same region.

We show the derivation of this method, starting from the problem of finding an hyper-
sphere in input space containing almost all data, extending it by means of kernels. The
hypersphere has to enclose almost all patterns. This means that the distance between
patterns and the center of the sphere v is less than the sum of the radius R and a positive
amount:

‖xh − v‖2 ≤ R2 + ξh ξh ≥ 0

The positive slack variables ξh take into account the fact that a pattern can be outside the
sphere. The problem of finding such sphere can be formalized in the following way:

min
v,ξ1,...,ξn

R2 subject to :

‖xh − v‖2 ≤ R2 + ξh and − ξh ≤ 0

This problem can be reformulated by means of the Lagrange multiplier technique, where
the functional has to be minimized under two inequality constraints. The Lagrangian L
can be introduced:

L = R2 −
∑

h

αh

(

R2 + ξh − ‖xh − v‖2
)

−
∑

h

βhξh + C
∑

h

ξh (2.57)

with the Lagrange multipliers satisfying the following:

αh ≥ 0 βh ≥ 0

The parameter C regulates the number of patterns allowed to be outside the sphere.

To obtain the dual formulation of the problem, we set to zero the derivatives of L with
respect to its variables:

∂L

∂R
= 2R− 2R

∑

h

αh = 0 (2.58)

∂L

∂ξh
= C − αh − βh = 0 (2.59)

∂L

∂v
= −2

∑

h

αh(xh − v) (2.60)
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obtaining:
∑

h

αh = 1 (2.61)

βh = C − αh (2.62)

v =
∑

h

αhxh (2.63)

Note that Eq. 2.62 implies that 0 ≤ αh ≤ C.

The Karush-Kuhn-Tucker (KKT) complementary conditions [Bur98] result in:

βhξh = 0, αh

(

R2 + ξh − ‖xh − v‖2
)

= 0. (2.64)

Following simple considerations regarding all these conditions, it is possible to see that:

• when ξh > 0, the image of xh lies outside the hypersphere. These points are called
bounded support vectors. For them, αh = C holds;

• when ξh = 0 and 0 < αh < C, the image of xh lies on the surface of the hypersphere.
These points are called support vectors.

• when ξh = 0 and αh = 0, the image of xh is inside the hypersphere.

The parameter C gives a bound on the number of bounded support vectors with respect
to the cardinality of the data set. In order to have a direct interpretation on the number
of bounded support vectors to select, C is sometimes substituted by ν:

ν =
1

nC
(2.65)

In the following we will use both these notations to select the number of outliers.

Substituting Eqs. 2.61-2.63 in L, we get the dual formulation of the Lagrangian that has
to be maximized with respect to the Lagrange multipliers:

L = R2 −
∑

h

αh

(

R2 + ξh − ‖xh −
∑

r

αrxr‖
2

)

−
∑

h

(C − αh)ξh + C
∑

h

ξh

=
∑

h

αh‖xh −
∑

r

αrxr‖
2

=
∑

h

αhxhxh +
∑

h

αh

∑

r

∑

s

αrαsxrxs − 2
∑

h

∑

r

αhαrxhxr

=
∑

h

αhxhxh −
∑

r

∑

s

αrαsxrxs
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Since the last equation contains only scalar products between patterns, it is possible to
substitute them by any positive semidefinite kernels, leading to the following optimization
problem:

min
α1,...,αn

(

∑

r

∑

s

αrαskrs −
∑

h

αhkhh

)

subject to :

∑

h

αh = 1 and 0 ≤ αh ≤ C

The solution of this problem can be computed using SMO algorithm [Pla99]. In the case of
Gaussian kernel, the problem is equivalent to find an hyperplane separating most of data
points from outliers [SS01].

Once a solution is obtained, the distance from the image of a point xh and the center v of
the enclosing sphere can be computed as follows:

dh = ‖Φ(xh) − v‖2 = khh − 2
∑

r

αrkhr +
∑

r

∑

s

αrαskrs (2.66)

In Fig. 2.3 it is possible to see the ability of this algorithm to find the smallest enclosing
sphere without outliers.
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Figure 2.3: One class SVM applied to two data sets with outliers. The gray line shows the
projection in input space of the smallest enclosing sphere in feature space. In (a) a linear
kernel and in (b) a Gaussian kernel have been used.
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2.2.3.1 Support Vector Clustering

Once boundaries in input space are found, a labeling procedure is necessary in order
to complete clustering. In [HHSV01] the cluster assignment procedure follows a simple
geometric idea. Any path connecting a pair of points belonging to different clusters must
exit from the enclosing sphere in feature space. Denoting with Y the image in feature
space of one of such paths and with y the elements of Y , it will result that R(y) > R for
some y. Thus it is possible to define an adjacency structure in this form:

{

1 if R(y) < R ∀y ∈ Y
0 otherwise.

(2.67)

Clusters are simply the connected components of the graph with the adjacency matrix just
defined. In the implementation in Ref. [HHSV00], the matrix is constructed sampling the
line segment Y in 20 equidistant points. There are some modifications on this labeling
algorithm (e.g., [Lee05, YEC02]) that improve performances. An improved version of SVC
algorithm with application in handwritten digits recognition can be found in Ref. [CH03].
A technique combining K-Means and One Class SVM can be found in Ref. [CV05].

2.2.4 Kernel fuzzy clustering methods

2.2.4.1 FCM I with the kernelization of the metric

The basic idea is to minimize the functional [WXY03, ZC03, ZC04]:

JΦ(U, V ) =
n
∑

h=1

c
∑

i=1

(uih)
m ‖Φ(xh) − Φ(vi)‖

2 , (2.68)

with the probabilistic constraint over the memberships (Eq. 2.5). The procedure for the
optimization of JΦ(U, V ) is again the Picard iteration technique. The minimization of the
functional in Eq. 2.68 has been proposed only in the case of a Gaussian kernel K(g). The
reason is that the derivative of JΦ(U, V ) with respect to the vi using a Gaussian kernel is
particularly simple, since it allows to use the kernel trick:

∂K(xh,vi)

∂vi

=
(xh − vi)

σ2
K(xh,vi) . (2.69)

We obtain for the memberships:

u−1
ih =

c
∑

j=1

(

1 −K(xh,vi)

1 −K(xh,vj)

)
1

m−1

, (2.70)
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and for the codevectors:

vi =

∑n
h=1 (uih)

mK(xh, vi)xh
∑n

h=1 (uih)
mK(xh, vi)

. (2.71)

2.2.4.2 FCM I in feature space

Here we derive the Fuzzy c-Means in feature space, which is a clustering method that allows
to find a soft linear partitioning of the feature space. This partitioning, back to the input
space, results in a soft nonlinear partitioning of data. The functional to optimize [GO98,
ZC02] with the probabilistic constraint in Eq. 2.5 is:

JΦ(U, V Φ) =
n
∑

h=1

c
∑

i=1

(uih)
m
∥

∥Φ(xh) − vΦ
i

∥

∥

2
. (2.72)

It is possible to rewrite explicitly the norm in Eq. 2.72 by using:

vΦ
i =

∑n
h=1 (uih)

m Φ(xh)
∑n

h=1 (uih)
m = ai

n
∑

h=1

(uih)
m Φ(xh) , (2.73)

which is the kernel version of Eq. 2.20. For simplicity of notation we used:

a−1
i =

n
∑

r=1

(uir)
m . (2.74)

Now it is possible to write the kernel version of Eq. 2.18:

u−1
ih =

c
∑

j=1













khh − 2ai

n
∑

r=1

(uir)
m khr + a2

i

n
∑

r=1

n
∑

s=1

(uir)
m (uis)

m krs

khh − 2aj

n
∑

r=1

(ujr)
m khr + a2

j

n
∑

r=1

n
∑

s=1

(ujr)
m (ujs)

m krs













1

m−1

. (2.75)

Eq. 2.75 gives the rule for the update of the memberships.

2.2.4.3 PCM I with the kernelization of the metric

The formulation of the Possibilistic c-Means PCM-I with the kernelization of the metric
used in [ZC03] involves the minimization of the following functional:

JΦ(U, V ) =
n
∑

h=1

c
∑

i=1

(uih)
m ‖Φ(xh) − Φ(vi)‖

2 +
c
∑

i=1

ηi

n
∑

h=1

(1 − uih)
m (2.76)
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The minimization leads to:

u−1
ih = 1 +

(

‖Φ(xh) − Φ(vi)‖
2

ηi

)
1

m−1

, (2.77)

that can be rewritten, considering a Gaussian kernel, as:

u−1
ih = 1 + 2

(

1 −K(xh,vi)

ηi

)
1

m−1

. (2.78)

The update of the codevectors follows:

vi =

∑n
h=1 (uih)

mK(xh, vi)xh
∑n

h=1 (uih)
mK(xh, vi)

. (2.79)

The computation of the ηi is straightforward.

2.3 Spectral Clustering and Connections with Kernel

Clustering Methods

Spectral clustering methods [CTK01] have a strong connection with graph theory [Chu97,
DH73a]. A comparison of some spectral clustering methods has been recently proposed
in Ref. [VM05]. Let X = {x1, . . . ,xn} be the set of patterns to cluster. Starting from
X, we can build a complete, weighted undirected graph G(V,A) having a set of nodes
V = {v1, . . . , vn} corresponding to the n patterns, and edges defined through the n × n
adjacency (also affinity) matrix A. The adjacency matrix of a weighted graph is given by
the matrix whose element aij represents the weight of the edge connecting nodes i and
j. Being an undirected graph, the property aij = aji holds. The adjacency between two
patterns can be defined as follows:

aij =

{

h(xi,xj) if i 6= j
0 otherwise.

(2.80)

The function h measures the similarity between patterns and typically a Gaussian function
is used:

h(xi,xj) = exp

(

−
d(xi,xj)

2σ2

)

, (2.81)

where d measures the dissimilarity between patterns and σ controls the rapidity of decay
of h. This particular choice has the property that A has only some terms significantly
different from 0, i.e., it is sparse.
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The degree matrix D is the diagonal matrix whose elements are the degrees of the nodes
of G.

dii =
n
∑

j=1

aij . (2.82)

In this framework the clustering problem can be seen as a graph cut problem [Chu97]
where one wants to separate a set of nodes S ⊂ V from the complementary set S̄ = V \S.
The graph cut problem can be formulated in several ways, depending on the choice of the
function to optimize. One of the most popular functions to optimize is the cut [Chu97]:

cut(S, S̄) =
∑

vi∈S,vj∈S̄

aij . (2.83)

It is easy to verify that the minimization of this objective function favors partitions con-
taining isolated nodes. To achieve a better balance in the cardinality of S and S̄, it is
suggested to optimize the normalized cut [SM00]:

Ncut(S, S̄) = cut(S, S̄)

(

1

assoc(S, V )
+

1

assoc(S̄, V )

)

, (2.84)

where the association assoc(S, V ) is also known as the volume of S:

assoc(S, V ) =
∑

vi∈S,vj∈V

aij ≡ vol(S) =
∑

vi∈S

dii . (2.85)

There are other definitions of functions to optimize (e.g., the conductance [KVV00], the
normalized association [SM00], ratio cut [DGK05]).

The complexity in optimizing these objective functions is very high (e.g., the optimization
of the normalized cut is a NP-hard problem [SM00, WW93]); for this reason it has been
proposed to relax it by using spectral concepts of graph analysis. This relaxation can be
formulated by introducing the Laplacian matrix [Chu97]:

L = D − A , (2.86)

which can be seen as a linear operator on G. In addition to this definition of Laplacian
there are alternative definitions:

• Normalized Laplacian LN = D− 1

2LD− 1

2

• Generalized Laplacian LG = D−1L

• Relaxed Laplacian Lρ = L− ρD
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Each definition is justified by special properties desirable in a given context. The spectral
decomposition of the Laplacian matrix can give useful information about the properties of
the graph. In particular it can be seen that the second smallest eigenvalue of L is related
to the graph cut [Fie73] and the corresponding eigenvector can cluster together similar
patterns [BH03, Chu97, SM00].

Spectral approach to clustering has a strong connection with Laplacian Eigenmaps [BN03].
The dimensionality reduction problem aims to find a proper low dimensional representation
of a data set in a high dimensional space. In [BN03], each node in the graph, which
represents a pattern, is connected just with nodes corresponding to neighboring patterns
and the spectral decomposition of the Laplacian of the obtained graph permits to find a low
dimensional representation of X. The authors point out the close connection with spectral
clustering and Local Linear Embedding [RS00], providing theoretical and experimental
validations.

2.3.1 The graph cut

We now motivate the use of the spectral decomposition of the Laplacian for the clustering
problem. We describe the connection between the cut(S, S̄) of a graph and the second
eigenvalue of L [Chu97].

The Laplacian can be seen as a discrete version of the Laplacian operator △, which plays
a key role in mathematical physics. The Laplacian L can be seen as an operator on the
space of the functions g : V → R satisfying2 [Chu97]:

L(g(vi)) =
∑

vj∼vi

(g(vi) − g(vj))aij (2.87)

Since L is a linear operator, it is possible to use linear algebra to infer important charac-
teristics of G.

There are some basic properties of the eigenvalues and eigenvectors of L [Moh92]. The
eigenvalues {λ1, . . . , λn} of L are real since L is symmetric. Recalling that the Rayleight
quotient [GVL96] is defined as:

R =
(g, L(g))

(g, g)
(2.88)

it is easy to verify that L is positive semidefinite, since the Rayleight quotient is greater
than zero.

(g, L(g))

(g, g)
=

∑

vj∼vi
(g(vi) − g(vj))

2aij
∑

x g
2(x)

≥ 0 (2.89)

2The sum where vj ∼ vi means that we have to sum when vj and vi are connected.
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The smallest eigenvalue of L is λ1 = 0 with an associate eigenvector proportional to
(1, 1, . . . , 1) (it follows from the definition of L). Another interesting property associated
to the Laplacian is that the multiplicity of the eigenvalues equal to zero is exactly the
number of connected components of the graph. This can be verified by applying algebraic
concepts [Chu97, Apo67], noting that L assumes a block diagonal structure.

We recall that the cut of G in S and S̄ is defined as:

cut(S, S̄) =
∑

vi∈S,vj∈S̄

aij (2.90)

The cut measures the loss in removing a set of edges when disconnecting a set of nodes S
from its complement. A small value of cut indicates that S and its complement are weakly
connected, revealing a strong biclustered structure.

Based on the cut, it is possible to define the Cheeger constant as:

hg = min
S

cut(S, S̄)

min(vol(S), vol(S̄))
(2.91)

The second smallest eigenvalue λ2 of L is related to the Cheeger constant by the following
relation:

2hg ≥ λ2 ≥ h2
g/2 (2.92)

Thus, λ2 of L [Fie73] gives useful information about the connectivity of the graph and on
the bounds of the cut. Other theoretical studies on spectral clustering, motivate the use
of the decomposition of the Laplacian to cut the graph [BH03, SM00].

Applying simple concepts of algebra, it is possible to show that the second smallest eigen-
value λ2 and its corresponding eigenvector e2 are related to the Rayleight quotient [GVL96]
by the following:

λ2 = inf
g⊥(1,1,...,1)

(g, L(g))

(g, g)
(2.93)

e2 = arg min
g⊥(1,1,...,1)

(g, L(g))

(g, g)
(2.94)

This approach can be useful when only λ2 and e2 are needed. Indeed, solving the complete
eigenproblem can be very expensive, especially for large databases (as in image segmenta-
tion problems). In cases where the eigenvectors and eigenvalues of a sparse matrix have to
be computed, the Lanczos method [PSL90, GVL96] can be used, speeding up the comput-
ing process.
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2.3.2 Shi and Malik algorithm

The algorithm proposed by Shi and Malik [SM00] applies the concepts of spectral clustering
to image segmentation problems. In this framework, each node is a pixel and the definition
of adjacency between them is suitable for image segmentation purposes. In particular, if
xi is the position of the i-th pixel and fi a feature vector which takes into account several
of its attributes (e.g., intensity, color and texture information), they define the adjacency
as:

aij = exp

(

−
‖fi − fj‖

2

2σ2
1

)

·

{

exp
(

−
‖xi−xj‖

2

2σ2

2

)

if ‖xi − xj‖ < R

0 otherwise.
(2.95)

Here R has an influence on how many neighboring pixels can be connected with a pixel,
controlling the sparsity of the adjacency and Laplacian matrices. They provide a proof
that the minimization of Ncut(S, S̄) can be done solving the eigenvalue problem for the
normalized Laplacian LN. In summary, the algorithm is composed of these steps:

1. Construct the graph G starting from the data set X calculating the adjacency be-
tween patterns using Eq. 2.95

2. Compute the degree matrix D

3. Construct the matrix LN = D− 1

2LD− 1

2

4. Compute the eigenvector e2 associated to the second smallest eigenvalue λ2

5. Use D− 1

2e2 to segment G

In the ideal case of two non connected subgraphs, D− 1

2e2 assumes just two values; this
allows to cluster together the components of D− 1

2e2 with the same value. In a real case,
the splitting point must be chosen to cluster the components ofD− 1

2e2. The authors suggest
to use the median value, zero, or the value for which the clustering gives the minimum
Ncut. The successive partitioning can be made recursively on the obtained sub-graphs,
or it is possible to use more than one eigenvector. An interesting approach for clustering
simultaneously the data set in more than two clusters can be found in [YS03].

2.3.3 Ng, Jordan, and Weiss algorithm

The algorithm that has been proposed by Ng et al. [NJW02] uses the adjacency matrix A
as Laplacian. This definition allows to consider the eigenvector associated with the largest
eigenvalues as the “good” one for clustering. This has a computational advantage since
the principal eigenvectors can be computed for sparse matrices efficiently using the power
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iterations technique. The idea is the same as in other spectral clustering methods, i.e., one
finds a new representation of patterns on the first k eigenvectors of the Laplacian of the
graph.

The algorithm is composed of these steps:

1. Compute the affinity matrix A ∈ R
n×n:

aij =

{

exp
(

−
‖xi−xj‖

2

2σ2

)

if i 6= j

0 otherwise
(2.96)

2. Construct the matrix D

3. Compute a normalized version of A, defining this Laplacian:

L = D− 1

2AD− 1

2 (2.97)

4. Find the k eigenvectors {e1, . . . , ek} of L associated to the largest eigenvalues {λ1, . . . , λk}.

5. Form the matrix Z by stacking the k eigenvectors in columns.

6. Compute the matrix Y by normalizing each of the Z’s rows to have unit length:

yij =
zij

∑k
r=1 z

2
ir

(2.98)

In this way all the original points are mapped into a unit hypersphere.

7. In this new representation of the original n patterns, apply a clustering algorithm
that attempts to minimize distortion such as K-means.

As a criterion to choose σ, it is suggested to use the value that guarantees the minimum
distortion when the clustering stage is performed on Y . This algorithm has been tested
on artificial data sets, showing its to separate nonlinear structures. Here we show the
steps of the algorithm when applied to the data set in Fig. 2.4a. Once the singular value
decomposition of L is computed, we can see the new pattern representations given by
the matrices Z and Y in Figs. 2.4b and 2.5a (here obtained with σ = 0.4). Once Y
is computed, it is easy to cluster the two groups of points obtaining the result shown in
Fig. 2.5b.
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Figure 2.4: (a) A ring data set. (b) The matrix Z obtained with the first two eigenvectors
of the matrix L.
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Figure 2.5: (a) The matrix Y obtained by normalizing the rows of Z clustered by K-means
algorithm with two centroids. (b) The result of the Ng-Jordan-Weiss algorithm on the ring
data set.
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2.3.4 Other Methods

An interesting view of spectral clustering is provided by Meilă et al. [MS00] who describe
it in the framework of Markov random walks, leading to a different interpretation of the
graph cut problem. It is known, from the theory of Markov random walks, that if we
construct the stochastic matrix P = D−1A, each element pij represents the probability of
moving from node i to node j. In their work, they provide an explicit connection between
the spectral decomposition of L and P , showing that both have the same solution with
eigenvalues of P equal to 1−λi, where λi are the eigenvalues of L. Moreover, they propose
a method to learn a function of the features able to produce a correct segmentation starting
from a segmented image.

An interesting study on spectral clustering has been conducted by Kannan et al. [KVV00].
They study spectral clustering objective functions, showing that there is no objective
function able to cluster properly every data set. In other words, there always exists some
data set for which the optimization of a particular objective function has some drawback.
For this reason, they propose a bi-criteria objective function. These two objectives are
respectively based on the conductance and the ratio between the auto-association of a
subset of nodes S and its volume. Again, the relaxation of this problem is achieved by the
decomposition of the Laplacian of the graph associated to the data set.

2.3.5 A Unified View of Spectral and Kernel Clustering Methods

A possible connection between unsupervised kernel algorithms and spectral methods has
been recently studied, to find whether these two seemingly different approaches can be
described under a more general framework. The hint for this unifying theory lies in the
adjacency structure constructed by both these approaches. In the spectral approach there
is an adjacency between patterns which is the analogous of the kernel functions in kernel
methods.

A direct connection between Kernel PCA and spectral methods has been shown in Refs. [BDLR+04,
BVP03]. A unifying view of kernel K-means and spectral clustering methods has been
pointed out in Refs. [DGK07, DGK05, DGK04]. In this Section, we report the equiva-
lence between them highlighting that these two approaches have the same foundation; in
particular, both can be viewed as a matrix trace maximization problem.

2.3.5.1 Kernel clustering methods objective function

To show the direct equivalence between kernel and spectral clustering methods, we intro-
duce the weighted version of the K-means in kernel induced space [DGK04]. We introduce
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a weight matrix W having weights wk on the diagonal. Recalling that we denote with πi

the i-th cluster, we have that the functional to minimize is the following:

JΦ(W,V Φ) =
c
∑

i=1

∑

xk∈πi

wk

∥

∥Φ(xk) − vΦ
i

∥

∥

2
, (2.99)

where:

vΦ
i =

∑

xk∈πi
wkΦ(xk)

∑

xk∈πi
wk

=

∑

xk∈πi
wkΦ(xk)

si

, (2.100)

with:
si =

∑

xk∈πi

wk . (2.101)

Let’s define the matrix Z having:

zki =

{

s
−1/2
i if xk ∈ πi

0 otherwise.
(2.102)

Since the columns of Z are mutually orthogonal, it is easy to verify that:

s−1
i = (ZTZ)ii , (2.103)

and that only the diagonal elements are not null.

Now, we denote with F the matrix whose columns are the Φ(xk). It is easy to verify that
the matrix FW yields a matrix whose columns are the wkΦ(xk). Moreover, the expression
FWZZT gives a matrix having n columns which are the nearest centroids in feature space
of the Φ(xk).

Thus, substituting Eq. 2.100 in Eq. 2.99 we obtain the following matrix expression for
JΦ(W,V Φ):

JΦ(W,V Φ) =
n
∑

k=1

wk

∥

∥F·k − (FWZZT )·k
∥

∥

2
(2.104)

Here the dot has to be considered as a selection of the k-th column of the matrices.
Introducing the matrix Y = W 1/2Z, which is orthonormal (Y TY = I), the objective
function can be rewritten as:

JΦ(W,V Φ) =
n
∑

k=1

wk

∥

∥F·k − (FW 1/2Y Y TW−1/2)·k
∥

∥

2

=
∥

∥FW 1/2 − FW 1/2Y Y T
∥

∥

2

F
(2.105)

where the norm ‖‖F is the Frobenius norm [GVL96]. Using the fact that ‖A‖F = tr(AAT )
and the properties of the trace, it is possible to see that the minimization of the last
equation is equivalent to the maximization of the following [DGK07, DGK05]:

JΦ(W,V Φ) = tr(Y TW 1/2F TFW 1/2Y ) (2.106)
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2.3.5.2 Spectral clustering methods objective function

Recalling that the definition of association between two sets of edges S and T of a weighted
graph is the following:

assoc(S, T ) =
∑

i∈S,j∈T

aij (2.107)

it is possible to define many objective functions to optimize in order to perform clustering.
Here, for the sake of simplicity, we consider just the ratio association problem, where one
has to maximize:

J(S1, . . . , Sc) =
c
∑

i=1

assoc(Si, Si)

|Si|
(2.108)

where |Si| is the size of the i-th partition. Now we introduce the indicator vector zi, whose
k-th value is zero if xk 6∈ πi and one otherwise. Rewriting the last equation in a matrix
form, we obtain the following:

J(S1, . . . , Sc) =
c
∑

i=1

zT
i Azi

zT
i zi

(2.109)

Normalizing zi letting:

yi =
zi

(zT
i zi)1/2

(2.110)

we obtain:

J(S1, . . . , Sc) =
c
∑

i=1

yT
i Ayi = tr(Y TAY ) (2.111)

2.3.5.3 A unified view of the two approaches

Comparing Eq. 2.111 and Eq. 2.106 it is possible to see the perfect equivalence between
kernel K-means and the spectral approach to clustering when one wants to maximize the
ratio association. To this end, indeed, it is enough to set the weights in the weighted
K-means in kernel induced space equal to one, obtaining the classical kernel K-means.
It is possible to obtain more general results when one wants to optimize other objective
functions in the spectral approach, such as the ratio cut [CSZ93], the normalized cut and
the Kernighan-Lin [KL70] objective. For instance, in the case of the minimization of the
normalized cut which is one of the most used objective functions, the functional to optimize
is:

J(S1, . . . , Sc) = tr(Y TD−1/2AD−1/2Y ) (2.112)

Thus the correspondence with the objective in the kernel K-means imposes to choose
Y = D1/2Z, W = D and K = D−1AD−1. It is worth noting that for an arbitrary A it
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is not guaranteed that D−1AD−1 is definite positive. In this case the kernel K-means will
not necessarily converge. To cope with this problem in [DGK07] the authors propose to
enforce positive definiteness by means of a diagonal shift [RLKB03]:

K = σD−1 +D−1AD−1 (2.113)

where σ is a positive coefficient large enough to guarantee the positive definiteness of K.

2.4 Relational Clustering

In this Section, we briefly introduce some basic concepts about crisp and fuzzy rela-
tional clustering. In some clustering applications, it is not possible to have a feature-
based representation for the patterns, and the description is given in terms of pairwise
(dis)similarity relationships among them. Some approaches have been proposed to clus-
ter objects represented in this way. Popular crisp relational clustering algorithms form
hierarchical structures agglomerating patterns on the basis of the given dissimilarities;
they are the so called Sequential Agglomerative Hierarchical Non-Overlapping SAHN ap-
proaches [SS73, JD88, War63]. Agglomerative procedures are bottom-up, since they start
by placing each object in its own cluster and gradually merge smaller clusters in larger clus-
ters, until all objects are agglomerated. The basic idea is to define a criterion to compute
the distance between clusters, and iteratively merge pairs of clusters having the smallest
distance. This scheme is called Johnson’s algorithm [JD88]; we can find seven different
distance computations [SS73] [JD88] [War63]: Single-link (nearest neighbor), Complete-
link (furthest neighbor), Unweighted Pair Group Method using Arithmetic averages (UP-
GMA), Weighted Pair Group Method using Arithmetic averages (WPGMA), Unweighted
Pair Group Method using Centroids (UPGMC), Weighted Pair Group Method using Cen-
troids (WPGMC), and Ward’s method (minimum variance). In single-link, the distance
between clusters is defined as the distance between the closest pair of objects belonging to
them, in complete-link is defined as the distance between the most distant pair of objects.
UPGMA and WPGMA assess the dissimilarity between clusters by the average distance
between the pairs of objects belonging to the different clusters. The weighted case, gives
a different weight to the patterns depending on the size of the cluster. UPGMC and
WPGMC compute the dissimilarity between representatives of the clusters to merge. In
Ward’s method, the union of every possible cluster pair is considered at each step. The
two clusters whose fusion results in minimum increase in variance of the new cluster are
combined.

Other crisp approaches to the relational clustering are the Partitions Around Medoids
(PAM) method [KR90], Clustering LARge Applications (CLARA) [KR90], and Clustering
Large Applications based upon RANdomized Search (CLARANS) [NJW02]. PAM method
starts with choosing k objects as the initial medoids and assigning objects to the cluster
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represented by its medoid. It is possible to compute a score of this configuration, based
on a squared error criterion. Randomly selecting a non-medoid object, the total cost of
swapping the medoid with it can be computed. If this cost is less than zero, the medoid
is swapped with the randomly selected pattern. This procedure can be repeated until no
changes are found. PAM has been found to be more robust than k-means in the presence
of noise and outliers, since medoids are less influenced by outliers. PAM is computation-
ally inefficient for large data sets; for this reason the modifications CLARA [KR90] and
CLARANS [NJW02] have been proposed.

Some fuzzy relational clustering algorithms can be found in literature, for instance those
proposed by Ruspini [Rus93], Diday [Did71], Roubens [Rou78], the Relational Fuzzy c-
means (RFCM) [HDB89], the Relational Possibilistic c-means (RPCM) [dCOF06], Fuzzy
Analysis (FANNY) [KR90], and the Windham association prototypes [Win85]. RFCM is
based on the optimization of a proper objective function similar to that of FCM. Also
the optimization procedure resembles the one used in FCM. In fact, it turns out to be the
relational dual of the FCM; in other words, the RFCM with the Euclidean distances as dis-
similarities, gives the FCM. This duality can be found also between the RPCM [dCOF06]
and the Possibilistic c-means [KK93]. In general, all the K-means style clustering algo-
rithms are based on the concept of memberships and centroids, and are asked to find the
clusters in the input space that is usually Euclidean. In the dual versions, the concept
of centroids looses its meaning, since the patterns are not described in terms of features.
Moreover, if the dissimilarities are not metric, the convergence of the algorithms is not
guaranteed. For this reason, some solutions have been proposed. In Ref. [KJNY01], the
authors propose a fuzzy relational algorithm that selects the centroids among the objects
composing the data set. FANNY optimizes the same objective function as RFCM with
m = 2, but employing the Lagrange multiplier technique; this gives an elegant way to
handle non-metric dissimilarities. Another approach proposes to transform the dissimilar-
ities between patterns from non-metric to metric [RLBM02, HB94]; this is the basis of the
modification allowing NERF c-means to deal with non-metric dissimilarities. In Chapter 4
we will study in more detail the implications of the non metric dissimilarities in relational
clustering algorithms based on fuzzy memberships. In particular, we will discuss how to
transform the dissimilarities from non-metric to metric, and how these transformations
influence the behavior of four relational fuzzy clustering algorithms.

2.4.1 Relational Dual of the FCM I

Let Y = {y1, . . . , yn} be a set of n objects and R the n × n matrix with entries rij

representing the dissimilarity between patterns yi and yj. As in the FCM, the membership
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matrix U is defined. The objective function to optimize is the following [HDB89]:

L(U) =
c
∑

i=1

n
∑

h=1

n
∑

k=1

um
ihu

m
ikrhk

2
n
∑

h=1

um
ih

(2.114)

subject to the probabilistic constraint in Eq. 2.5. Bezdek proved that minimization of
the FCM I and RFCM objective functions are equivalent if R is squared Euclidean. In
this case, RFCM can be considered as the relational dual of FCM. In order to derive the
necessary update equations for the RFCM, Hathaway and Bezdek proved that the squared
Euclidean distance, d2

ik = ‖xj −vi‖
2, from feature vector xj to the center of the ith cluster,

vi, can be written in terms of R as follows:

d2
ik = (Rvi)k − vt

iRvi/2 (2.115)

where vi is the membership vector defined by:

vi =
(um

i1, . . . , u
m
in)

∑n
j=1 u

m
ij

(2.116)

This allows to compute the distances between the objects and the prototypes when only
R is given. This means that even when only relational data is available in the form of an
n× n relation matrix, the relational dual of FCM is expected to perform in an equivalent
way to FCM, provided that R is Euclidean. In this case, there exists a set of n vectors,
called embedding vectors, satisfying:

rhk = ‖xh − xk‖
2 (2.117)

Resuming, the iteration of the following equations is performed:

vi =
(um

i1, . . . , u
m
in)

∑n
j=1 u

m
ij

(2.118)

d2
ik = (Rvi)k − vt

iRvi/2 (2.119)

u−1
ih =

c
∑

j=1

(

d2
ih

d2
jh

)
1

m−1

(2.120)

When R is not metric, it is possible that come d2
ik are negative. To cope with this this prob-

lem, NERF c-means [HB94] transforms R, to turn it to Euclidean. Let e = {1, 1, . . . , 1}T

and I the n× n identity matrix. The proposed transformation is:

Rβ = R + β(eeT − I) (2.121)
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where β is a suitable scalar. In NERF c-means, the distances d2
ik are checked in every

iteration for negativity. If they are negative, the transformation in Eq. 2.121 has to be
applied with a suitable value of β, to make d2

ik positive. We will study this transformation
in more detail in Chapter 4.

2.4.2 Relational Dual of the PCM I

The objective function of the Relational Dual of the PCM I is called RPCM [dCOF06].
Its objective function is:

L(U) =
c
∑

i=1

n
∑

h=1

n
∑

k=1

um
ihu

m
ikrhk

2
n
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+
c
∑
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ηi

n
∑

h=1

(1 − uih)
m (2.122)

Following the same considerations as in RFCM, we obtain the iteration of the following
equations:

vi =
(um

i1, . . . , u
m
in)

∑n
j=1 u

m
ij

(2.123)

d2
ik = (Rvi)k − vt

iRvi/2 (2.124)

u−1
ih =

(

d2
ih

ηi

)
1

m−1

+ 1 (2.125)

In Ref. [dCOF06] the authors suggest a criterion to estimate the values of ηi. Again, it is
possible to deal with non-Euclidean matrices R by applying a β-transformation.
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Chapter 3

An Experimental Comparison of

Kernel and Spectral Clustering

Methods

In this Chapter, we compare the performances of some among the algorithms presented
in Chapter 2 on several data sets. In particular, we compare the clustering algorithms in
feature space, clustering with the kernelization of the metric, Support Vector Clustering,
two spectral clustering algorithms, and four standard methods: K-means, FCM I, FCM II,
and hierarchical clustering. We decided to include such comparative study in the thesis,
since these recent clustering models have not been sufficiently validated in applications by
the authors. The data sets considered in the present study are well known in Machine
Learning community. All the data sets are labeled. Some of them can be found in the
UCI repository [AN07], while two of them are Bioinformatics data sets. We decided to
include a variety of data sets differing from cardinality, dimensionality, and number of
classes (Tab. 3.1). The comparison is done on the basis of three performance indexes, in
particular: misclassifications, normalized mutual information, and conditional entropy.

In the next Sections we briefly describe the data sets, the compared methods, and the
performance indexes. Section 3.4 shows the results, and the last Section is devoted to a
discussion about them.

3.1 Data Sets

Breast The Breast Cancer Wisconsin (Original) Data Set was obtained by the University
of Wisconsin Hospitals, Madison from Dr. William H. Wolberg [WM90]. The samples
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Name n d b

Breast 683 9 2
Colon 62 2000 2
Ecoli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Ionosphere 351 34 2
Iris 150 4 3
Leuk 38 7129 2
Lung 32 54 3
Pima 768 8 2
Sonar 208 60 2
Spambase 4601 57 2
Spectf 80 44 2
Wine 178 13 3

Table 3.1: Resuming table of the characteristics of the studied data sets. n is the number
of patterns, d the dimensionality, and b the number of classes.

were analyzed in different moments, since they were received periodically. The data set is
composed by 699 nine-dimensional patterns, labeled as benign or malignant. Since there
are some missing values, we decided to remove the corresponding patterns, obtaining 683
patterns. The class distribution is 65% for the benign class and 35% for the Malignant
class.

Colon The Colon data set by Alon et al. [ABN+99] is an oligonucleotide microarray
analysis of gene expression in 40 tumor and 22 normal colon tissue samples. It is used to
characterize the role and behavior of more than 6500 human genes in colon adenocarcinoma.
The normal samples were obtained from a subset of the tumor samples, so that they are well
paired to the corresponding positive samples. The actual data used in the experiments 1,
contain only the 2000 most clearly expressed in the experiments, i.e., those with the highest
minimal intensity across the 62 tissue samples.

Ecoli Contains the protein localization sites of a E. coli [HN96]. The 336 patterns are
described by seven features, and are classified in eight classes. Three of these classes contain
less than five patterns.

1http://microarray.princeton.edu/oncology/affydata/index.html
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Glass This data set contains 214 patterns related to the analysis of types of glasses.
The nine features describing each pattern are the refractive index and the concentration
of eight chemical elements (Na, Mg, Al, Si, K, Ca, Ba, and Fe). The type of glass can
be one among these seven: building windows float processed, building windows non float
processed, vehicle windows float processed, vehicle windows non float processed (none in
this database), containers, tableware, and headlamps.

Haberman The data set contains cases from a study that was conducted between 1958
and 1970 at the University of Chicago’s Billings Hospital on the survival of patients who had
undergone surgery for breast cancer. It contains 306 patterns described by the following
three features: age of patient at time of operation, patient’s year of operation, and number
of positive axillary nodes detected. Each pattern is labeled according to the survival of the
patient for more than 5 years.

Ionosphere This radar data was collected by a phased array of 16 high-frequency anten-
nas in Goose Bay, Labrador having the free electrons in the ionosphere as target [SWHB89].
The class labels are two: “Good” radar returns are those showing evidence of some type of
structure in the ionosphere, while “Bad” returns are those that do not; their signals pass
through the ionosphere. Received signals were processed using an appropriate autocorre-
lation function. The system used 17 pulse numbers and the patterns in the data set are
described by 2 features per pulse number.

Iris This is one of the most popular data sets studied by the Machine Learning commu-
nity [Fis36, DH73b]. The data set contains three classes of 50 patterns each; each class
refers to a type of iris plant. One class is linearly separable from the other two that are
overlapped. The features are four: sepal length, sepal width, petal length, and petal width.

Leuk The Leukemia data has been provided by Golub et al. [GST+99] 2. The Leukemia
problem consists in characterizing two forms of acute leukemia, Acute Lymphoblastic
Leukemia (ALL) and Acute Mieloid Leukemia (AML). The data set contains 38 patterns
for which the expression level of 7129 genes has been measured with the DNA microarray
technique (the interesting human genes are 6817, and the other are controls required by the
technique). Of these samples, 27 are cases of ALL and 11 are cases of AML. Moreover, it is
known that the ALL class is composed of two different diseases, since they are originated
from different cell lineages (either T-lineage or B-lineage).

2http://www.broad.mit.edu/cancer/software/genepattern/datasets/
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Lung The data set was published in Ref. [HY91]. It contains 32 54-dimensional patterns
that can belong to one out of three types of pathological lung cancers. The Authors give
no information about the individual variables.

Pima This data set contains a study on the onset of signs of diabetes in a population
living in Phoenix, Arizona, USA. Several constraints were placed on the selection of these
patterns from a larger database. In particular, all patients here are females at least 21
years old of Pima Indian heritage. The data set is composed of 768 patterns described by
eight features: Number of times pregnant, Plasma glucose concentration, Diastolic blood
pressure, Triceps skin fold thickness, 2-Hour serum insulin, Body mass index, Diabetes
pedigree function, and Age.

Sonar Sonar data set is the data set collected and used in Ref. [GS88] on the classification
of sonar signals using neural networks. The task is to discriminate between sonar signals
bounced off a metal cylinder and those bounced off a roughly cylindrical rock. The data
set is contains 198 60-dimensional patterns obtained by measuring the signal at various
angles and under various conditions.

Spambase This data set contains 4601 patterns described by 57 features. Each pattern
is labeled as spam or non-spam. The features are the frequencies of 48 particular words
and 6 particular characters; 3 features are related to the length of uninterrupted sequences
of capital letters.

Spectf The data set contains the description of diagnosing of cardiac SPECT images [KCT+01].
The features are extracted from the original SPECT images. Each 44-dimensional pattern
is classified into two categories: normal and abnormal. The data set is divided in training
and test sets. We decided to use only the 80 patterns of the training set, since they are
balanced between the two classes.

Wine This data set contains the results of a chemical analysis of wines grown in the
same region in Italy. Such wines are derived from three different cultivars. The analysis
determined the quantities of 13 among the constituents found in the three types of wines:
Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Non-
flavanoid phenols, Proanthocyanins, Color intensity, Hue, OD280/OD315 of diluted wines,
and Proline. The distribution of the classes is the following: class 1 33.1%, class 2 39.9%,
and class 3 27.0%.
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3.2 Methods

K-means This is the standard K-means clustering algorithms. The initialization is ran-
dom, and it is made by selecting the position of the centroids among the patterns to cluster.
The only input is the number k of clusters to find3.

agnes This algorithm is the Sequential Agglomerative Hierarchical Non-Overlapping ap-
proach [KR90]. A number of different aggregating procedures are available: single linkage,
complete linkage, average linkage, weighted linkage, and Ward (minimum variance).

FCM I and FCM II These two algorithms are the Fuzzy c-means I and Fuzzy c-
means II. In FCM I we have to set the number of clusters c and the fuzziness m. In
FCM II we have to set the number of clusters c and the fuzziness λ.

FCM I fs and FCM II fs These two methods are respectively the Fuzzy c-means I in
feature space and the Fuzzy c-means II in feature space. In both the algorithms, we have
to select the number of clusters c and the kernel function along with its parameters. In
the following, we will use the Gaussian kernel with standard deviation σ. In FCM I fs we
have to set the fuzziness m, while in FCM II fs we have to set the fuzziness λ.

FCM I km and FCM II km These two methods are respectively the Fuzzy c-means I
with the kernelization of the metric and the Fuzzy c-means II with the kernelization of the
metric. In both the algorithms, we have to select the number of clusters c and the kernel
function along with its parameters. In the following, we will use the Gaussian kernel with
standard deviation σ. In FCM I fs we have to set the fuzziness m, while in FCM II fs we
have to set the fuzziness λ.

SVC This is the Support Vector Clustering algorithm. We have to select the parameter
C (or ν) and the kernel function along with its parameters. In the following, we will use the
Gaussian kernel with standard deviation σ. We set C = 1, in order to avoid outlier rejection
that is not handled by the other comparing algorithms. The algorithm will automatically
find the number of clusters.

Ng-JW This is the spectral clustering algorithm proposed by Ng. et al. The algorithm
requires the selection of the adjacency function along with its parameters. In the following,

3We will use c instead of k to use the same notation as in fuzzy clustering algorithms.
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we will use the Gaussian function with standard deviation σ. Then we need to select
the number of clusters c and the dimension s of the new space, namely the number of
eigenvectors used for the new representation.

Shi-Malik This is the spectral clustering algorithm proposed by Shi and Malik. In
this algorithm, we have to select the proposed function along with its parameters. In the
following we will use the Gaussian function with standard deviation σ. The algorithm splits
the data set in two parts according to the eigenvector associated to the second smallest
eigenvalue of the Laplacian. The same procedure is applied to the obtained subset and so
on, until a value of the normalized cut reaches a fixed threshold that we set to one.

3.3 Performance Indexes

Let X = {x1, . . . ,xn} be a labeled data set composed by n patterns. Let’s denote by ti
the class labels, belonging to the set of the possible realizations T = {t1, . . . , tb}. The class
labels can be considered as the realization of a random variable T . Applying a clustering
algorithm to the elements of X, we obtain the cluster labels zi that can be seen as the
realization of a random variable Z. Here zi belongs to the set of possible realizations
Z = {z1, . . . , zc}. In this context, it is possible to apply some statistical tools to analyze
the dependence between these two random variables.

Simple Match A simple choice could be the match between the two realizations. In
order to do that, we have to take into account two things: in general c and b are not
the same and the sets of labels T and Z might be different. For these reasons we need
to rearrange the cluster labels in order to match as much as possible the class labels.
In other words, we need to transform the cluster label with a function πk : Z → T
such that πk(zi) = tj. In this way we obtain the new cluster labels vector {t′1, . . . , t

′
n}.

Now it is possible to compute the match between the two label vectors. We will use the
misclassification [LRBB04]:

µ = #{t′i 6= ti} (3.1)

and the accuracy:

ψ = #{t′i = ti}/n (3.2)

Among all the permutations πk, we select the one leading to the minimum value of µ.

Preliminary definitions for entropy based scores Let’s define the confusion matrix:
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Cluster
Labels

z1 z2 · · · zc

t1 a11 a12 · · · a1c

Class t2 a21 a22 · · · a2c

Labels
...

...
...

. . .
...

tb ab1 ab2 · · · abc

Each entry aij of the confusion matrix contains the number of times that the clustering
algorithm assigned the cluster label zj to the pattern xi having class labels ti. On the basis
of the confusion matrix, the following probabilities can be defined:

• p(ti) = |ti|
n

=
P

r air

n

• p(zj) =
|zj |

n
=

P

r arj

n

• p(ti, zj) =
aij

n

We recall the definition of the entropy; for the random variables T and Z it reads:

H(T ) =
∑

i

p(ti) log (p(ti)) (3.3)

H(Z) =
∑

j

p(zj) log (p(zj)) (3.4)

The joint entropy of T and Z is:

H(T, Z) = −
∑

ij

p(ti, zj) log (p(ti, zj)) (3.5)

The two entropy based scores that we will use to assess the goodness of the clustering results
are the Conditional Entropy H(T |Z) and the Normalized Mutual Information IN(T, Z).

Conditional Entropy The Conditional Entropy H(T |Z) is a measure of the uncertainty
of a random variable T given the value of the random variable Z [FB03]. It can be
formalized in the following way:

H(T |Z) =
∑

j

p(zj)H(T |Z = zj) = −
∑

j

p(zj)
∑

i

p(ti|zj) log (p(ti|zj)) (3.6)

Applying some transformations, it is possible to rewrite the Conditional Entropy:

H(T |Z) = H(T, Z) −H(Z) = −
∑

ij

p(ti, zj) log (p(ti, zj)) +
∑

j

p(zj) log (p(zj)) (3.7)
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Intuitively, if the two random variables are identical, knowing the realization of Z gives
no uncertainty about T , leading to a null conditional entropy. On the contrary, if the
two random variables are independent, there is still uncertainty in the value of T given Z.
Formally, in the dependent case, p(ti|zj) = 1 leading to H(T |Z) = 0. In the independent
case, p(ti|zj) = p(ti) leading to H(T |Z) = H(T ). The Conditional Entropy is zero when
each cluster found contains pattern from a single class. This can be useful to check the
purity of the cluster labels Z with respect to the class labels T . On the other hand, the
method is biased when the number of clusters c is very large. In the extreme case when
we assign one pattern per cluster, the Conditional Entropy results H(T |Z) = 0.

Normalized Mutual Information The mutual information between two discrete ran-
dom variables T and Z is [FB03]:

I(T, Z) =
∑

ij

p(ti, zj) log

(

p(ti, zj)

p(ti)p(zj)

)

(3.8)

The mutual information measures the information shared by two discrete random variables:
it measures how much knowing one of these variables reduces our uncertainty about the
other. Intuitively, if the two random variables are independent, knowing the realization
of one of them does not give any information about the other and viceversa; their mutual
information is zero. If the two random variables are identical, the realization of one of
them determines the value of the other and viceversa. As a result, the mutual information
is the same as the uncertainty contained in either one of the random variables, that is their
entropy. Formally, if they are uncorrelated, it is possible to factorize the joint probability
p(ti, zj) = p(ti)p(zj) leading to I(T, Z) = 0. If they are identical, I(T, Z) reduces to the
entropy H(T ) = H(Z), since p(x, y) = p(x) = p(y). These considerations show that the
mutual information is dependent on the data set; in other words, the upper bound is not
independent from the considered problem. It is possible to normalize I(T, Z) in the interval
[0, 1] using the following [FB03]:

IN(T, Z) =
I(T, Z)

√

H(T )H(Z)
(3.9)

In this way, a value of IN(T, Z) near one means high correlation between cluster and class
labels, a value near zero means independence.

3.4 Results

The methods presented in Section 3.2 have been tested on the data sets described in
Section 3.1. The number of classes can give some guidelines on the selection of the number
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of clusters. It is worth noting, however, that in general the number of clusters and the
number of classes might be not related to each other. A typical example is the Iris data
set, where the two overlapped classes are very likely to be identified as one cluster by a
clustering algorithm. In other situations, it is possible to use some prior information about
the number of clusters, as we did for Leuk data set, since we know that the patients belong
to three different groups. In the context of central clustering, estimating the number of
clusters is a very important issue, and there is a vast literature on methods designed for it.
Even though, we prefer to use the class labels as our prior knowledge about the number of
clusters, thus avoiding a further model selection step.

To perform a fair comparison among the methods, we used the same number of clusters for
all of them. Some algorithms find the natural number of clusters given a particular set of
parameters. In this case, we set the parameters in order to have a selection of the wanted
number of clusters by the algorithm. We tested the methods varying all the parameters
in a wide range; we report the results for the selection giving the best performances.
“Varying all the parameters in a wide range” means that we tried a set of values for all the
parameters. For example, in FCM I fs we tried the values of σ in the interval [0.8, 9.6] with
steps of 0.8 and m in the interval [1, 2.6] with steps of 0.1, checking all the combinations
of such parameters. For the algorithms starting with a random initialization, the results
are averaged over 20 runs; in Tabs. 3.2, 3.3, 3.4, 3.5, and 3.6 each score is reported along
with its standard deviation.

3.5 Discussions

From Tabs. 3.2, 3.3, 3.4, 3.5, and 3.6 reporting the results, it is possible to see that there
are no methods that perform better or worse than the others in general.

For clustering methods using kernels, in general, we can see that the methods in feature
space perform better than methods with the kernelization of the metric. Clustering with
the kernelization of the metric, in some situations give very poor results, especially when
the number of clusters is very high. SVC has been used only with C = 1, i.e., without the
rejection of the outliers. This fact affected the results that are not very good in general.
On the other hand, this choice was necessary to compare its results with the other methods
that do not handle an outlier class.

The spectral algorithm proposed by Ng et al. achieves good results in almost all the data
sets. This means that a low dimensional representation, based on the eigenvectors of the
Laplacian of the graph obtained on the data, is quite effective to highlight structures in
data. On the other hand, it requires the tune of three parameters, namely the adjacency
function parameter σ, the number of clusters c, and the dimensions of the new representa-
tion s. It is surprising that the other spectral algorithm, the one by Shi and Malik, gives
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Breast
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 3, σ = 7.2, m = 1.2 0.972, 0.003 (18.9, 2.2) 0.702, 0.039 0.103, 0.014
FCM II fs c = 2, σ = 8, λ = 0.35 0.972, 0.000 (19.0, 0.0) 0.814, 0.000 0.116, 0.000
FCM I km c = 2, σ = 0.1, m = 1.2 0.653, 0.000 (237.0, 0.0) 0.009, 0.000 0.646, 0.000
FCM II km c = 2, σ = 0.01, λ = 0.02 0.652, 0.000 (238.0, 0.0) 0.007, 0.000 0.646, 0.000
SVC c = 3, C = 1, σ = 3.75 0.652, 0.000 (238.0, 0.0) 0.018, 0.000 0.646, 0.000
FCM I c = 2, m = 1.2 0.960, 0.000 (27.0, 0.0) 0.748, 0.000 0.166, 0.000
FCM II c = 2, λ = 400 0.972, 0.000 (19.0, 0.2) 0.812, 0.002 0.118, 0.001
Ng-JW c = 2 , σ = 7.2 , s = 3 0.977, 0.000 (16.0, 0.0) 0.836, 0.000 0.104, 0.000
Shi-Malik c = 2, σ = 3 0.958, 0.000 (29.0, 0.0) 0.741, 0.000 0.174, 0.000
agnes ward, c = 2 0.969, 0.000 (21.0, 0.0) 0.815, 0.000 0.113, 0.000
K-means c = 2 0.960, 0.000 (27.0, 0.0) 0.748, 0.000 0.166, 0.000

Colon
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 2, σ = 10, m = 2.6 0.659, 0.061 (21.2, 3.8) 0.041, 0.128 0.623, 0.084
FCM II fs c = 2, σ = 7, λ = 0.005 0.656, 0.032 (21.4, 2.0) 0.055, 0.056 0.614, 0.038
FCM I km c = 2, σ = 10, m = 2 0.661, 0.000 (21.0, 0.0) 0.026, 0.000 0.639, 0.000
FCM II km c = 2, σ = 10, λ = 0.1 0.661, 0.000 (21.0, 0.0) 0.026, 0.000 0.639, 0.000
SVC c = 2, C = 1, σ = 10 0.645, 0.000 (22.0, 0.0) 0.031, 0.000 0.643, 0.000
FCM I c = 2, m = 1.4 0.645, 0.000 (22.0, 0.0) 0.046, 0.000 0.622, 0.000
FCM II c = 2, λ = 10 0.652, 0.032 (21.6, 2.0) 0.052, 0.041 0.619, 0.026
Ng-JW c = 2, σ = 80, s = 5 0.770, 0.097 (14.3, 6.0) 0.241, 0.162 0.493, 0.106
Shi-Malik c = 2, σ = 10 0.645, 0.000 (22.0, 0.0) 0.087, 0.000 0.613, 0.000
agnes average, c = 2 0.645, 0.000 (22.0, 0.0) 0.087, 0.000 0.613, 0.000
K-means c = 2 0.645, 0.000 (22.0, 0.0) 0.041, 0.014 0.625, 0.009

Ecoli
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 7, σ = 0.6, m = 1.6 0.732, 0.001 (90.0, 0.2) 0.459, 0.001 0.731, 0.002
FCM II fs c = 7, σ = 0.8, λ = 0.09 0.727, 0.009 (91.8, 2.9) 0.455, 0.012 0.739, 0.022
FCM I km c = 7, σ = 0.1, m = 1.2 0.446, 0.000 (186.0, 0.0) 0.046, 0.000 1.446, 0.000
FCM II km c = 7, σ = 0.1, λ = 0.002 0.443, 0.000 (187.0, 0.0) 0.045, 0.000 1.448, 0.000
SVC c = 7, C = 1, σ = 0.22 0.446, 0.000 (186.0, 0.0) 0.148, 0.000 1.450, 0.000
FCM I c = 7, m = 1.6 0.724, 0.001 (92.8, 0.4) 0.458, 0.004 0.738, 0.007
FCM II c = 7, λ = 0.06 0.720, 0.009 (94.1, 3.1) 0.453, 0.015 0.746, 0.025
Ng-JW c = 7, σ = 60, s = 5 0.798, 0.010 (68.0, 3.3) 0.532, 0.012 0.609, 0.019
Shi-Malik c = 7, σ = 0.19 0.738, 0.000 (88.0, 0.0) 0.581, 0.000 0.694, 0.000
agnes ward, c = 7 0.682, 0.000 (107.0, 0.0) 0.419, 0.000 0.806, 0.000
K-means c = 7 0.705, 0.016 (99.0, 5.4) 0.429, 0.024 0.790, 0.047

Table 3.2: Clustering results on Breast, Colon, and Ecoli data sets
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Glass
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 6, σ = 1, m = 1.4 0.623, 0.019 (80.8, 4.1) 0.408, 0.006 0.856, 0.013
FCM II fs c = 6, σ = 0.8, λ = 0.2 0.624, 0.010 (80.5, 2.2) 0.381, 0.012 0.898, 0.018
FCM I km c = 6, σ = 2, m = 1.2 0.463, 0.000 (115.0, 0.0) 0.074, 0.000 1.391, 0.000
FCM II km c = 6, σ = 10, λ = 0.001 0.393, 0.000 (130.0, 0.0) 0.039, 0.000 1.451, 0.000
SVC c = 6, C = 1, σ = 1.3 0.379, 0.000 (133.0, 0.0) 0.129, 0.000 1.443, 0.000
FCM I c = 6, m = 1.8 0.610, 0.002 (83.4, 0.5) 0.363, 0.001 0.946, 0.0009
FCM II c = 6, λ = 1.2 0.614, 0.038 (82.5, 8.2) 0.343, 0.027 0.976, 0.0349
Ng-JW c = 6, σ = 4, s = 3 0.614, 0.034 (82.7, 7.4) 0.398, 0.015 0.904, 0.0224
Shi-Malik c = 6, σ = 0.09 0.542, 0.000 (98.0, 0.0) 0.340, 0.000 1.132, 0.000
agnes ward, c = 6 0.542, 0.000 (98.0, 0.0) 0.397, 0.000 0.970, 0.000
K-means c = 6 0.571, 0.015 (91.7, 3.2) 0.404, 0.022 0.948, 0.026

Haberman
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 2, σ = 0.9, m = 1.2 0.735, 0.000 (81.0, 0.0) 0.009, 0.009 0.572, 0.005
FCM II fs c = 2, σ = 2, λ = 0.036 0.735, 0.000 (81.0, 0.0) 0.019, 0.010 0.567, 0.006
FCM I km c = 2, σ = 3, m = 1.2 0.735, 0.000 (81.0, 0.0) 0.020, 0.000 0.574, 0.000
FCM II km c = 2, σ = 0.5, λ = 0.1 0.735, 0.000 (81.0, 0.0) 0.009, 0.000 0.577, 0.000
SVC c = 3, C = 1, σ = 5.6 0.739, 0.000 (80.0, 0.0) 0.034, 0.000 0.573, 0.000
FCM I c = 2, m = 1.8 0.735, 0.000 (81.0, 0.0) 0.000, 0.000 0.578, 0.000
FCM II c = 2, λ = 10 0.735, 0.000 (81.0, 0.0) 0.006, 0.000 0.578, 0.000
Ng-JW c = 2, σ = 1.6, s = 3 0.771, 0.000 (70.0, 0.0) 0.100, 0.000 0.530, 0.000
Shi-Malik c = 2, σ = 0.7 0.745, 0.000 (78.0, 0.0) 0.074, 0.000 0.565, 0.000
agnes complete, c = 2 0.745, 0.000 (78.0, 0.0) 0.042, 0.000 0.561, 0.000
K-means c = 2 0.735, 0.000 (81.0, 0.0) 0.001, 0.000 0.578, 0.000

Ionosphere
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 4, σ = 3, m = 1.2 0.846, 0.001 (54.2, 0.5) 0.275, 0.022 0.406, 0.021
FCM II fs c = 4, σ = 4, λ = 0.03 0.874, 0.026 (44.2, 9.1) 0.343, 0.048 0.354, 0.041
FCM I km c = 4, σ = 5, m = 1.2 0.846, 0.000 (54.0, 0.0) 0.260, 0.000 0.424, 0.000
FCM II km c = 4, σ = 4, λ = 0.06 0.837, 0.021 (57.3, 7.5) 0.247, 0.040 0.434, 0.032
SVC c = 4, C = 1, σ = 1.75 0.650, 0.000 (123.0, 0.0) 0.045, 0.000 0.644, 0.000
FCM I c = 4, m = 1.2 0.838, 0.000 (57.0, 0.0) 0.244, 0.000 0.438, 0.000
FCM II c = 4, λ = 1 0.836, 0.016 (57.7, 5.5) 0.244, 0.027 0.437, 0.023
Ng-JW c = 4, σ = 0.7, s = 9 0.873, 0.002 (44.7, 0.7) 0.320, 0.004 0.366, 0.005
Shi-Malik c = 4, σ = 1.3 0.838, 0.000 (57.0, 0.0) 0.265, 0.000 0.431, 0.000
agnes ward, c = 4 0.875, 0.000 (44.0, 0.0) 0.354, 0.000 0.354, 0.000
K-means c = 4 0.822, 0.033 (62.6, 11.4) 0.227, 0.047 0.452, 0.040

Table 3.3: Clustering results on Glass, Haberman, and Ionosphere data sets.
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Iris
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 3, σ = 0.6, m = 1.2 0.947, 0.000 (8.0, 0.0) 0.845, 0.000 0.172, 0.000
FCM II fs c = 3, σ = 0.6, λ = 0.1 0.923, 0.017 (11.5, 2.6) 0.810, 0.024 0.214, 0.029
FCM I km c = 3, σ = 3, m = 2.4 0.907, 0.000 (14.0, 0.0) 0.766, 0.000 0.260, 0.000
FCM II km c = 3, σ = 5, λ = 0.2 0.913, 0.000 (13.0, 0.0) 0.745, 0.000 0.283, 0.000
SVC c = 3, C = 1, σ = 0.35 0.680, 0.000 (48.0, 0.0) 0.736, 0.000 0.453, 0.000
FCM I c = 3, m = 2.4 0.900, 0.000 (15.0, 0.0) 0.758, 0.000 0.270, 0.000
FCM II c = 3, λ = 5.4 0.913, 0.000 (13.0, 0.0) 0.745, 0.000 0.283, 0.000
Ng-JW c = 3, σ = 2.4, s = 5 0.942, 0.044 (8.7, 6.6) 0.833, 0.091 0.184, 0.101
Shi-Malik c = 3, σ = 0.7 0.900, 0.000 (15.0, 0.0) 0.798, 0.000 0.234, 0.000
agnes average, c = 3 0.907, 0.000 (14.0, 0.0) 0.806, 0.000 0.224, 0.000
K-means c = 3 0.860, 0.083 (21.1, 12.5) 0.733, 0.061 0.309, 0.087

Leuk
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 3, σ = 1000, m = 1.2 0.921, 0.000 (3.0, 0.0) 0.459, 0.000 0.247, 0.000
FCM II fs c = 3, σ = 1000, λ = 0.07 0.963, 0.013 (1.4, 0.5) 0.590, 0.053 0.127, 0.042
FCM I km c = 3, σ = 800, m = 1.2 0.942, 0.024 (2.2, 0.9) 0.522, 0.039 0.202, 0.037
FCM II km c = 3, σ = 900, λ = 0.1 0.946, 0.061 (2.1, 2.3) 0.561, 0.120 0.158, 0.102
SVC c = 3, C = 1, σ = 360 0.711, 0.000 (11.0, 0.0) 0.049, 0.000 0.583, 0.000
FCM I c = 3, m = 1.2 0.895, 0.000 (4.0, 0.0) 0.383, 0.018 0.310, 0.004
FCM II c = 3, λ = 60000 0.897, 0.067 (3.9, 2.5) 0.442, 0.134 0.259, 0.114
Ng-JW c = 3, σ = 1100, s = 3 0.947, 0.000 (2.0, 0.0) 0.516, 0.000 0.183, 0.000
Shi-Malik c = 2, σ = 420 0.816, 0.000 (7.0, 0.0) 0.326, 0.000 0.455, 0.000
agnes ward, c = 3 0.816, 0.000 (7.0, 0.0) 0.278, 0.000 0.414, 0.000
K-means c = 3 0.883, 0.088 (4.5, 3.3) 0.424, 0.201 0.282, 0.158

Lung
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 3, σ = 4, m = 1.2 0.563, 0.000 (14.0, 0.0) 0.300, 0.000 0.760, 0.000
FCM II fs c = 3, σ = 6, λ = 0.1 0.581, 0.029 (13.4, 0.9) 0.290, 0.028 0.777, 0.024
FCM I km c = 3, σ = 70, m = 2 0.553, 0.035 (14.3, 1.1) 0.293, 0.048 0.788, 0.054
FCM II km c = 3, σ = 10, λ = 0.06 0.603, 0.015 (12.7, 0.5) 0.328, 0.005 0.754, 0.009
SVC c = 4, C = 1, σ = 1.9 0.500, 0.000 (16.0, 0.0) 0.173, 0.000 0.970, 0.000
FCM I c = 3, m = 2.2 0.548, 0.030 (14.5, 0.9) 0.285, 0.061 0.790, 0.065
FCM II c = 3, λ = 5 0.633, 0.042 (11.8, 1.3) 0.363, 0.000 0.707, 0.011
Ng-JW c = 3, σ = 3, s = 2 0.681, 0.055 (10.2, 1.8) 0.369, 0.049 0.688, 0.051
Shi-Malik c = 3, σ = 1.8 0.688, 0.000 (10.0, 0.0) 0.366, 0.000 0.731, 0.000
agnes ward, c = 3 0.594, 0.000 (13.0, 0.0) 0.336, 0.000 0.770, 0.000
K-means c = 3 0.538, 0.024 (14.8, 0.8) 0.279, 0.055 0.796, 0.055

Table 3.4: Clustering results on Iris, Leuk, and Lung data sets.
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Pima
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 2, σ = 500, m = 1.4 0.660, 0.000 (261, 0) 0.035, 0.000 0.626, 0.000
FCM II fs c = 2, σ = 900, λ = 0.2 0.654, 0.012 (266, 9) 0.016, 0.023 0.636, 0.015
FCM I km c = 2, σ = 10, m = 1.2 0.652, 0.000 (267, 0) 0.005, 0.000 0.646, 0.000
FCM II km c = 2, σ = 10, λ = 0.1 0.652, 0.000 (267, 0) 0.006, 0.000 0.646, 0.000
SVC c = 3, C = 1, σ = 40 0.652, 0.000 (267, 0) 0.018, 0.000 0.644, 0.000
FCM I c = 2, m = 1.2 0.660, 0.000 (261, 0) 0.030, 0.000 0.630, 0.000
FCM II c = 2, λ = 1000 0.660, 0.000 (261, 0) 0.030, 0.000 0.630, 0.000
Ng-JW c = 2, σ = 8, s = 2 0.659, 0.000 (262, 0) 0.017, 0.000 0.642, 0.000
Shi-Malik c = 2, σ = 30 0.659, 0.000 (262, 0) 0.019, 0.000 0.642, 0.000
agnes ward, c = 2 0.676, 0.000 (249, 0) 0.046, 0.000 0.619, 0.000
K-means c = 2 0.660, 0.000 (261, 0) 0.030, 0.000 0.630, 0.000

Sonar
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 2, σ = 40, m = 1.2 0.563, 0.000 (91.0, 0.0) 0.012, 0.000 0.682, 0.000
FCM II fs c = 2, σ = 100, λ = 0.02 0.567, 0.021 (90.1, 4.3) 0.014, 0.010 0.681, 0.007
FCM I km c = 2, σ = 50, m = 1.2 0.563, 0.000 (91.0, 0.0) 0.012, 0.000 0.682, 0.000
FCM II km c = 2, σ = 20, λ = 0.07 0.563, 0.022 (91.0, 4.5) 0.012, 0.009 0.682, 0.006
SVC c = 3, C = 1, σ = 0.5 0.538, 0.000 (96.0, 0.0) 0.066, 0.000 0.669, 0.000
FCM I c = 2, m = 1.2 0.563, 0.000 (91.0, 0.0) 0.012, 0.000 0.682, 0.000
FCM II c = 2, λ = 1 0.558, 0.000 (92.0, 0.0) 0.010, 0.000 0.684, 0.000
Ng-JW c = 2, σ = 4, s = 7 0.601, 0.037 (82.9, 7.6) 0.034, 0.023 0.667, 0.016
Shi-Malik c = 2, σ = 0.5 0.563, 0.000 (91.0, 0.0) 0.075, 0.000 0.668, 0.000
agnes average, c = 2 0.553, 0.000 (93.0, 0.0) 0.009, 0.000 0.687, 0.000
K-means c = 2 0.553, 0.000 (93.0, 0.0) 0.009, 0.000 0.685, 0.000

Spambase
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 2, σ = 125, m = 1.4 0.697, 0.000 (1394, 0) 0.095, 0.000 0.608, 0.000
FCM II fs c = 2, σ = 75, λ = 0.1 0.697, 0.000 (1396, 0) 0.113, 0.000 0.594, 0.000
FCM I km c = 2, σ = 125, m = 1.8 0.700, 0.000 (1380, 0) 0.105, 0.000 0.610, 0.000
FCM II km c = 2, σ = 125, λ = 0.2 0.684, 0.000 (1453, 0) 0.088, 0.000 0.622, 0.000
FCM I c = 2, m = 2.6 0.647, 0.000 (1622, 0) 0.055, 0.000 0.647, 0.000
FCM II c = 2, λ = 7106 0.679, 0.000 (1476, 1) 0.072, 0.000 0.627, 0.000
Ng-JW c = 2, σ = 3, s = 10 0.685, 0.000 (1451, 0) 0.082, 0.000 0.623, 0.000
Shi-Malik c = 2, σ = 7 0.611, 0.000 (1789, 0) 0.033, 0.000 0.663, 0.000
agnes ward, c = 2 0.662, 0.000 (1557, 0) 0.064, 0.000 0.639, 0.000
K-means c = 2 0.636, 0.000 (1675, 0) 0.047, 0.000 0.653, 0.000

Table 3.5: Clustering results on Pima, Sonar, and Spambase data sets.
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Spectf
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 2, σ = 40, m = 1.4 0.806, 0.016 (15.6, 1.3) 0.324, 0.029 0.473, 0.020
FCM II fs c = 2, σ = 30, λ = 0.1 0.800, 0.000 (16.0, 0.0) 0.283, 0.000 0.498, 0.000
FCM I km c = 2, σ = 1000, m = 1.8 0.725, 0.000 (22.0, 0.0) 0.202, 0.000 0.561, 0.000
FCM II km c = 2, σ = 300, λ = 0.08 0.726, 0.012 (22.0, 0.9) 0.203, 0.017 0.561, 0.012
SVC c = 2, C = 1, σ = 50 0.513, 0.000 (39.0, 0.0) 0.041, 0.000 0.684, 0.000
FCM I c = 2, m = 2 0.725, 0.000 (22.0, 0.0) 0.202, 0.000 0.561, 0.000
FCM II c = 2, λ = 1200 0.725, 0.000 (22.0, 0.0) 0.202, 0.000 0.561, 0.000
Ng-JW c = 2, σ = 7, s = 2 0.738, 0.000 (21.0, 0.0) 0.204, 0.000 0.557, 0.000
Shi-Malik c = 2, σ = 30 0.600, 0.000 (32.0, 0.0) 0.158, 0.000 0.618, 0.000
agnes ward, c = 2 0.700, 0.000 (24.0, 0.0) 0.220, 0.000 0.559, 0.000
K-means c = 2 0.675, 0.000 (26.0, 0.0) 0.247, 0.000 0.553, 0.000

wine
Method Parameters ψ (µ) IN(T,Z) H(T |Z)

FCM I fs c = 3, σ = 77, m = 1.2 0.730, 0.000 (48.0, 0.0) 0.405, 0.000 0.645, 0.000
FCM II fs c = 3, σ = 80, λ = 0.15 0.730, 0.000 (48.0, 0.0) 0.405, 0.000 0.645, 0.000
FCM I km c = 3, σ = 120, m = 1.4 0.730, 0.000 (48.0, 0.0) 0.423, 0.000 0.625, 0.000
FCM II km c = 3, σ = 130, λ = 0.5 0.730, 0.000 (48.0, 0.0) 0.423, 0.000 0.625, 0.000
SVC c = 3, C = 1, σ = 50 0.433, 0.000 (101.0, 0.0) 0.091, 0.000 1.048, 0.000
FCM I c = 3, m = 1.6 0.697, 0.000 (54.0, 0.0) 0.421, 0.000 0.629, 0.000
FCM II c = 3, λ = 80000 0.724, 0.000 (49.0, 0.0) 0.412, 0.000 0.637, 0.000
Ng-JW c = 3, σ = 4.8, s = 3 0.696, 0.023 (54.2, 4.0) 0.386, 0.008 0.697, 0.030
Shi-Malik c = 4, σ = 100 0.708, 0.000 (52.0, 0.0) 0.402, 0.000 0.629, 0.000
agnes ward, c = 3 0.697, 0.000 (54.0, 0.0) 0.416, 0.000 0.634, 0.000
K-means c = 3 0.697, 0.011 (54.0, 2.1) 0.425, 0.008 0.629, 0.018

Table 3.6: Clustering results on Spectf and Wine data sets.
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worse results in general. One possible explanation, in the case of more than two clusters,
lies in the selection of adjacency function parameter σ, that is not tuned for the recursive
splits. Once data are split in two subsets, the average distance of patterns is different,
requiring the use of a different value of σ. The tune of the value of σ even for the subsets,
would have required a computationally intense model selection. For two clusters problems,
the analysis of the results shows that the heuristic of selecting the split on the basis of the
minimum of the normalized cut is not good in general.

An important result, that is clear from the experimental validation, is that clustering in
kernel induced spaces and spectral clustering outperform standard clustering algorithms.
This is one of the motivations that support the interest of the Machine Learning community
for these recent clustering techniques. On the other hand, the methods based on kernels
and spectral clustering methods require the tune of the kernel or the adjacency function.
In many applications, we found that the values of the standard deviation of such functions
lead to good performances only in a narrow interval.

It is possible to make some consideration on the spatial and temporal complexity of such
methods with respect to the size of the data set, its dimensionality, and the number of
clusters. In particular, the complexity of a single iteration central clustering algorithms in
kernel induced space is quadratic with the cardinality of the data set, while it is linear for
standard central clustering algorithms. For all these iterative algorithms, we cannot take
into account the number of iterations that can have a strong impact on the running time
of the algorithms. Their convergence depends on the particular data set and the choice of
the parameters. The computation of the eigenvectors in spectral methods is affected by
the selection of the data set and parameter selection as well. The sparsity of the matrix
has a big impact on the time required to solve the eigenproblem. For these reasons, it is
very difficult to identify the best approach in terms of both accuracy and complexity.
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Chapter 4

Advances on Relational Clustering

In this Chapter, we study in detail the relational duals of four four fuzzy clustering algo-
rithms, when the relational matrix is not metric. In this framework, some approaches have
been proposed to transform the dissimilarities between patterns from non-metric to metric.
Non-metric dissimilarities are not symmetric, and do not obey to the triangular inequality.
The transformations needed to let the dissimilarities become metric are symmetrization and
shift operations. The symmetrization operation makes the dissimilarities symmetric. Shift
means that a constant value is added to the pairwise dissimilarities, to let them satisfy the
triangular inequality1. The point is how these transformations influence the behavior of the
relational clustering algorithms. It has been shown that they do not influence the K-means
objective function [RLBM02, RLKB03]. In other words, changing the dissimilarities with
their transformed versions does not reflect any changes on the objective function. In fact,
it changes by a constant that does not affect the optimization. Once the dissimilarities are
metric, they can be considered as pairwise squared Euclidean distances between patterns.
This is the link with clustering methods using positive semidefinite kernels. Such kernels
can be obtained by the dissimilarity matrix, and each entry is a scalar product between
vectors representing the original objects. These are called embedding vectors, and are not
computed explicitly. The pairwise scalar products contain enough information to let to
apply the K-means family algorithms on the embedding vectors. This corresponds to the
clustering in feature space [FCMR08].

This Chapter explicitly shows how the objective functions of four clustering algorithms
based on fuzzy memberships change, due to dissimilarities transformations. The con-
sidered clustering algorithms are: Fuzzy c-means I (FCM I) [Bez81], Fuzzy c-means II
(FCM II) [BL94], Possibilistic c-means I (PCM I) [KK93], and Possibilistic c-means II
(PCM II) [KK96]. The main contributions include the lack of invariance to shift opera-
tions, as well as the invariance to symmetrization. As a byproduct, the kernel versions of

1In fact, we require the stronger condition that the dissimilarities become squared Euclidean distances.
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FCM I, FCM II, PCM I and PCM II are obtained, that can be viewed as relational dual of
the four algorithms. FCM II and PCM I in feature space have never been proposed before,
while FCM I and PCM II in feature space can be found in Refs. [ZC02] and [FMR07]. The
relational duals of FCM I and PCM I have been proposed in Ref. [HDB89] and [dCOF06];
the non-Euclidean case is studied in Ref. [HB94] for FCM I. The relational dual of FCM II
and PCM II have never been proposed before. The experimental analysis shows the effect
of the dissimilarities transformations on the four considered clustering algorithms.

The next Section discusses how to embed in Euclidean spaces sets of patterns described
by pairwise dissimilarities, along with some basic concepts on positive semidefinite kernels.
Section 4.2 shows how the objective functions of four K-Means style fuzzy clustering al-
gorithms change, due to distance transformations; Section 4.3 provides an experimental
analysis on synthetic and real data sets, and then the conclusions are drawn. Many tech-
nical details concerning some theoretical aspects, can be found in Section 4.5. Part of this
Chapter can be found in form of a technical report [Fil07].

4.1 Embedding Objects Described by Pairwise Dis-

similarities in Euclidean Spaces

Let Y = {y1, . . . , yn} be a set of objects and r : Y × Y → R a function between pairs of
its elements. The conditions that r must satisfy to be a distance are:

• r(yi, yj) ≥ 0 ∀i, j = 1, . . . , n and r(yi, yi) = 0 ∀i = 1, . . . , n (Positivity);

• r(yi, yj) = r(yj, yi) ∀i, j = 1, . . . , n (Symmetry) ;

• r(yi, yj) + r(yj, yk) ≥ r(yi, yk) ∀i, j, k = 1, . . . , n (Triangular inequality).

Let’s assume that r satisfies only the first condition. In this case, r can be interpreted as a
dissimilarity measure between the elements of the set Y . Clearly, it is not possible to embed
the objects according to r in a Euclidean space, as long as it does not satisfy also the other
two conditions. The only way to cope with this problem is to apply some transformations
to let r become a distance function. Regarding the symmetry, the following, for instance,
could represent a solution:

r̂(yi, yj) = max(r(yi, yj), r(yj, yi)) ∀i, j (4.1)

or:

r̂(yi, yj) =
1

2
(r(yi, yj) + r(yj, yi)) ∀i, j (4.2)
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Depending on the application, one can choose the most suitable solution to fix the sym-
metry.

Once the symmetry is fixed, to make r satisfy the triangular inequality, a constant shift 2α
can be added to all the pairwise distances, excluding the dissimilarity between a pattern
and itself:

r̃(yi, yj) = r(yi, yj) + 2α ∀i 6= j (4.3)

Let’s introduce R as the n × n matrix with entries rij = r(yi, yj). Let e = {1, 1, . . . , 1}T

and I the n× n identity matrix. Eq. 4.3 is equivalent to:

R̃ = R + 2α(eeT − I) (4.4)

The natural question arises: how can we choose α to guarantee that R̃ is a squared Eu-
clidean distance matrix? The answer is in a theorem that can be found in Refs. [LM04,
RLKB03]. In this Section the theorem is reported, while the proof can be found in Sec-
tion 4.5.2.

Before showing the theorem, some preliminary definitions are needed. Let’s decompose R
by means of a matrix S:

rij = sii + sjj − 2sij (4.5)

Let Q = I − 1
n
eeT . The centralized version P c of a generic matrix P is defined:

P c = QPQ (4.6)

It’s clear from Eq. 4.5 that S is not uniquely determined by R. All the matrices S+αeeT ,
for instance, lead to the same matrix R, ∀α ∈ R is. It can be proved, however, that the
centralized version of S is uniquely determined by R (see Section 4.5.1):

Sc = −
Rc

2
(4.7)

Now we have all the elements to claim that:

Theorem 4.1.1. R is a squared Euclidean distance matrix if and only if Sc � 0.

The proof can be found in Section 4.5.2. The theorem states that Sc must be positive
semidefinite to ensure that R is a squared Euclidean distance matrix. It is well known that
the eigenvalues λi of positive semidefinite matrices satisfy λi ≥ 0 ∀i = 1, . . . , n [Apo67].
If at least one eigenvalue of Sc is negative, R is a squared Euclidean distance matrix. Let
λ1 be the smallest eigenvalue of Sc. Simple concepts of linear algebra ensure that the
following diagonal shift to Sc:

S̃c = Sc − λ1I (4.8)
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makes S̃c positive semidefinite. The diagonal shift of Sc transforms R in a matrix repre-
senting squared Euclidean distances. The resulting transformation on R is the following:

R̃ = R− 2λ1(ee
T − I) (4.9)

Since S̃c is positive semidefinite, it can be thought as representing a scalar product. Thus,
it exists a matrix X for which:

S̃c = XXT (4.10)

The rows of X are the realization of the embedding vectors xi. In other words, each
element yi of the set Y has been embedded in a Euclidean space and is represented by xi.
The entries of S̃c are the scalar product between the vectors xi.

Resuming, if the only thing known about the data to analyze are the pairwise dissimilarities,
the matrix Sc can be checked for positive semidefiniteness. If it is, Sc can be kept as is,
otherwise the diagonal shift to Sc has to be applied. Either way, Sc or S̃c is the product
of two unknown matrices X. This is the link between the theory of embedding a set of
objects and the theory of kernel methods. S̃c can be interpreted as the Gram matrix that
is used in kernel algorithms. In Ref. [LM04, LRBM06] the authors give an interpretation
of the negative eigenvalues of Sc.

Before closing this Section, it is worth noting that in general there are two options when
shifting R to obtain S̃c. The first is to shift the dissimilarities R obtaining R̃, and then
compute S̃c associated to R̃. Let’s call this procedure preshift:

S̃c = −
1

2
(QR̃Q) (4.11)

The second choice, the postshift, is to compute Sc associated to R, and then shift its
diagonal elements:

Sc + αI (4.12)

Both the methods allow to compute a matrix S corresponding to the same shift of the
distances, but:

Sc + αI 6= −
1

2
(QR̃Q) (4.13)

Section 4.5.3 shows that the choice between preshift and postshift does not affect the
studied clustering algorithms.

4.2 Fuzzy Central Clustering Objective Functions

We recall the general formulation of the central clustering objective functions (see Chap-
ter 2):

J(U, V ) = G(U, V ) +H(U) +W (U) (4.14)
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The first term is a measure of the distortion and the second is an entropic score on the
memberships. The distortion can be written as the following sum:

G(U, V ) = 2
c
∑

i=1

n
∑

h=1

uθ
ih‖xh − vi‖

2 (4.15)

with θ ≥ 1. The aim of the entropy term H(U) is to avoid trivial solutions where all the
memberships are zero or equally shared among the clusters. For the algorithms having a
constraint on U , the Lagrange multipliers technique has to be followed in order to perform
the optimization. This means that a further term W (U) is needed.

The technique used by these methods to perform the minimization is the Picard iteration
technique, that is based on the iteration of the solutions of these two equations:

∂L(U, V )

∂vi

= 0 (4.16)

∂L(U, V )

∂uih

= 0 (4.17)

The algorithms stop when a convergence criterion is satisfied on U , V or G. Usually the
following is considered:

‖U − U ′‖p < ε (4.18)

where U ′ is the updated version of the memberships and ‖‖p is a p-norm.

Since L(U, V ) depends on V only because of G, the update of the vi is the same for all the
considered algorithms. From Eq. 2.10:

vi =

∑n
h=1 u

θ
ihxh

∑n
h=1 u

θ
ih

(4.19)

Now it is possible to prove that the following functional is equivalent to G(U, V ) (see
Section 4.5.4):

G(U) =
c
∑

i=1

n
∑

r=1

n
∑

s=1

uθ
iru

θ
isd

2
rs

n
∑

r=1

uθ
ir

(4.20)

Here d2
rs is the squared Euclidean distance between patterns r and s. This allows to write

the objective function only in terms of U , when the description of the data set is in terms
of pairwise distances.
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In the non-metric case, it is not possible to identify d2
rs as the squared Euclidean distance

between patterns r and s. Anyway, it is still possible to think that the objective function
of the clustering is:

G(U) =
c
∑

i=1

n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ikrhk

n
∑

h=1

uθ
ih

(4.21)

In the following, this way of writing G(U) will be useful to show how the objective functions
change with respect to dissimilarities transformations.

4.2.1 Invariance of G(U) to Symmetrization of R

Let’s analyze what happens to the Lagrangian L when R is transformed in the following
way:

r̂ij =
rij + rji

2
(4.22)

which is equivalent to:

R̂ =
R +RT

2
(4.23)

It’s clear that the only term of the functional affected by the distance transformation is
G(U). Showing that:

n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ikr̂hk =

1

2

n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ikrhk +

1

2

n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ikrkh

=
n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ikrhk (4.24)

the invariance of the Lagrangian L(U) to the symmetrization of R is proved. In other
words, in presence of a non-symmetric R, the symmetrization in Eq. 4.22 does not change
the clustering objective function. In force of this result, R will be considered symmetric in
the rest of this Chapter.

4.2.2 Transformation of G(U) to Shift Operations

This Section analyzes what happens to the Lagrangian L when transforming the distances
in the following way:

r̃hk = rhk + 2α ∀h 6= k (4.25)
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which is equivalent to Eq. 4.4:

The only term in the Lagrangian L(U) changing due the dissimilarities shift is G(U):

Gα(U) =
c
∑

i=1

n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ikr̃hk

n
∑

h=1

uθ
ih

= G(U) + 2α
c
∑

i=1

n
∑

h=1

n
∑

k=1

uθ
ihu

θ
ik −

n
∑

h=1

u2θ
ik

n
∑

h=1

uθ
ih

= G(U) + 2α
c
∑

i=1

n
∑

h=1

uθ
ih − 2α

c
∑

i=1

n
∑

h=1

u2θ
ih

n
∑

h=1

uθ
ih

(4.26)

The Lagrangian will result in:

Lα(U) = G(U) +H(U) +W (U) + 2α (A(U) −B(U)) (4.27)

This result shows that in general the Lagrangian for the K-means family algorithms is
not invariant to such transformations. Only for K-means A(U) − B(U) = n − c, which
means that the K-means objective function is invariant to distance shifts. Besides, for
fuzzy clustering algorithms for which θ = 1, A(U) reduces to n.

In general, since θ ≥ 1 and uih ∈ [0, 1], the following two inequalities are satisfied:

A(U) =
c
∑

i=1

n
∑

h=1

uθ
ih < n (4.28)

B(U) =
c
∑

i=1

n
∑

h=1

u2θ
ih

n
∑

h=1

uθ
ih

< c (4.29)

The contributions of A(U) and B(U) to Lα(U) are weighted by 2α. This means that Lα(U)
can be strongly affected by large shift values.
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Given a clustering algorithm, in order to obtain the update of the memberships, the deriva-
tives of the Lagrangian with respect to them have to be set to zero. From that, an update
formula for the memberships has to be obtained (in presence of constraints, this implies to
compute also the value of the Lagrange multipliers). Let’s consider the term B(U):

∂B(U)

∂uih

=
2θu2θ−1

ih

∑n
r=1 u

θ
ir − θuθ−1

ih

∑n
h=1 u

2θ
ih

(
∑n

h=1 u
θ
ih)

2
(4.30)

This is not easily invertible when summed to the derivative of the other terms to obtain
zero. The next Section provides an experimental analysis showing the effect of the shift
operation on the behavior of the memberships during the optimization.

4.2.3 Analysis of Four Clustering Algorithms

This Section shows the results just obtained to four clustering algorithms based on fuzzy
memberships: Fuzzy c-means I (FCM I) [Bez81], Fuzzy c-means II (FCM II) [BL94],
Possibilistic c-means I (PCM I) [KK93], and Possibilistic c-means II (PCM II) [KK96] (see
Section 2.1.2 for the complete derivation of these four algorithms). In Tab. 4.1, the terms
of the Lagrangian in Eq. 4.14 for the mentioned clustering algorithms are resumed. Since
the sum of the memberships of a pattern to all the clusters is constrained to be one in fuzzy
clustering, the term W (U) is introduced. For the possibilistic algorithms W (U) = 0, since
the memberships are not constrained. In fact, for these algorithms the minimization of
L(U) should be done in the hypercube uih ∈ [0, 1]. Since the form assumed by the update
equations, this constrain is automatically satisfied. In FCM I and PCM I, the exponent of
the memberships θ is usually called m, while θ = 1 in FCM II and PCM II.

Tab. 4.2 resumes the Lagrangian Lα(U) of the discussed clustering algorithms, considering
also the effect of the shift. K-means is invariant to distance shifts since A(U) = n and
B(U) = c. In FCM II and PCM II, A(U) = n; in FCM I and PCM I, both A(U) and B(U)
are not zero.

From the analysis in Section 4.1, it is possible to choose α big enough to guarantee that R̃
represents a squared Euclidean distance matrix. This allows to represent each pattern in a
Euclidean space F , where the discussed clustering algorithms can be applied. In fact, the
positions of the patterns in F is still encoded in R̃, and thus is unknown. Nevertheless,
using the fact that K = S̃c contains the scalar products between patterns, an update
formula for the memberships can be explicitly found. Each pattern is represented by a
vector xi ∈ F and the set of centroids V is composed of prototypes in F . Let’s analyze,
for instance, the update equations for vi and uih for FCM II:

uih =
exp

(

−‖xh−vi‖
2

λ

)

∑c
j=1 exp

(

−
‖xh−vj‖2

λ

) (4.31)
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Table 4.1: Resuming table of the entropy functions, θ value, and constraints of the consid-
ered clustering algorithms.

Method θ H(U) W (U)

FCM I m 0
n
∑

h=1

βh

(

1 −

c
∑

i=1

uih

)

FCM II 1 λ

c
∑

i=1

n
∑

h=1

uih ln(uih)
n
∑

h=1

βh

(

1 −

c
∑

i=1

uih

)

PCM I m
c
∑

i=1

ηi

n
∑

h=1

(1 − uih)
m 0

PCM II 1
c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) 0

vi =

∑n
h=1 uihxh
∑n

h=1 uih

(4.32)

Since we don’t know explicitly the vectors xi, it would not be possible to explicitly compute
vi. Substituting Eq. 4.32 in Eq. 4.31, we obtain:

‖xh − vi‖
2 =

∥

∥

∥

∥

xh −

∑n
r=1 uirxr
∑n

r=1 uir

∥

∥

∥

∥

2

=

(

xh −

∑n
r=1 uirxr
∑n

r=1 uir

)(

xh −

∑n
r=1 uirxr
∑n

r=1 uir

)

= xhxh − 2

∑n
r=1 uirxrxh
∑n

r=1 uir

+

∑n
r=1

∑n
s=1 uiruisxrxs

(
∑n

r=1 uir)2

= khh − 2

∑n
r=1 uirkrh
∑n

r=1 uir

+

∑n
r=1

∑n
s=1 uiruiskrs

(
∑n

r=1 uir)2
(4.33)

This allows to obtain an update equation for the memberships for the considered clustering
algorithms.

To obtain a more convenient way of writing the update equations, let Uθ be the c × n
matrix having uθ

ih as elements, and let:

ai =

(

n
∑

h=1

uθ
ih

)−1

(4.34)

z(0) = diag(K) (4.35)
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Table 4.2: Resuming table of the objective functions of the considered clustering algorithms
considering also the contribution given by the shift operation.

FCM I

Lα(U) =

c
∑

i=1

n
∑

h=1

n
∑

k=1

um
ihu

m
ikrhk

n
∑

h=1

um
ih

+

n
∑

h=1

βh

(

1 −

c
∑

i=1

uih

)

+ 2α

c
∑

i=1

n
∑

h=1

um
ih − 2α

c
∑

i=1

n
∑

h=1

u2m
ih

n
∑

h=1

um
ih

FCM II

Lα(U) =

c
∑

i=1

n
∑

h=1

n
∑

k=1

uihuikrhk

n
∑

h=1

uih

+ λ

n
∑

h=1

c
∑

i=1

uih ln(uih) +

n
∑

h=1

βh

(

1 −

c
∑

i=1

uih

)

+ 2αn− 2α

c
∑

i=1

n
∑

h=1

u2

ih

n
∑

h=1

uih

PCM I

Lα(U) =

c
∑

i=1

n
∑

h=1

n
∑

k=1

um
ihu

m
ikrhk

n
∑

h=1

um
ih

+

c
∑

i=1

ηi

n
∑

h=1

(1 − uih)
m

+ 2α

n
∑

h=1

c
∑

i=1

um
ih − 2α

c
∑

i=1

n
∑

h=1

u2m
ih

n
∑

h=1

um
ih

PCM II

Lα(U) =

c
∑

i=1

n
∑

h=1

n
∑

k=1

uihuikrhk

n
∑

h=1

uih

+

c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) + 2αn− 2α

c
∑

i=1

n
∑

h=1

u2

ih

n
∑

h=1

uih
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Table 4.3: Resuming table of the memberships update equations, for the considered clus-
tering algorithms.

FCM I

u−1
ih =

c
∑

j=1

(

z
(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i

z
(0)
h − 2ajz

(1)
jh + a2

jz
(2)
j

)
1

m−1

FCM II

uih =

exp

(

−
z

(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i

λ

)

c
∑

j=1

exp

(

−
z

(0)
h − 2ajz

(1)
jh + a2

jz
(2)
i

λ

)

PCM I

u−1
ih =

(

z
(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i

ηi

)
1

m−1

+ 1

PCM II

uih = exp

(

−
z

(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i

ηi

)

Z(1) = UθK (4.36)

z(2) = diag(UθKU
T
θ ) (4.37)

Eq. 4.33 becomes:

‖xh − vi‖
2 = z

(0)
h − 2aiz

(1)
ih + a2

i z
(2)
i (4.38)

Tab. 4.3 shows the update equations of the memberships for the considered clustering
algorithms. Tab. 4.4 shows the steps composing the considered clustering algorithms.

4.3 Experimental Analysis

4.3.1 Synthetic Data Set

The presented clustering algorithms have been tested on a synthetic data set composed
of two clusters in two dimensions (Fig. 4.1). Each cluster is composed of 200 points
sampled from a Gaussian distribution. The position of their centers are respectively in
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Table 4.4: Pseudocode of the considered clustering algorithms

1. if R is not symmetric, then symmetrize it using Eq. 4.22;

2. Compute Sc using Eq. 4.7;

3. if Sc � 0 then K = Sc;

4. else K = Sc − λ1I;

5. Initialize parameters: c, m (FCM I, PCM I), λ (FCM II), ηi (PCM I, PCM II);

6. Initialize U ;

7. Update U using the update equation in Tab. 4.3 corresponding to the chosen method;

8. if the convergence criteria is not satisfied then go to step 7;

9. else stop.

−5 0 5 10

−
5

0
5

10

x1

x2

Figure 4.1: Plot of the synthetic data set composed of two clusters and some outliers.
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(0, 0) and (6, 6), and the standard deviations are equal to one for both the features and
clusters. Twenty outlier points have been added; they have been extracted with a uniform
distribution in the set [−6, 12]× [−6, 12]. The average of the squared distances is 43.4, the
median is 34.4, and the maximum is 360.9.

For all the tested algorithms, the behavior of the memberships have been analyzed during
the optimization, for different values of α. In order to do that, the rij have been set to
the squared Euclidean distance ‖xi − xj‖

2, and have been shifted with different values
of α. This can be done in two equivalent ways, namely the preshift and the postshift
(see Section 4.5.3). The proposed algorithms have been run on the modified data sets.
During the optimization, the memberships have been recorded to see how the distance
shifts affected their behavior. At each iteration, the difference between the matrix U when
α = 0 and U ′ for an α 6= 0 has been measured. The analysis has been made on the basis
of these two scores:

sd(U − U ′) =

√

(∑n
h=1

∑c
i=1(uih − u′ih)

2

c n

)

(4.39)

max(U − U ′) = max
i,h

(|uih − u′ih|) (4.40)

averaged over 100 runs.

FCM I has been tried with three different values of m, in particular m = 1.1, 1.5, 2.
Fig. 4.2 shows the behavior of the memberships during the optimization for different values
of α and m. The first row in Fig. 4.2 corresponds to m = 2, the one in the middle
to m = 1.5, and the one on the bottom to m = 1.1. For small α the results are
almost invariant as expected. For values of α of the order of the average of the squared
distances, the memberships have a very different behavior with respect to those on the
original set. Reducing the fuzziness m it can be noticed that the results are better. This
is not surprising since for m tending to 1, FCM I behaves like K-means which is invariant
to shift transformations. At the end of the algorithm, the memberships can be defuzzified
using a threshold of 0.5 to obtain the cluster labels. The cluster labels for different values
of alpha have been found to be identical for all the tested valued of α.

FCM II has been tried with three different values of λ, in particular λ = 10, 20, 30. For
such values of λ, the resulting memberships range from almost crisp to moderate fuzzy.
For different fuzziness levels (higher λ leads to fuzzier solutions), the memberships are
almost invariant, even for values of α higher than the maximum of the original squared
distances (Fig. 4.3). The Lagrangian in FCM II is not invariant to shift transformations
only because of the term B(U). The fact that A(U) is constant gives to FCM II more
robustness to distance shifts.
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Figure 4.2: FCM I - Behavior of the memberships during the optimization for different
values of α. First row m = 2, second row m = 1.5, third row m = 1.1. Results are averaged
over 100 repetitions with different initialization of U .
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Figure 4.3: FCM II - Behavior of the memberships during the optimization for different
values of α. First row λ = 30, second row λ = 20, third row λ = 10. Results are averaged
over 100 repetitions with different initialization of U .
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PCM I Fig. 4.4 shows the behavior of the memberships during the optimization for the
PCM I with different values of m, in particular m = 1.1, 1.5, 2. The initialization of the
memberships has been done using the result obtained by the FCM II, since it showed high
robustness to distance shifts. The values of ηi have been computed on the basis of the
memberships obtained by the FCM II. It can be seen that even for small values of α, the
behavior of the memberships is strongly affected by the shift operation.

PCM II The initialization of the memberships and the computation of the ηi have been
done on the basis of the result obtained by the FCM II. In PCM II there are no further
parameters to set up. Fig. 4.5 shows that also PCM II is strongly affected by dissimilarities
shifts, even for small values of α.

4.3.2 USPS Data Set

The studied algorithms have been tested on the USPS data set, which has been studied
also in Refs. [SSM98, LM04]. It is composed of 9298 images acquired and processed from
handwritten zip-codes appeared on real US mail. Each image is 16×16 pixels; the training
set in composed by 7219 images and the test set by 2001 images. As in Ref. [LM04], only
the characters in the training set labeled as “0” and “7” have been considered, obtaining
a subset of 1839 images. The dissimilarity function used in Ref. [LM04] is based on the
Simpson score, which is a matching function between binary images. Given two binary
images, the following matrix can be constructed:

Img 1
0 1

Img 2 0 d c
1 b a

where: a is the number of pixels that are white in both the images; b is the number of
pixels that are white in Img 2 and black in Img 1; c is the number of pixels that are white
in Img 1 and black in Img 2; d is the number of pixels that are black in both the images.
The Simpson score of two binary images is defined as:

l =
a

min(a+ b, a+ c)
(4.41)

The images in the USPS data set are not binary; this has required a normalization between
0 and 1, and a thresholding at 0.5. The dissimilarity based on the Simpson score, is:

rij = 2 − 2lij (4.42)
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Figure 4.4: PCM I - Behavior of the memberships during the optimization for different
values of α. First row m = 2, second row m = 1.5, third row m = 1. Results are averaged
over 100 repetitions with different initialization of U .
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Figure 4.5: PCM II - Behavior of the memberships during the optimization for different
values of α. Results are averaged over 100 repetitions with different initialization of U .

which is between 0 and 2. The mean value of R, in this data set, is 0.88, and the median
is 0.92. The Simpson dissimilarity is symmetric, but does not obey to the triangular
inequality. Indeed, as can be seen in Fig. 4.6, there are some negative eigenvalues of Sc.
The smallest eigenvalue λ1 = −57.2 is the value that added to the dissimilarities let R̃
become a squared Euclidean distance matrix. We applied the four clustering algorithms
on the selected binary images, searching for two clusters.

In Fig. 4.7, we can see the plot of the entropy H(U) of the memberships versus the param-
eters. Only FCM II, for particular values of λ, allows to obtain a meaningful distribution
of the memberships. Fig. 4.8 shows the accuracy obtained of the algorithms with respect
to the parameters. The accuracy is measured as the match between cluster labels and class
labels. Both the entropy and the accuracy are averaged over 50 trials with different ini-
tializations. In these experiments, we noticed that FCM I resulted to be strongly affected
by different initializations.

FCM II resulted the best algorithm in terms of performances. The histogram of the mem-
bership allows to refine the results, identifying the patterns that are more representative
of the two clusters, and those that are on the border between them. As an illustrative
example, we show (Fig. 4.9) the histogram of the highest membership of the patterns to
the clusters, obtained by FCM II with λ = 0.15, that is the setup giving the best results
on average (accuracy of 98.2 %). We can set a threshold on such memberships to label the
patterns as objects in the border between the two clusters. By looking at the histogram,
we set this threshold to 0.9. Fig. 4.9 shows the group of border objects, and the two
clusters found by the algorithm. The images have been sorted with decreasing values of
memberships. The image in the top-left corner has the highest membership and moving
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Figure 4.6: USPS data set - Eigenvalues of the matrix Sc sorted by decreasing magnitude.

to the right the memberships decrease.

4.4 Discussions

In this Chapter, four clustering algorithms based on fuzzy memberships have been studied:
FCM I, FCM II, PCM I, and PCM II. In particular, it has been studied how the sym-
metrization and the shift operation on the dissimilarities affect their objective function.
The main results include the proof of the invariance of the objective function to sym-
metrization and the lack of invariance to shift operations. Moreover, the four considered
clustering algorithms have been presented under a more general framework, highlighting
the connections between the relational clustering and the clustering in the space induced
by positive semidefinite kernels.

The tests conducted on the synthetic data set show that FCM II, among the studied algo-
rithms, is the least sensitive to shift operations. The cluster labels obtained by defuzzifying
the memberships in both FCM I and FCM II are the same as the unshifted case, even for
large shifts. This suggests that FCM I and FCM II could be useful to perform the op-
timization stage to obtain the cluster labels; anyway, the value of the memberships will
be distorted by the shift. The possibilistic clustering algorithms are strongly affected by
the shift operation due to the inability to deal with sparse data sets. From the results on
handwritten character recognition problem, it is possible to see how FCM II performed in
a real scenario. A simple analysis on the memberships can help to avoid a decision on the
assignment of patterns having their membership almost equally shared among clusters.
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Figure 4.7: Entropy vs the clustering parameters. First row FCM I and FCM II; second
row PCM I and PCM II.
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Figure 4.8: Accuracy vs the clustering parameters. First row FCM I and FCM II; second
row PCM I and PCM II.
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membership below the threshold (border objects). Second row: the two clusters found by
the algorithm
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Other interesting studies could involve the effect of the cardinality of the data set n and
the number of clusters c. It would be also interesting to try different approaches for the
estimation of ηi, as suggested in Ref. [dCOF06], or see what is the difference between the
behavior of memberships associated to outlier and normal patterns. All these consider-
ations could represent the basis of new studies on the behavior of the studied clustering
algorithms, for patterns described by non-metric pairwise dissimilarities.

4.5 Proofs

4.5.1 Proof that Sc is Uniquely Determined by Rc

The centralized version of a generic matrix P is the following:

P c = QPQ (4.43)

This is equivalent to:

pc
ij = pij −

1

n

n
∑

h=1

phj −
1

n

n
∑

k=1

pik +
1

n2

n
∑

h=1

n
∑

k=1

phk (4.44)

Inverting Eq. 4.5, we can write:

sij = −
1

2
(rij − sii − sjj) (4.45)

The centralized version of S is:

sc
ij = −

1

2

[

(rij − sii − sjj) −
1

n

n
∑

h=1

(rhj − shh − sjj) −
1

n

n
∑

k=1

(rik − sii − skk)

+
1

n2

n
∑

h=1

n
∑

k=1

(rhk − shh − skk)

]

(4.46)

= −
1

2

(

rij −
1

n

n
∑

h=1

rhj −
1

n

n
∑

k=1

rik +
1

n2

n
∑

h=1

n
∑

k=1

rhk

)

(4.47)

This proves that the centralized version of S is uniquely determined by the centralized
version of R:

Sc = −
1

2
Rc (4.48)
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4.5.2 Proof of Theorem 4.1.1

In this section we provide the proof that R is a squared Euclidean distance matrix ⇐⇒
Sc � 0. Let’s start with ⇒. The centralized version of R is:

Rc = QRQ = R−
1

n
eeTR−

1

n
ReeT +

1

n2
eeTReeT (4.49)

Assuming that a set of vectors x exists, for which:

rij = ‖xi − xj‖
2 (4.50)

the elements of Rc can be written:

rc
ij = ‖xi − xj‖

2 −
1

n

n
∑

h=1

‖xh − xj‖
2 −

1

n

n
∑

k=1

‖xi − xk‖
2 +

1

n2

n
∑

h=1

n
∑

k=1

‖xh − xk‖
2

= xixi + xjxj − 2xixj −
1

n

(

n
∑

h=1

xhxh + xjxj − 2xhxj

)

−
1

n

(

n
∑

k=1

xixi + xkxk − 2xixk

)

+
1

n2

(

n
∑

h=1

n
∑

k=1

xhxh + xkxk − 2xhxk

)

= −2

(

xixj −
1

n

n
∑

h=1

xhxj −
1

n

n
∑

k=1

xixk +
1

n2

n
∑

h=1

n
∑

k=1

xhxk

)

(4.51)

Introducing the quantity:

x̄ =
1

n

n
∑

h=1

xh (4.52)

we can rewrite in a more compact way Eq. 4.51:

rc
ij = −2(xi − x̄)(xj − x̄) = −2x̆ix̆j (4.53)

This is equivalent to say that:
Sc = X̆X̆T (4.54)

which proves ⇒.

To prove ⇐, since Sc is positive semidefinite, we can write:

Sc = XXT (4.55)

where the rows of X are vectors x ∈ R
d. From Eq. 4.5:

rij = sii + sjj − 2sij

= xixi + xjxj − 2xixj

= ‖xi − xj‖
2 (4.56)

This proves ⇐.
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4.5.3 Preshift and Postshift

Let’s analyze why:

Sc + αI 6= −
1

2
(QR̃Q) (4.57)

and how this can influence the behavior of the studied clustering algorithms. First, let’s
see what is the difference between the resulting matrices. For the preshift we have:

−
1

2
(QR̃Q) = −

1

2
(QRQ) − αQ(eeT − I)Q = Sc − αQ(eeT − I)Q (4.58)

Now:

Q(eeT − I)Q = QeeTQ−QQ = −QQ = −Q (4.59)

since:

Qe = (I −
1

n
eeT )e = e− e = 0 (4.60)

and:

QQ = (I −
1

n
eeT )(I −

1

n
eeT ) = I −

2

n
eeT +

1

n2
eeT eeT = I −

1

n
eeT = Q (4.61)

Thus:

−
1

2
(QR̃Q) = Sc + αQ (4.62)

The difference between the matrices associated to postshift and preshift is:

α(I −Q) =
α

n
eeT (4.63)

Now we prove that ‖xh − vj‖
2 is independent from the choice of the preshift or postshift:

‖xh − vj‖
2 = k′hh − 2

∑n
r=1 u

θ
irk

′
rh

∑n
r=1 u

θ
ir

+

∑n
r=1

∑n
s=1 u

θ
iru

θ
isk

′
rs

(
∑n

r=1 u
θ
ir)

2
(4.64)

k′ = k +
α

n
(4.65)

‖xh − vj‖
2 = khh +

α

n
− 2

∑n
r=1 u

θ
irkrh

∑n
r=1 u

θ
ir

− 2
α

n
+

∑n
r=1

∑n
s=1 u

θ
iru

θ
iskrs

(
∑n

r=1 u
θ
ir)

2
+
α

n
(4.66)
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4.5.4 Proof of Equivalence between G(U, V ) and G(U)

To prove the equivalence between the distortion functions in Eqs. 4.15 and 4.20, let’s
introduce the quantity:

bi =
n
∑

h=1

uθ
ih (4.67)

Since:

vi =

∑n
h=1 u

θ
ihxh

∑n
h=1 u

θ
ih

(4.68)

part of the sum in G(U, V ) can be rewritten in the following way:

n
∑

h=1

uθ
ih‖xh − vi‖

2 =
n
∑

h=1

uθ
ih(xh − vi)(xh − vi)

=
n
∑

h=1

uθ
ih(xhxh + vivi − 2xhvi)

=
n
∑

h=1

uθ
ihxhxh +

n
∑

h=1

uθ
ihvivi − 2

n
∑

h=1

uθ
ihxhvi

=
n
∑

h=1

uθ
ihxhxh + bivivi − 2bivivi

=
n
∑

h=1

uθ
ihxhxh − bivivi (4.69)

Rewriting part of G(U), we obtain:

n
∑

r=1

n
∑

s=1

uθ
iru

θ
is‖xr − xs‖
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n
∑

r=1

n
∑

s=1

uθ
iru

θ
is(xr − xs)(xr − xs)

=
n
∑

r=1

n
∑

s=1

uθ
iru

θ
is(xrxr + xsxs − 2xrxs)

=
n
∑

r=1

n
∑

s=1

uθ
iru

θ
isxrxr +

n
∑

r=1

n
∑

s=1

uθ
iru

θ
isxsxs − 2

n
∑

r=1

n
∑

s=1

uθ
iru

θ
isxrxs

=
n
∑

r=1

uθ
irxrxr

n
∑

s=1

uθ
is +

n
∑

s=1

uθ
isxsxs

n
∑

r=1

uθ
ir − 2

n
∑

r=1

xru
θ
ir

n
∑

s=1

uθ
isxs

= 2bi

n
∑

r=1

uθ
irxrxr − 2b2i vivi (4.70)

This proves that G(U, V ) = G(U).
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Chapter 5

One-Cluster Possibilistic c-means in

Feature Space

This Chapter presents the Possibilistic c-means algorithm in feature space, that is one
of the novel contributions of this thesis. It is a clustering algorithms, but it can also be
used for outlier detection, and for density estimation. The algorithm has been published
in Ref. [FMR07]; in this thesis, we extend the paper by reporting more theoretical and
experimental validations. In particular, we study the connections between One Cluster
Possibilistic c-means (OCPCM) and One-Class SVM (OCSVM). Section 5.1 introduces
the algorithm, in Section 5.2 we study the connections of the proposed model with One
Class SVM, and in Section 5.3 we report the experimental analysis.

5.1 Possibilistic Clustering in Feature Space

In this Section, we propose the possibilistic approach to clustering in kernel induced spaces.
The main drawback for the possibilistic c-means, as well as for most central clustering
methods, is its inability to model in a non-parametric way the density of clusters of generic
shape (parametric approaches such as Possibilistic C-Spherical Shells [KK93], instead, have
been proposed for some classes of shapes). In order to overcome this limit, we propose the
Possibilistic c-Means in Feature Space algorithm, in particular the PCM II in feature space
(PCM-II-fs). It consists in the application of the PCM II applied in the feature space F
obtained by a mapping Φ from the input space S (Φ : S → F). The objective function to
minimize is then:

JΦ(U, V Φ) =
n
∑

h=1

c
∑

i=1

uih‖Φ(xh) − vΦ
i ‖

2 +
c
∑

i=1

ηi

n
∑

h=1

(uih ln(uih) − uih) . (5.1)
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Note that the centroids vΦ
i of PCM-II-fs algorithm lie in the feature space. We can minimize

JΦ(U, V Φ) by setting its derivatives with respect to vΦ
i and uih equal to zero, obtaining:

vΦ
i =

n
∑

h=1

uihΦ(xh)

n
∑

h=1

uih

= bi

n
∑

h=1

uihΦ(xh), bi ≡

(

n
∑

h=1

uih

)−1

(5.2)

uih = exp

(

−
‖Φ(xh) − vΦ

i ‖
2

ηi

)

. (5.3)

In principle, the necessary conditions in Eq.s 5.2 and 5.3 can be used for a Picard iteration
minimizing JΦ(U, V Φ). Since Φ is not known explicitly, we cannot compute the centers vΦ

i

directly. Despite this, if we consider Mercer Kernels [Aro50] (symmetric and semidefinite
kernels) which can be expressed as a scalar product:

K(xi,xj) = Φ(xi) · Φ(xj), (5.4)

this relation holds (kernel trick [ABR64]):

‖Φ(xi) − Φ(xj)‖
2 = K(xi,xi) +K(xj,xj) − 2K(xi,xj). (5.5)

This allows us to obtain an update rule for the memberships by substituting Eq. 5.2 in
Eq. 5.3:

uih = exp

[

−
1

ηi

·

(

khh − 2bi

n
∑

r=1

uirkhr + b2i

n
∑

r=1

n
∑

s=1

uiruiskrs

)]

. (5.6)

Note that in Eq. 5.6 we introduced the notation kij = K(xi,xj). The Picard iteration
then reduces to the iterative update of the memberships only using Eq. 5.6, ending when
an assigned stopping criterion is satisfied (e.g., when memberships change less than an
assigned threshold, or when no significant improvements of JΦ(U, V Φ) are noticed).

Concerning the parameters ηi, we can apply in feature space the same criterion suggested
for the PCM II obtaining:

ηi = γ bi

n
∑

h=1

uih

(

khh − 2bi

n
∑

r=1

uirkhr + b2i

n
∑

r=1

n
∑

s=1

uiruiskrs

)

(5.7)

The parameters ηi can be estimated at each iteration or once at the beginning of the
algorithm. In the latter case the initialization of the memberships, that allows to provide
a good estimation of the ηi, can be obtained as a result of a Kernel Fuzzy c-Means [ZC02].
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Note that if we chose a linear kernel kij = xi · xj the PCM-II-fs reduces to the standard
PCM II, i.e., using a linear kernel is equivalent to set Φ ≡ I, where I is the identity
function. In the following, we will use a Gaussian kernel:

kij = exp

(

−
‖xi − xj‖

2

2σ2

)

(5.8)

for which:
‖Φ(xi)‖

2 = Φ(xi) · Φ(xi) = kii = 1. (5.9)

As a consequence, patterns are mapped by the Gaussian kernel from data space to the
surface of a unit hypersphere in feature space. Centroids in the feature space vΦ

i are
not constrained to the hyperspherical surface as mapped patterns; therefore, centroids lie
inside this hypersphere, and due to the lack of competitiveness between clusters (that
characterizes the possibilistic clustering framework), centroids of PCM-II-fs often collapse
into a single one, with slight dependency on the value of the cluster spreads ηi.

Note that PCM-II-fs retains the principal characteristics of PCM II, including the capabil-
ity of estimating hyperspherical densities, this time in the feature space. In the data space
this corresponds to the capability to model clusters of more general shape, a significant
improvement with respect the original PCM II.

5.2 One-Class SVM vs One Cluster PCM in kernel

induced space

In this Section we study the connections between the PCM-II-fs with c = 1, that we will
call the One Cluster PCM II in feature space (OCPCM) and One Class SVM (OCSVM). In
particular, we show the formal analogies between the two objective functions, highlighting
the robustness of the proposed method against OCSVM.

5.2.1 One-Class SVM

Let’s recall some basic concepts about OCSVM. In particular, the optimization problem
is the following:

min
α1,...,αn

(

∑

r

∑

s

αrαskrs −
∑

h

αhkhh

)

subject to :

∑

h

αh = 1 and 0 ≤ αh ≤ C
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with respect to αi.

• when ξh > 0, the image of xh lies outside the hypersphere. These points are called
bounded support vectors. For them, αh = C holds;

• when ξh = 0 and 0 < αh < C, the image of xh lies on the surface of the hypersphere.
These points are called support vectors.

• when ξh = 0 and αh = 0, the image of xh is inside the hypersphere.

The computation of the center of the sphere:

v =
∑

h

αhΦ(xh) (5.10)

leads to the computation of the distance between a pattern and the center:

dh = ‖Φ(xh) − v‖2 = khh − 2
∑

r

αrkhr +
∑

r

∑

s

αrαskrs (5.11)

5.2.2 One-Cluster PCM in Feature Space

We show now the objective function of OCPCM, starting from a formulation in input
space. Let’s assume the presence of a single cluster, i.e., we consider PCM-II-fs with c = 1.
We represent the memberships as a vector u, where each uh is the membership of the h-th
pattern to the cluster.

The objective function of OCPCM is:

L =
∑

h

uh‖xh − v‖2 + η
∑

h

(uh ln(uh) − uh) (5.12)

The possibilistic constraint on the memberships is the following:

0 ≤ uh ≤ 1 (5.13)

Setting to zero the derivatives of L with respect to vi:

∂L

∂v
= −

n
∑

h=1

uih (xh − vi) = 0 (5.14)

we obtain the update formula for the centroid v:

v =

∑

h uhxh
∑

h uh

(5.15)
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Substituting v in L:

L =
∑

h

uh‖xh − v‖2 + η
∑

h

(uh ln(uh) − uh)

=
∑

h

uhxhxh + vv
∑

h

uh − 2v
∑

h

uhxh + η
∑

h

(uh ln(uh) − uh)

=
∑

h

uhxhxh − vv
∑

h

uh + η
∑

h

(uh ln(uh) − uh)

=
∑

h

uhxhxh −

∑

r

∑

s urusxrxs
∑

h uh

+ η
∑

h

(uh ln(uh) − uh)

The last equation can be extended by mean of positive semidefinite kernels, leading to the
following optimization problem:

min

(

∑

h

uhkhh −

∑

r

∑

s uruskrs
∑

h uh

+ η
∑

h

(uh ln(uh) − uh)

)

subject to :

0 ≤ uk ≤ 1

With this extension, the proposed algorithm models all data points in a single cluster in
features space. If we add the constraint

∑

h uh = 1, the problem becomes the following:

min

(

∑

h

uhkhh −
∑

r

∑

s

uruskrs + η
∑

h

uh ln(uh)

)

subject to :

0 ≤ uh ≤ 1 and
∑

h

uh = 1

This is the optimization problem of the OCPCM; in the next sub-section we will study the
optimization procedure. In the next Section, we will see that the constraint on the sum
of the memberships corresponds just to scale the values of the memberships, and that the
position of the centroid is not affected by that.

The result just obtained shows that the objective function of the One-Cluster PCM-FS has
a close relationship with that of One-Class SVM. In particular, the role of the αh is the
dual with respect to the uh. In One-Class SVM, the center of the sphere is computed as
combination of outliers; in One-Cluster PCM-FS, the patterns contribute to the position
of the centroids proportionally to their memberships, that is very low for the outliers.
This can lead to a more reliable estimation for the centroid v in One-Cluster PCM-FS.
Moreover, in One-Cluster PCM-FS we can see the presence of a regularization term, which
is an entropy based score of the memberships. In the experimental analysis, we will show
the implication of these facts.

89



We note that the algorithms we are comparing follow different approaches. One-Class
SVM looks for the center v and the radius R of the enclosing sphere, One-Cluster PCM-
FS looks for a centroid in feature space and computes the memberships on the basis of v.
The parameter η works as the width of the membership function, and corresponds to the
square of the radius R2. One-Cluster PCM-FS yields the memberships of the patterns, and
it is possible to set a threshold to obtain a decision boundary. This corresponds to select
a sphere in feature space that is the intersection between the multi-dimensional Gaussian
describing the memberships and an hyperplane.

5.2.2.1 Optimization Algorithm - The Unconstrained Case

Let’s analyze the procedure to optimize the Lagrangian:

L =
∑

h

uh‖xh − v‖2 + η
∑

h

(uh ln(uh) − uh) (5.16)

The optimization technique that we use is the so called Picard iteration technique. L
depends on two groups of variables u and V related to each other, namely u = u(v) and
v = v(u). In each iteration one of the two groups of variables is kept fixed, and the
minimization is performed with respect to the other group. The update equation can be
obtained setting the derivatives of L to zero:

∂L

∂v
= 0 (5.17)

∂L

∂uh

= 0 (5.18)

We iterate these two equations until convergence:

uh = exp

(

−
‖xh − v‖2

η

)

(5.19)

v =

∑n
h=1 uhxh
∑n

h=1 uh

(5.20)

The constraint 0 ≤ uk ≤ 1 is satisfied since the form assumed by their update equation.

5.2.2.2 Optimization Algorithm - The Constrained Case

We show that constraining the sum of the memberships does not affect the behavior of the
optimization procedure. In other words, the results of the constrained and unconstrained
case differ only in the scaling factor of the memberships. Let’s start with the Lagrangian:

L =
∑

h

uh‖xh − v‖2 + η
∑

h

(uh ln(uh) − uh) (5.21)
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subject to:
∑

h

uh = 1 (5.22)

L =
∑

h

uh‖xh − v‖2 + η
∑

h

(uh ln(uh) − uh) + γ

(

∑

h

uh − 1

)

(5.23)

∂L

∂uh

= ‖xh − v‖2 + η ln(uh) + γ = 0 (5.24)

uh = exp

(

−
‖xh − v‖2

η

)

exp

(

−
γ

η

)

(5.25)

Substituting in the constraint:

∑

h

exp

(

−
‖xh − v‖2

η

)

exp

(

−
γ

η

)

= 1 (5.26)

gives:

γ = η ln

(

∑

h

exp

(

−
‖xh − v‖2

η

)

)

(5.27)

Finally:

uh =
exp

(

−‖xh−v‖2

η

)

∑

r exp
(

−‖xr−v‖2

η

) (5.28)

The update of v is the same as in the unconstrained case. The normalization in Eq. 5.28
cancels out in the computation of the v. This means that starting with the same member-
ships, the constrained and unconstrained case give the same v, and the memberships are
only scaled to sum up to one.

5.2.3 Applications of OCPCM

The Core step produces a fuzzy-possibilistic model of densities (membership function) in
the feature space. It is initialized by selecting a stop criterion (e.g., when memberships
change less than an assigned threshold, or when no significant improvements of JΦ(U, V Φ)
are noticed), setting the value of σ for the Gaussian kernel (in order to define the spatial
resolution of density estimation), and initializing the memberships uh (usually as uh = 1).
Then, after estimating the value of η using Eq. 5.7, we perform the Picard iteration using
Eq. 5.6.
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Density Estimation At the end of the Core step, we have modeled the density of
patterns in feature space. These memberships, back to the input space, represent a density
estimation in input space based on a specific kernel. In this framework, the value of the
parameter η plays the role of a scaling factor on the range of density values that can be
obtained by the algorithm.

Outlier Detection Once the memberships are obtained, it is possible to select a thresh-
old α ∈ (0, 1) and use it to define an α-cut (or α-level set) on data points:

Aα = {xh ∈ X | uh > α} (5.29)

This can be considered as a Defuzzification step. Note that given the form of uh (Eq. 5.3)
the threshold α defines a hypercircle which encloses a hyperspherical cap. Aα is then the set
of data points whose mapping in feature space lies on the cap, whose base radius depends
on α. Points outside the α-cut are considered to be outliers.

Clustering The Labeling step separates the data points belonging to the single cluster in
feature space, in a number of ”natural” clusters in data space. It uses a convexity criterion
derived from the one proposed for One-Class SVM [HHSV01] assigning the same label to
a pair of points only if all elements of the linear segment joining the two points in data
space belong to Aα.

The Defuzzification and Labeling steps can be iterated with different values of α, thus
performing a very lightweight model selection, without involving new runs of the Core step.
Often, such as in the case of experiments presented in next section, an a-priori analysis of
the memberships histogram permits to obtain a good evaluation of α without performing a
true model selection. Indeed, the presence of multiple modes in the membership histogram
indicates the presence of different structures in feature space, and allows to find several
levels of α discriminating the different densities of data in feature space.

5.3 Experimental Analysis

In this Section, we report the experimental analysis showing the properties of OCPCM.
In the first part, we show its ability to model densities in feature space and to perform
clustering. In the second part, we present a comparison of OCSVM and OCPCM as outlier
detection algorithms, by means of a stability validation test.
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Figure 5.1: (a) Histogram of the memberships obtained by OCPCM with σ = 0.5. The
dotted line gets through to membership value .3667 that separates the two modes of the
graph; the value of α is then taken as α = .3667. (b) Data space: black dots belong to
the dense regions and the Gray ones are the noisy patterns. The contours correspond to
points with membership equal to .3667.

5.3.1 Density Estimation and Clustering

We present some results obtained on a synthetic set (Fig. 5.1) composed by three disjoint
dense regions (black dots) on a 10x10 square: two rectangular regions, each of them corre-
sponding to 1.24 % of the square and composed by 100 patterns uniformly distributed, and
a ring shaped region, corresponding to 7.79 % of the square, that contains 300 patterns
uniformly distributed. An uniformly distributed noise of 1000 gray dots is superimposed
to the square.

We used a Gaussian kernel with standard deviation σ = 0.5 estimated as the order of
magnitude of the average inter-data points distance. The memberships uh were initialized
to 1. The stop criterion was

∑

h ∆uh < ε with ε = 0.01.

In the Defuzzification step we evaluated α using the histogram method. As shown in
Fig. 5.1(a), choosing α = .3667 that is the value of membership separating the two modes
of the histogram, we obtain a good separating surface in the data space (Fig. 5.1(b)), with
no need to perform any iteration for model selection.

As shown in the experiment, OCPCM shows a high robustness to outliers and a very good
capability to model clusters of generic shape in the data space (modeling their distributions
in terms of fuzzy memberships). Moreover, it is able to find autonomously the natural
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number of clusters in the data space. The outliers rejection ability is shared also by the
PCM II, but is limited to the case of globular clusters.

In all the runs of One-Cluster PCM-FS the Core step, which involves the minimization of
JΦ(U, V Φ) (Eq. 5.1), resulted to be very fast, since less than a tenth of iterations of Eq. 5.6
where enough.

5.3.2 Stability Validation for Outlier Detection

The method that we will use to compare the stability of OCSVM and OCPCM solutions
for outlier detection is the one proposed in Ref. [LRBB04]. This approach has been used to
estimate the natural number of clusters in a data set. We report the general ideas and we
will detail how we intend to use the method. In particular, we will apply a modified version
of it making use of the Jaccard coefficient, to compare the ability of the two algorithms to
identify the outliers.

The general procedure starts by splitting the original data set in two disjoint subsets X
and X ′. The cardinality of X and X ′ is half the cardinality of the original data set. By
applying a clustering algorithm to X we obtain the cluster labels z = (z1, z2, . . . , zn/2). On
the basis of the clustering model build on X it is possible to assign the cluster labels to
X ′. This mechanism is called Transfer by Prediction and can be formalized by a classifier
φ trained on X that allows to predict the labels of X ′. In our case, the classifier will be
the one that labels a pattern as outlier when it is outside the hypersphere in feature space
for OCSVM and when it has a membership lower than the selected threshold in OCPCM.
On the other hand, we can directly apply the clustering algorithm to X ′ obtaining a set
of labels z′ = (z′1, z

′
2, . . . , z

′
n/2). The labels φ(X ′) and z′ can now be compared using,

for instance, the Hamming distance. Such distance must take into account the possible
permutations of the cluster labels. Indeed, the φ(X ′) and z′ are not necessarily in a direct
correspondence. For that reason, the minimum distance over all the permutations has to
be taken. The expected value of this distance can be considered as a stability measure
of the clustering solution. The computation is made by averaging the distance over a
finite number of resamplings. The number of clusters k clearly affects the bounds on this
score; this suggests a normalization based on the expected value of the Hamming distance
between two random clustering labelings.

To compare OCSVM and OCPCM for outlier detection, we propose a matching based on
the Jaccard coefficient. For two binary variables, Jaccard coefficient is a measure of their
concordance on positive responses. Given the confusion matrix:
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Table 5.1: Pseudocode of the stability validation procedure for outlier detection

1. Repeat r times:

(a) split the given data set into two halves X and X ′;

(b) apply the outlier detection algorithm toX and predict the labels onX ′ obtaining
φ(X ′);

(c) apply the outlier detection algorithm to X ′ obtaining z′;

(d) compute the Jaccard coefficient between φ(X ′) and z′;

B
0 1

A 0 a00 a01

1 a10 a11

Jaccard coefficient is defined as:

J =
a11

a01 + a10 + a11

(5.30)

It is clear the difference with the simple matching, where we would have taken into account
also the occurrences of negative responses. In some applications, the value of positive
and negative responses do not have equal information (asymmetry). For example, if the
negative value is not important, counting the non-existence in both the variables may have
no meaningful contribution to the similarity or dissimilarity. In our case, the use of such
coefficient is particularly suitable, since we want to measure the concordance between the
solutions φ(X ′) and z′ on the identification of outliers. We want to give more importance
to the fact that φ(X ′) and z′ match on the outliers, instead of normal patterns. The use of
the normalization of this score is not needed since we are dealing with two classes (outlier
vs. non-outliers) in both the algorithms. The steps of the stability validation procedure
for outlier detection are outlined in Tab. 5.1.

We decided to evaluate the stability for different values of ν in OCSVM. Different values
of ν lead to different numbers of outliers. For this reason, to compare correctly OCSVM
with OCPCM for different values of ν, we decided to set a threshold in the memberships
obtained by OCPCM, in order to reject exactly the same number of patterns rejected by
OCSVM with that particular value of ν.
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Figure 5.2: Synthetic data set.

5.3.3 Results

5.3.3.1 Synthetic data set

The synthetic data set used in our experiments is shown in Fig. 5.2. It is a two-dimensional
data set composed by 400 points. They have been generated using a Gaussian distribution
centered in (0, 0) having unitary variance along the two axes. Other 20 points have been
added sampling uniformly the set [3, 10]× [−10, 10] and 10 points sampling uniformly the
set [−10,−3] × [−10, 10] to obtain a non-symmetric outlier distribution.

We tested the stability of OCSVM and OCPCM for outlier detection using the algorithm
presented in Tab. 5.1. We used a Gaussian kernel with three different values of σ: 0.1,
1, and 10; the regularization parameter η has been set to two different values: 1 and 10.
The results are summarized in Fig. 5.3, where the box-and-whisker plot of the Jaccard
coefficient over 500 repetitions (r = 500) for different values on ν. The median is denoted
by the thick line while the box contains the values between the first and third quartile. The
wiskers extend to 1.5 times the range of the difference between the first and third quartile.
In the plots, we omitted the values of the Jaccard coefficient exceeding the wiskers. The
three rows of Fig. 5.3 correspond to the three different values of σ. The first plot in each
row refers to OCSVM, the other two represent those of OCPCM with two different values
of the regularization parameter η = 1 and η = 10.

5.3.3.2 Real data sets

We compared the stability of OCSVM and OCPCM for outlier detection on three real data
sets: Breast, Glass, and Ionosphere (see Chapter 3 for a description of these data sets).
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Figure 5.3: Comparison of OCSVM and OCPCM (both with Gaussian kernel) using box-
and-whisker plot of the Jaccard coefficient over 500 repetitions. First row: σ = 0.1
OCSVM, OCPCM η = 1, and OCPCM η = 10. Second row: σ = 1 OCSVM, OCPCM
η = 1, and OCPCM η = 10. Third row: σ = 10 OCSVM, OCPCM η = 1, and OCPCM
η = 10.
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Figure 5.4: Comparison of OCSVM and OCPCM (both with Gaussian kernel) using box-
and-whisker plot of the Jaccard coefficient over 500 repetitions. First row: Breast σ = 10
OCSVM, OCPCM η = 10, and OCPCM η = 20. Second row: Glass σ = 5 OCSVM,
OCPCM η = 1, and OCPCM η = 10. Third row: Ionosphere σ = 5 OCSVM, OCPCM
η = 1, and OCPCM η = 10.
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For the Breast data set, we used a Gaussian kernel with σ = 10; for Glass and Ionosphere
we used a Gaussian kernel with σ = 5. Fig. 5.4 shows the box-and-whisker plot of the
Jaccard coefficient over 500 repetitions for different values on ν. The three rows of Fig. 5.4
refer respectively to the Breast, Glass, and Ionosphere data sets. The first plot in each
row refers to OCSVM, the other two represent those of OCPCM with two different values
of the regularization parameter η.

5.4 Discussions

In this Chapter, we introduced the possibilistic clustering in feature space. The analogies
between OCPCM and OCSVM have been studied. In particular, we showed that the
role of the Lagrange multipliers in OCSVM is dual with respect to the memberships in
OCPCM. This fact plays a crucial role in the application of these algorithms. In OCSVM,
the Lagrange multipliers αh are zero for patterns inside the sphere and non-zero for the
outliers. The memberships in OCPCM are high for patterns in dense areas and are low for
outliers. The center of the sphere in OCSVM and the Gaussian in OCPCM are computed as
the weighted sum of the patterns, and the weights are respectively the Lagrange multipliers
and the memberships. This leads to an estimation of the center of the sphere for OCSVM
as a weighted sum of the outliers. The estimation of the center of the Gaussian is thus
more reliable for OCPCM. Moreover, OCPCM objective function contains a regularization
term that is an entropy based score computed on the memberships. This gives to OCPCM
the ability to avoid overfitting.

All these considerations are fully confirmed by the tests conducted on synthetic and real
data sets (Figs. 5.3 and 5.4). Especially for small values of ν, that correspond to low
rejection of outliers, the stability of OCPCM is very high with respect to that of OCSVM.
In OCPCM, the selection of the regularization parameter is not critical, and the stability
is achieved for η ranging in a wide range of values. Moreover, the optimization procedure
is iterative and very fast, since few iterations are needed. In OCSVM, it is necessary to
solve a quadratic optimization problem.
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Chapter 6

Conclusions

In this thesis, we proposed some advances in the use of kernel in clustering. Such advances
involve both the theoretical foundation of kernel methods for clustering and their extensive
application to real problems.

The theoretical contributions originated from a classification of kernel methods for cluster-
ing. We reported from literature the formal equivalence between the objective functions
of the spectral clustering with the ratio association as objective function and K-means in
feature space. We studied in detail the relational dual of four fuzzy central clustering algo-
rithms, proposing theoretical studies on the applicability of these algorithms in situations
where patterns are described in terms on non-metric pairwise dissimilarities. In particular,
it has been studied how the symmetrization and the shift operation on the dissimilarities
affect their objective function. The main results include the proof of the invariance of the
objective function to symmetrization and the lack of invariance to shift operations. More-
over, the four considered clustering algorithms have been presented under a more general
framework, highlighting their connections with clustering in the space induced by positive
semidefinite kernels. We proposed a novel clustering algorithm, the Possibilistic c-means
in feature space, studying the analogies between OCPCM and OCSVM. In particular, we
showed that the role of the Lagrange multipliers in OCSVM is dual with respect to the
memberships in OCPCM, and the regularized properties of OCPCM objective function.
In OCSVM, the estimation of the center of the hypersphere is based on the outliers; this
drawback is avoided in OCPCM. The regularization properties of OCPCM play an impor-
tant role in avoiding overfitting. These facts, along with the simple optimization procedure,
suggest the potentiality of OCPCM in applications.

Regarding the applications, we conducted a comparative study of several clustering meth-
ods based on kernels and spectral theory. In general, methods in feature space performed
better than methods with the kernelization of the metric and SVC. The spectral algorithm
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proposed by Ng et al. achieved good results in almost all the data sets. This means that
a low dimensional representation, based on the eigenvectors of the Laplacian of the graph
obtained on the data, is quite effective to highlight structures in data. Clustering in kernel
induced spaces and spectral clustering outperformed standard clustering algorithms. This
is one of the motivations that support the interest of the Machine Learning community
for these recent clustering techniques. On the other hand, methods based on kernels and
spectral theory require tuning the kernel or the adjacency function; good performances are
often achieved only for values of the parameters ranging in a narrow interval. Such compar-
ative study required the use of several clustering algorithms that have been implemented
in these years and collected in a software package written in R language.

The experimental analysis conducted on the relational duals of four fuzzy central clustering
algorithms showed that FCM II is the least sensitive to shift operations. The cluster labels
obtained by defuzzifying the memberships in both FCM I and FCM II were the same as
the unshifted case, even for large shifts. This suggests that FCM I and FCM II could be
useful to perform the optimization stage to obtain the cluster labels, even though the value
of the memberships are distorted by the shift. The possibilistic clustering algorithms are
strongly affected by the shift operation due to their inability to deal with sparse data sets.

OCPCM has been tested on synthetic and real data sets. We performed a comparison with
OCSVM in the context of outlier detection. Especially for small values of ν, that correspond
to low rejection of outliers, the stability of OCPCM is very high with respect to that of
OCSVM. The selection of the regularization parameter in OCPCM is not critical, and the
stability is achieved for η ranging in a wide range of values. Moreover, the optimization
procedure is iterative and very fast, since few iterations of the memberships update equation
are needed; in OCSVM, instead, it is necessary to solve a quadratic optimization problem.

Many questions are still open. In the present studies we used a Gaussian kernel, that is
a very common choice. Such kernel maps the given data to an infinite dimensional space,
where the patterns are definitely linearly separable. This is the reason why it is used with
success in classification problems. In clustering applications, however, this may not be the
best choice, especially for central clustering algorithms. Indeed, they minimize an objective
function that favors the clustering of hyperspherical clusters, and this may have nothing
in common with the representation given by the Gaussian kernel. Despite that, this choice
led to better performances with respect to the standard clustering algorithms. It would be
interesting to study the impact of other kernels in the performances. In particular, some
kernels able to highlight structures in data have been proposed [FRB04, KSC07], and are
worth of further investigations in the context of fuzzy clustering. Also, the connection
between spectral and kernel methods for clustering, is leading to an interesting research
area on hybrid optimization strategies [DGK07].

The complexity of these methods is one of the limitations on their applicability to real
problems. The complexity of a single iteration of central clustering algorithms in kernel
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induced space is quadratic with the cardinality of the data set, while it is linear for stan-
dard central clustering algorithms. For all these iterative algorithms, we cannot take into
account the number of iterations that can have a strong impact on the running time of the
algorithms. Their convergence depends on the particular data set and the choice of the
parameters. The computation of the eigenvectors in spectral methods is affected by the
selection of the data set and parameter selection as well. The sparsity of the matrix has
a big impact on the time required to solve the eigenproblem. For these reasons, it is very
difficult to identify the best approach in terms of both accuracy and complexity.
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Appendix A

Software Package - kernclust

The software implemented during these years has been collected in a software package
called kernclust1. This package has been implemented in R language. R is a programming
language and environment for statistical computing, which was developed at Bell Labora-
tories [R D06]. It provides a large set of tools optimized for a wide range of problems. It
is based on objects such as vectors, matrices, and more complex structures (data frames,
lists). There are many operators acting directly on these objects, which make computa-
tions fast and expressed in a compact way. These properties, its GNU license2, and a
generic resemblance to Matlab, have boosted its diffusion in the statistical and machine
learning communities. The peculiar conventions adopted make it a straightforward task
and allow even very complicated constructs to be expressed compactly. The drawback of
the fact that R works as an interpreter can lead to some limitations in terms of speed. This
problem may be overcome by calling external C, C++, or Fortran routines from within
an R program. This is useful when parts of the code are computationally intensive and
difficult to optimize in R. Moreover, an R to C compiler has been recently released3.

The main algorithms contained in kernclust are the following:

clustfs Clustering in feature space;

assign clustfs Assign new patterns to the clusters obtained by clustfs;

clustkm Clustering with the kernelization of the matric;

assign clustkm Assign new patterns to the clusters obtained by clustkm;

1the package can be downloaded at
ftp://ftp.disi.unige.it/person/FilipponeM/Rpackage/kernclust 1.0.tar.gz

2R language is available at http://www.r-project.org/ for the most common computer platforms
(Windows, Linux, Mac OS).

3http://hipersoft.cs.rice.edu/rcc/
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oneclass Algorithm to find the sphere enclosing almost all data, excluding the outliers;

pathoneclass Labeling algorithm for One Class SVM;

ngjordan Ng-Jordan spectral clustering algorithm;

shimalik Shi-Malik spectral clustering algorithm;

minimalshift Obtain a positive semidefinite kernel matrix from a dissimilarity matrix.;

nmi, ce, mis Normalized Mutual Information, Conditional Entropy and Count of Mis-
classified Patterns.

All these algorithms have a core part written in C language. This gives to these algorithms
good performances in terms of speed. R is used as a frontend, allowing the user to perform
easily the analysis of the results and produce high quality plots.

For the complete package documentation, the reader is referred to the manual contained
in the package itself.
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Appendix B

Other Activities

During these years, my activity has been funded by these fellowships:

• From 01-03-2007 to 30-10-2007
at Department of Information and Software Engineering - George Mason University
4400 University Drive, Fairfax, VA 22030 - USA
Grant: Detecting Suspicious Behavior in Reconnaissance Images
PI, co-PI: Prof. Daniel Barbarà and Prof. Carlotta Domeniconi

• From 20-07-2006 to 30-10-2006
at Consorzio Venezia Ricerche
Via della Libertà 12, 30175 Marghera, Venezia - Italy
Topic of the fellowship:
Tide level forecasting in the lagoon of Venezia
Tutor: Prof. Elio Canestrelli

• From 01-09-2005 to 30-04-2007
at Department of Computer Science - University of Genova
Via Dodecaneso 35, 16146 Genova - Italy
Topic of the fellowship:
Novel clustering techniques with applications in image segmentation and analysis
Tutor: Prof. Stefano Rovetta

• From 01-06-2005 to 31-08-2005
at Department of Computer Science and Department of Endocrinologic and Metabolic
Sciences - University of Genova
Via Dodecaneso 35, 16146 Genova - Italy
Topic of the fellowship:
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Application of advanced clustering techniques in diagnostic problems in rheumatol-
ogy
Tutor: Prof. Guido Rovetta

In these projects I dealt with other machine learning problems; some other contributions,
that are not mentioned in this thesis, have been proposed:

• feature selection [FMR06c, FMR06b, FMR05, FMRC06];

• biclustering [FMR+06d];

• time series analysis and forecasting [CF07, CCC+07];

• other clustering approaches [RMF07, FMR06a, MRF05, RMF05].
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