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Consider non-parametric logistic regression with Gaussian Process priors (Rasmussen
and Williams, 2006), where a set of n covariates xi ∈ R

d are associated with response
yi ∈ {0, 1}:

p(f |θ) ∼ N (f |0,K) p(yi|fi) = σ(fi)
yi(1 − σ(fi))

(1−yi)

Let K be the covariance matrix parameterized by a vector of (hyper)parameters θ =
(ψσ, ψτ1

, . . . , ψτd
):

k(xi,xj |θ) = exp(ψσ) exp

[

−
1

2
(xi − xj)

TA(xi − xj)

]

A−1 = diag (exp(ψτ1
), . . . , exp(ψτd

))

We consider the manifold methods presented in this paper in comparison to a set of alter-
native algorithms to sample from the joint-posterior distribution of f and θ.

Efficiently sampling f and θ is complex because of their strong coupling (Murray and
Adams, 2010; Neal, 1999). Gibbs style samplers, as used by the Authors in Section 9, based
on sampling f |θ,y and θ|f ,y are convenient from an implementation standpoint, but ex-
tremely inefficient. This is due to the fact that fixing f induces a sharply peaked posterior for
θ, resulting in a poor Effective Sample Size (ESS) for the length-scale parameters (Murray
and Adams, 2010).

The metric tensor comprises the Fisher Information (FI) and the negative of the Hessian
of the prior:

Gf = −Ey|f [∇f∇fL] = σ(f)(1 − σ(f)) +K−1 = Λ +K−1 Λ = diag(σ(f)(1 − σ(f)))

Gf ,θi
= −Ey,f |θ

[

∂∇fL

∂θi

]

= −Ef |θ

[

K−1∂K

∂θi

K−1f

]

= 0

Gθj ,θi
= −Ey,f |θ

[

∂2L

∂θi∂θj

]

=
1

2
Tr

(

K−1 ∂K

∂θi

K−1 ∂K

∂θj

)

−
∂2 log[p(θ)]

∂θi∂θj

G =

(

Gf 0

0 Gθ

)

The derivatives of G follow from standard properties of matrix derivatives. Note that taking
the expectations with respect to y alone does not lead to a positive definite matrix G and
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Table 1. ESS for Gibbs Metropolis-Hastings (Gibbs MH), Gibbs Simplified MMALA (Gibbs S-MMALA),
Gibbs RM-HMC (Gibbs RM-HMC), Gibbs Whitening (Gibbs Wht), HMC, Simplified MMALA (S-MMALA),
and RM-HMC, all averaged over 10 runs (the standard deviation is in parenthesis). In Hamiltonian based
methods, the maximum number of leapfrog steps was set to 30. Gibbs MH and HMC were tuned on
the basis of posterior covariances estimated from pilot runs of Gibbs Wht. We also report the number of
calls (in thousands) to the functions computing G, Gθ and the Cholesky decomposition of K that are the
main computational bottle-necks (along with the derivatives of Gθ with respect to θ, although we are not
reporting these statistics). All the methods were initialized from the true values used to generate the data;
the ESS is computed over 2000 samples collected after 1000 burn-in samples. In Gibbs style samplers,
the length-scale parameters have a poor ESS, whereas the latent functions are sampled quite efficiently
by manifold methods, confirming that the geometric argument is effective in improving the sampling of f .

Gibbs Gibbs Gibbs Gibbs
MH S-MMALA RM-HMC Wht HMC S-MMALA RM-HMC

min ESS f 3(0) 27(17) 78(69) 26(24) 3(0) 17(6) 182(50)

avg ESS f 6(0) 102(27) 404(92) 112(24) 6(0) 51(4) 531(80)

max ESS f 18(3) 205(35) 888(60) 309(55) 21(4) 94(12) 1001(61)

ESS ψσ 30(11) 54(38) 30(13) 56(20) 5(2) 18(10) 530(250)

ESS ψτ1
30(13) 6(2) 6(4) 203(112) 12(11) 6(2) 86(33)

ESS ψτ2
36(23) 8(3) 7(3) 136(60) 10(6) 7(4) 111(40)

103 ×G −− −− −− −− −− 3(0) 257(18)

103 ×Gθ −− 3(0) 80(6) −− −− −− −−

103 × chol(K) 3(0) 3(0) 80(6) 3(0) 47(1) 3(0) 257(18)

it is therefore necessary to take them with respect to y and f jointly (for Gf we compute
the expectation with respect to y to leave the dependency from f). G is block diagonal, so
the geometric based argument in favor of the decoupling of f and θ, when sampled jointly
using manifold methods, does not hold.

Results and experimental settings for a bivariate logistic regression problem with n = 100
are reported in Table 1. The results confirm that Gibbs style samplers are very inefficient
in sampling the length-scale parameters.

Gibbs with RM-HMC proposals seems suboptimal in this problem, as it may well be for
the Log-Gaussian Cox model presented by the Authors in Section 9. A natural decoupling
of f and θ is offered by whitening the prior over f . Given the decomposition K = LLT,
define ν = L−1f ; sampling θ|f ,y is replaced by θ|ν,y.

Even if G is block diagonal, the results for computationally demanding runs of RM-
HMC show some potential in achieving a comparable ESS to the whitening method. This
motivates further investigation on less expensive (guiding) Hamiltonians for the joint update
of f and θ trading off some efficiency. Also, it would be particularly interesting to start
off from the whitened model and study whether manifold methods can improve sampling
efficiency.
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